
VIProf: A Vertically Integrated
Full-System Profiler

NGS Workshop, April 2007

Hussam Mousa
Chandra Krintz

Lamia Youseff
Rich Wolski

2

• Dynamic software adaptation
As program behavior or resource conditions change
Dynamically change the program (via re-compilation) or the
runtime services to account for and exploit these changes
To improve performance and energy efficiency

• For high-end systems
Workstations, desksides, clusters, servers, …

RACELab Research

• Three key components of adaptive software optimization
1. Extraction of performance metrics: Program profiling
2. Behavior characterization and prediction
3. Program/system modification to exploit future behavior

Via dynamic compilation or runtime optimization

Operating System
Java Virtual Machine

App Server
App

Hardware Virtual machine
monitor (VMM)

• Key: Single application execution model: server systems, batched clusters

• VMMs - emerging software technology that enables isolation, improved
server utilization, migration, portability

UCSB Laboratory for Research on Adaptive Compilation Environments

VIVA: Vertically Integrated VirtualizAtion
Full system specialization & dynamic adaptation

Operating System
Java Virtual Machine

App Server
App

Operating System
Java Virtual Machine

App Server
App

VIVA

Hardware Virtual machine
monitor (VMM)

• Application specific
• Resource-aware
• High performance

• Key: Single application execution model: server systems, batched clusters

• Current system layers and boundaries available to programmer
• VIVA automatically eliminates, integrates, and customizes layers during
compilation and runtime to extract new levels of high performance

VIVA: Vertically Integrated VirtualizAtion
Full system specialization & dynamic adaptation

Operating System
Java Virtual Machine

App Server
App

VIVA

Hardware Virtual machine
monitor (VMM)

• Application specific
• Resource-aware
• High performance

• Dynamic Software Adaptation
• Profiling
• Prediction
• Compiler and runtime optimization

VIVA: Vertically Integrated VirtualizAtion
Full system specialization & dynamic adaptation

6

Full System Profiling: VIProf

• Vertically integrated profiler (and post-processing toolkit)
Based on OProfile -- (Linux kernel module that exports HPM data)
Full-system HPM sampling system

• Collects HPM stats across all functions/methods in system
Control sampling rate: trade off accuracy for performance
Single unified system
OS-level so no application-level perturbation

• Maps and tracks dynamically changing code regions

Operating System
Java Virtual Machine

App Server
App

Operating System
Java Virtual Machine

App Server
App

OProfile VIProf

7

VIProf Implementation

• Runtime profiler
Attributes performance data (HPM values) to code addresses

Which are later mapped to methods/functions offline

Daemon that periodically samples the system
Extended to enable registration of

Dynamically generated code (due to dynamic (re-)compilation)
Code bodies that are moved via a copying garbage collection (GC)

• VM Agent
Virtual machine module that tracks dynamic compilation and GC

Creates code maps (method signatures to addresses)
We handle GC as a cascade of epochs
Portable

Asynchronously logs registration details
Highly optimized for minimal application interruption

8

VIProf Post-Processing Toolkit and API

• Set of tools that categorize, sort, and display sample
information in a variety of ways

Handle the map files from the VM agent
Search the cascade from most recent to earliest epoch

If the code body for a particular sample is not found in current epoch
The previous epoch is searched
This continues until the code body is found

• Clean API available that enable integration of any system that
generates or moves code dynamically

VIProf is currently integrated into
Mono (.Net), Hotspot, JikesRVM, and soon Microsoft Phoenix

Any Linux 2.6 system

9

Experimental Methodology

• OProfile 0.9.2
• JikesRVM 2.4.5
• Linux Kernel 2.6.20.16
• Single core Intel 3.4 MHZ Xeon with 2GB of RAM
• Benchmarks:

SpecJVM98, Dacapo, SpecJBB
Repeated runs, averaged
Average runtime without profiling: 33s

10

VIProf Overhead

Sampling rates: 1/N cycles
Oprof 90K -> sample once every 90000 cycles

Benchmarks from SpecJVM98, Dacapo, SpecJBB; Averaged over 10 runs (max removed)

11

Related and Ongoing Work
• Related work

OProfile Linux profiler (http://oprofile.sourceforge.net)
Other HPM-based sampling systems (non-integrated)

Virtual machines [Hauswirth05]
Performance and event monitoring (PEM) [IBM04]

Instrumentation systems (complementary to VIProf)
JVM [Arnold01, Sastry01, Newhall99]
OS [Mirgorodskiy03, Tamches99]

• Currently, we are working on
Integrating VIProf into Xen
Supporting multiple OS instances concurrently
Performance analysis of VIProfiles

When is instrumentation required? Profile-guided profiling
Capture phase, threading, I/O, memory management behavior

12

RACELab VIVA-Related Projects

• Automatic deployment systems for Xen images
Batched clusters for scientific computing
Distributed systems

• XEN performance evaluation for HPC
File I/O, MPI communication, computationally-bound
Automatic installation of OS images over Xen

Integrated with development environment

• Customization of Linux & integration with higher-level services
Specialization of Linux modules for application-specific behaviors
Virtual machines, Grid and web services

13

Conclusions

• Traditional static compiler techniques have difficulty extracting
high-performance from programs in modern PLs given increasing
complexity in hardware and software

Our work: novel dynamic compiler and runtime techniques that
adapt the software stack to changes in the execution environment

• Key first step toward this goal
Accurate and low overhead full-system profiling: VIProf

Tracks hardware performance counters across all code in system
Kernel, library, application

Handles dynamism efficiently (dynamic compilation, moving GC)

For efficient generation of online performance data
That can be used to guide optimization, specialization of the
application or runtime

For more info: http://www.cs.ucsb.edu/~racelab

