
Improving Data Access 
Performance with Server Push 
Architecture

Xian-He Sun*, Surendra Byna, and Yong Chen
Scalable Computing  Software Laboratory

Illinois Institute of Technology 
Fermi National Laboratory*

sun@iit.edu

March 25, 2007 NGS07



The Problem: Memory Wall
Processors are getting faster more quickly than memory
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Solutions
Improve 
hardware
Cache 
memories
Prefetching
Multithreading



Current Solutions of Memory Wall

• Solutions
– Wider front-side bus
– Processor in memory
– Send threads to 

memory – Threadlets
– Memory Hierarchy:

Adding an L4 cache
– Prefetch, pre-execute
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The Challenge of Prefetching
• Move data closer to the processor before it is 

demanded
• Prefetch data as close as possible to the processor 

in the memory hierarchy
• Challenges

– What data should be prefetched?
– When should prefetching occur?



What to Fetch? and When to Fetch?

• What: Requires prediction of what data the processor is 
going to access in the future

• Prefetching Strategies
– Sequential, Adaptive Sequential, Strided, Markov Prefetching, 

Distance Prefetching

• When: Not too early and not too late 
– Best, if time between now and next access is equal to prediction

time + overhead to fetch the data     (performance evaluation)
• Prefetching Strategies 

– Prefetch-on-miss, Prefetch Always, Tagged Prefetching 

• Limitation: Only practical for very simple methods



Our Solution:
The Data-access Memory Server (DMS)

• Separate data access with data processing, have a 
dedicated computing power for data access

• Goals
– Proactively prefetches the data closer to the processor, on time
– Adapts to various prefetching strategies based on application 

data access patterns
– Adaptive replacement policies based on prediction
– Special architectures are designed. Aggressive Prefetching, 

data access pattern identification, and performance 
modeling



DMS – Prefetch Strategy
• Prefetch Engine (PFE)

– Prefetch predictor (What)
– Request generator (When)

(software solution)
• Memory Management Engine 

(MME)
– Data Propeller: Issues the 

prefetch instructions
– Pushes the data from the server 

to the clients
– Deals with raw cache misses or 

page faults
(hardware support)



DMS – Architecture Design

• Multiprocessor 
Platforms
– Clusters
– SMP
– Multicore 

Processor
• Classified based 

on the 
functionality of 
PFE and MME

• I/O Server Model



Performance modeling, evaluation, optimization
• Classification and Reorganization of data access 

patterns
• Aggressive and in-time prefetching
• Fetch and replacement policies
Hardware support
• Support of prediction
• Support of push data

Challenges in Implementing the DMS



Challenge: What data to push?

• Multi-dimension
– location of data, the amount of data, the mode of accessing 

data, and strides
– Time between any two accesses, between successive 

accesses to a specific data block
• Aggressive Prefetching

– Overhead to predict the future accesses is no longer a issue
– New aggressive methods to predict irregular data accesses

• Adapt a prefetch strategy based on the data access pattern 
• Reduce prediction time by using hints provided by 

compiler and application/user

Performance prediction



Challenge: When to push?

Three factors
• Time to predict the future accesses

– Based on the chosen prefetching method
• Data transfer latency

– Data access delay model
• Time till next cache miss

– Data access model
• Overlapping the network latency by increasing the prefetch

distance
• Adapting the prefetch distance based on the network latency 

variation

Performance modeling



Identify and Match Access Pattern

• Classification of data access patterns based on non-contiguity 
between accesses and the repetitive behavior of patterns

Data Access Patterns

Contiguous Non-contiguous 

Single 
Occurrence 

Repetitive Constant 
Stride 

Variable 
Stride 

Single 
Occurrence 

Repetitive Repetitive Single 
Occurrence 

Combinations of 
Contiguous & 

Non-contiguous 

Single 
Occurrence 

Repetitive 
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Predicting Memory Access Cost

Average memory access cost = Hit time + Miss Rate * Miss Penalty
=  (Number of TLB hits * Time to access TLB) + 

(Number of TLB misses * TLB miss penalty) + 
(Number of L1 hits) * (Time to access L1) + 
(L1 misses * L1 penalty) + (L2 misses * L2 penalty) 

+ … + 
(LM misses * LMpenalty)
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L1 Cache Miss Rate – SPEC2000 Benchmark

L1 Cache Miss Rate
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Benchmark – IPC Improvement

IPC improvement
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Potential of DMS – File accesses

File access - Page hit rate
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Conclusion
• Memory (I/O) as a service

– DMS proactively and adaptively pushes the data 
closer to the processor

– Adaptive and timely prefetching strategies
– Has the potential to avoid CPU stall time 

• Key technology: Performance measurement, 
evaluation, and optimization (PMEO)
– What to fetch, When to fetch
– System software solution with hardware support

• Current and future work
– I/O server



Questions?



Potential of DMS – Benchmark Kernels

• Kernels from SPEC 
2000, BLAS, Stream 
benchmarks

• Represent various data 
access patterns

• Copy – contiguous
• Combinations of 

contiguous and non-
contiguous patterns

• Irregular patterns
• Irregular pointer chasing 

accesses 
• I/O accesses


