
Improving Data Access
Performance with Server Push
Architecture

Xian-He Sun*, Surendra Byna, and Yong Chen
Scalable Computing Software Laboratory

Illinois Institute of Technology
Fermi National Laboratory*

sun@iit.edu

March 25, 2007 NGS07

The Problem: Memory Wall
Processors are getting faster more quickly than memory

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

“Moore’s Law”

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

“Moore’s Law”

Solutions
Improve
hardware
Cache
memories
Prefetching
Multithreading

Current Solutions of Memory Wall

• Solutions
– Wider front-side bus
– Processor in memory
– Send threads to

memory – Threadlets
– Memory Hierarchy:

Adding an L4 cache
– Prefetch, pre-execute

3

4/17/2007 4

The Challenge of Prefetching
• Move data closer to the processor before it is

demanded
• Prefetch data as close as possible to the processor

in the memory hierarchy
• Challenges

– What data should be prefetched?
– When should prefetching occur?

What to Fetch? and When to Fetch?

• What: Requires prediction of what data the processor is
going to access in the future

• Prefetching Strategies
– Sequential, Adaptive Sequential, Strided, Markov Prefetching,

Distance Prefetching

• When: Not too early and not too late
– Best, if time between now and next access is equal to prediction

time + overhead to fetch the data (performance evaluation)
• Prefetching Strategies

– Prefetch-on-miss, Prefetch Always, Tagged Prefetching

• Limitation: Only practical for very simple methods

Our Solution:
The Data-access Memory Server (DMS)

• Separate data access with data processing, have a
dedicated computing power for data access

• Goals
– Proactively prefetches the data closer to the processor, on time
– Adapts to various prefetching strategies based on application

data access patterns
– Adaptive replacement policies based on prediction
– Special architectures are designed. Aggressive Prefetching,

data access pattern identification, and performance
modeling

DMS – Prefetch Strategy
• Prefetch Engine (PFE)

– Prefetch predictor (What)
– Request generator (When)

(software solution)
• Memory Management Engine

(MME)
– Data Propeller: Issues the

prefetch instructions
– Pushes the data from the server

to the clients
– Deals with raw cache misses or

page faults
(hardware support)

DMS – Architecture Design

• Multiprocessor
Platforms
– Clusters
– SMP
– Multicore

Processor
• Classified based

on the
functionality of
PFE and MME

• I/O Server Model

Performance modeling, evaluation, optimization
• Classification and Reorganization of data access

patterns
• Aggressive and in-time prefetching
• Fetch and replacement policies
Hardware support
• Support of prediction
• Support of push data

Challenges in Implementing the DMS

Challenge: What data to push?

• Multi-dimension
– location of data, the amount of data, the mode of accessing

data, and strides
– Time between any two accesses, between successive

accesses to a specific data block
• Aggressive Prefetching

– Overhead to predict the future accesses is no longer a issue
– New aggressive methods to predict irregular data accesses

• Adapt a prefetch strategy based on the data access pattern
• Reduce prediction time by using hints provided by

compiler and application/user

Performance prediction

Challenge: When to push?

Three factors
• Time to predict the future accesses

– Based on the chosen prefetching method
• Data transfer latency

– Data access delay model
• Time till next cache miss

– Data access model
• Overlapping the network latency by increasing the prefetch

distance
• Adapting the prefetch distance based on the network latency

variation

Performance modeling

Identify and Match Access Pattern

• Classification of data access patterns based on non-contiguity
between accesses and the repetitive behavior of patterns

Data Access Patterns

Contiguous Non-contiguous

Single
Occurrence

Repetitive Constant
Stride

Variable
Stride

Single
Occurrence

Repetitive Repetitive Single
Occurrence

Combinations of
Contiguous &

Non-contiguous

Single
Occurrence

Repetitive

Byna, Sun, Gropp, Thakur 04,07

Predicting Memory Access Cost

Average memory access cost = Hit time + Miss Rate * Miss Penalty
= (Number of TLB hits * Time to access TLB) +

(Number of TLB misses * TLB miss penalty) +
(Number of L1 hits) * (Time to access L1) +
(L1 misses * L1 penalty) + (L2 misses * L2 penalty)

+ … +
(LM misses * LMpenalty)

α−=∑
=

M

k
kkm TMT

1
)*(

∑∑
==

+=
n

i

n
ik

m

i

c
ikk MMM

1
),(

1
),(

Total Miss penalty:

Cameron and Sun 03,07

L1 Cache Miss Rate – SPEC2000 Benchmark

L1 Cache Miss Rate

0%

5%

10%

15%

20%

25%

30%

ammp applu art mcf mgrid

L
1

m
is

s r
at

e

Base Case Strided DMS Prefetching

• (Enhanced)
Simplescalar
simulator

• SPEC2000
benchmarks
with high L1
cache miss
rates

Benchmark – IPC Improvement

IPC improvement

245.25

15.52 28.23

70.69

23.95

-100.00

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

ammp applu art mcf mgrid

%
 o

f I
PC

 im
pr

ov
em

en
t

Strided DMS (w ithout dedicated core) DMS (w ith dedicated core)

Potential of DMS – File accesses

File access - Page hit rate

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

128 512 1024 2048 4096 8192

offset (bytes)

hi
t r

at
e

%

Base case Strided prefetching DMS prefetching

Conclusion
• Memory (I/O) as a service

– DMS proactively and adaptively pushes the data
closer to the processor

– Adaptive and timely prefetching strategies
– Has the potential to avoid CPU stall time

• Key technology: Performance measurement,
evaluation, and optimization (PMEO)
– What to fetch, When to fetch
– System software solution with hardware support

• Current and future work
– I/O server

Questions?

Potential of DMS – Benchmark Kernels

• Kernels from SPEC
2000, BLAS, Stream
benchmarks

• Represent various data
access patterns

• Copy – contiguous
• Combinations of

contiguous and non-
contiguous patterns

• Irregular patterns
• Irregular pointer chasing

accesses
• I/O accesses

