Improving Data Access
Performance with Server Push
Architecture

Xlan-He Sun*, Surendra Byna, and Yong Chen

Scalable Computing Software Laboratory
lllinois Institute of Technology
Fermi National Laboratory*

sun@iit.edu

March 25, 2007 NGS07

The Problem: Memory Wall

Processors are getting faster more quickly than memory

K~ UProc
1000 .. CPU 60%/yr.

“Moore’s Law”

A

100 ... Processor_M emory
Performance Gap:
(grows 50% / year)

Performance

10 ..
x— DRAM
7%lyr.
DRAM :

. Solutions
O NM IO O~0DO A NM T OND DD O Improve
O W VP DODPNVPVOODDNDDDDADDD DO
DD DD NI DDDODD D OO hardware
Ad Add A Ad A Ad A A A A AAAAA A A AN a

Time Cache

Q
memories
O Prefetching
O Multithreading

Current Solutions of Memory Wall

° SOIUtlonS Memory Bandwidth Challenge
— Wider front-side bus
CORE CORE CORE CORE

- Processor In memory CACHE CACHE CACHE CACHE

— Send threads to SHARED CACHE
memory — Threadlets TII11000

— Memory Hierarchy: —
Adding an L4 cache

— Prefetch, pre-execute

Bandwidth Requirements

/ F
.
-

1,200 mB channel widtrl/f;-"*
__.-""':_. e

-

R Host Pin Count

Host Pin Count

The Challenge of Prefetching

Move data closer to the processor before it is
demanded

» Prefetch data as close as possible to the processor
In the memory hierarchy

e Challenges
— What data should be prefetched?
— When should prefetching occur?

------- nput IV compute put mpute comput
BN D B J |
EE BTN S
prefetch prefetch prefetch
time time
>

4112001

What to Fetch? and When to Fetch?

« What: Requires prediction of what data the processor is
going to access in the future

» Prefetching Strategies

— Sequential, Adaptive Sequential, Strided, Markov Prefetching,
Distance Prefetching

* When: Not too early and not too late

— Best, if time between now and next access is equal to prediction
time + overhead to fetch the data (performance evaluation)

» Prefetching Strategies
— Prefetch-on-miss, Prefetch Always, Tagged Prefetching

« Limitation: Only practical for very simple methods

Our Solution:

The Data-access Memory Server (DMS)

o Separate data access with data processing, have a
dedicated computing power for data access

e Goals

Proactively prefetches the data closer to the processor, on time

Adapts to various prefetching strategies based on application
data access patterns

Adaptive replacement policies based on prediction

Special architectures are designed. Aggressive Prefetching,
data access pattern identification, and performance
modeling

DMS - Prefetch Strategy

» Prefetch Engine (PFE)
— Prefetch predictor (What)
— Request generator (When)
(software solution)

Prefetch Engine

DAFP

* Memory Management Engine —=—»{| prefetch | | Reques
(M ME) Predictor o | Generator
— Data Propeller: Issues the
prefetch instructions D= Progelies 1% y
— Pushes the data from the server
to the clients Memory Manasement Engine Far]
— Deals with raw cache misses or
page faults

(hardware support)

DMS — Architecture Design

Multiprocessor
Platforms

— Clusters

— SMP

— Multicore
Processor

Classified based
on the

functionality of
PFE and MME

/O Server Model

Compute Node 1 Cornpute Node 2 Compute Node E
Application Application
D D
R R
A [e® L2 |4 LI & e L2 [w» LI Local Memory
M Il
Fy Y ryy
i Ty [A
WIS DAP FCL| [CL I\JIMS‘ DAPl FCL| [CL 'PCL CL | P3from
¥ ¥ Y ¥ Cache
r r
Frefetch
PCL CL B e
DS Hode
DA ;
Cache Prefetch Engine
Prefetch Request
Predictor [pry| Generator
server Memory
PR
Data Propeller >
Fa3
- Memory Management Engine BhE t
I
DAP
¥ .
Memoty Data B3 Disk
Prefetch | —» proneller
Engine |FR £

s/
Challenges in Implementing the DMS

Performance modeling, evaluation, optimization

 Classification and Reorganization of data access
patterns

o Aggressive and in-time prefetching
« Fetch and replacement policies
Hardware support

e Support of prediction

o Support of push data

Challenge: What data to push?

Performance prediction

Multi-dimension

— location of data, the amount of data, the mode of accessing
data, and strides

— Time between any two accesses, between successive
accesses to a specific data block

Aggressive Prefetching
— Overhead to predict the future accesses is no longer a issue
— New aggressive methods to predict irregular data accesses

Adapt a prefetch strategy based on the data access pattern

Reduce prediction time by using hints provided by
compiler and application/user

Challenge: When to push?

Performance modeling

Three factors
« Time to predict the future accesses
— Based on the chosen prefetching method
« Data transfer latency
— Data access delay model

e Time till next cache miss
— Data access model

» Overlapping the network latency by increasing the prefetch
distance

« Adapting the prefetch distance based on the network latency
variation T, T

ldentify and Match Access Pattern

Byna, Sun, Gropp, Thakur 04,07

» Classification of data access patterns based on non-contiguity
between accesses and the repetitive behavior of patterns

Data Access Patterns

v
l v Combinations of

Contiguous Non-contiguous Contiguous &
| Non-contiguous

v v l i v v

Single Repetitive Constant Variable Single Repetitive
Occurrence Stride Stride Occurrence
\ 4 A 4 A\ 4 \ 4
Single Repetitive Single Repetitive
Occurrence Occurrence

Predicting Memory Access Cost
Cameron and Sun 03,07

Average memory access cost = Hit time + Miss Rate * Miss Penalty
= (Number of TLB hits * Time to access TLB) +
(Number of TLB misses * TLB miss penalty) +
(Number of L, hits) * (Time to access L,) +
(L, misses * L, penalty) + (L, misses * L, penalty)

(L, misses * L, ,penalty)
M
Total Miss penalty: T, => (M, *T,) -«

L1 Cache Miss Rate — SPEC2000 Benchwﬂ

* (Enhanced)
Simplescalar
simulator

« SPEC2000
benchmarks
with high L1
cache miss
rates

L1 miss rate

30%

L1 Cache Miss Rate

}l__—|}

ammp

applu

art

mcf

[0 Base Case W Strided (0 DMS Prefetching

mgrid

Benchmark — IPC Improvement

IPC improvement

300.00

245.25

250.00 -

200.00 -

150.00 -

100.00 -

50.00 -

% of IPC improvement

-50.00 -

amm applu art mcf rid
-100.00 P PP m

O Strided @ DMS (w ithout dedicated core) @ DMS (w ith dedicated core)

Potential of DMS — File accesses

File access - Page hit rate

100.00 & & S & A
90.00 -

80.00 - \

70.00

60.00 N N

50.00 | \ N——a

40.00

30.00 AN

20.00 \

10.00

0.00 \Q —

128 512 1024 2048 4096 8192

hit rate %

offset (bytes)
—o— Base case —&— Strided prefetching —&— DMS prefetching

Conclusion

 Memory (1/O) as a service

— DMS proactively and adaptively pushes the data
closer to the processor

— Adaptive and timely prefetching strategies
— Has the potential to avoid CPU stall time
« Key technology: Performance measurement,
evaluation, and optimization (PMEQO)
— What to fetch, When to fetch
— System software solution with hardware support

e Current and future work
— 1/O server

Questions?

Kernels from SPEC
2000, BLAS, Stream
benchmarks

Represent various data
access patterns

Copy — contiguous

Combinations of
contiguous and non-
contiguous patterns

Irregular patterns

Irregular pointer chasing
accesses

/O accesses

Potential of DMS — Benchmark Kernels

Table 1. Benchmark kernels

Eeinel Cperation Access Pattern
Copy for 1=0;1< M, 1++) ¥ contigons
w[1] = =[1]; & contiguous
2d-matrix for 1=0;1< N, 1++) ¥ contigons
transpose for j=10; 1< M, 1++) X non-contiguous
(0] = =0l
2d-matrix for 1=0,1< M, t++) { ¢ contiguous
multiplication for =01 =< N, ++) { £ non-contiguous
t=10, < contiguous
for k=10, k < N, k++){
: t+= aft] (k] *bk][1],
c[i][i] =t 1
struct for 1=0,1< M, o++) { 2 . non-
accesses type_ali]-»longwall = afi]; | contiguous,
trpe_al1]-*longwald=h[1]; irregular stride of
type_al1]-»longwvali=c[i]; repeating 1,64 and
1 64,

@, B, £ contiguous
pointer for (1=0; 1 < N; 1++ { a: Array of linked
chasing ptr = ali]; list nodes

while (ptr) i linked list data
<Compute > structure traverse
ptr-=next = ptr,

il

file accesses

for1=0,1= M, t++) {

foets (huf bufsize, fname);

feeek(fd, offset, current);

<compute® }

File 15 accessed with
an offset between
each access, non-
contiguous pattern

