—

VIProf: A Vertically Integrated
Full-System Profiler

NGS Workshop, April 2007

Hussam Mousa
Chandra Krintz
Lamia Youseff
Rich Wolski

e WO U2 RACE O

‘ RACELab Research

e Dynamic software adaptation
= As program behavior or resource conditions change

= Dynamically change the program (via re-compilation) or the
runtime services to account for and exploit these changes

s To improve performance and energy efficiency
e For high-end systems —
s Workstations, desksides, clusters, servers,\ | |

|.J'

N 4

e Three key components of adaptive software optimization
1. Extraction of performance metrics: Program profiling
2. Behavior characterization and prediction

3. Program/system modification to exploit future behavior
» Via dynamic compilation or runtime optimization

VIVA: Vertically Integrated VirtualizAtion
Full system specialization & dynamic adaptation

A
AP A gzrver
App Server PP

: : || : -
Java Virtual Machine s Java Virtual Machine

Virtual machine
monitor (VMM)

Hardware

e Key: Single application execution model: server systems, batched clusters

 VMMs - emerging software technology that enables isolation, improved
server utilization, migration, portability

UCSB Laboratory for Research on Adaptive Compilation Environments

B WO 8 RACE O

VIVA: Vertically Integrated VirtualizAtion
Full system specialization & dynamic adaptation
e Application specific
e Resource-aware
e High performance
App Server

: : II‘ VIVA
Java Virtual Machine

‘ Oeeratinﬁ sttem \

App

Virtual machine

Hardware .
monitor (VMM)

e Key: Single application execution model: server systems, batched clusters

e Current system layers and boundaries available to programmer
e VIVA automatically eliminates, integrates, and customizes layers during
compilation and runtime to extract new levels of high performance

B WO 8 RACE O

VIVA: Vertically Integrated VirtualizAtion

Full system specialization & dynamic adaptation

e Application specific
e Resource-aware
e High performance

App
App Server

Java Virtual Machine

I

‘ Oeeratinﬁ sttem \

Hardware

Virtual machine
monitor (VMM)

e Profiling
e Prediction

e Dynamic Software Adaptation

e Compiler and runtime optimization

B WO 8 RACE O

|‘ Full System Profiling: VIProf

e Vertically integrated profiler (and post-processing toolkit)
= Based on OProfile -- (Linux kernel module that exports HPM data)
n Full-system HPM sampling system

OProfile VIProf
App

App Server
IJava Virtual Machine

e Collects HPM stats across all functions/methods in system
= Control sampling rate: trade off accuracy for performance
= Single unified system
m OS-level so no application-level perturbation

e Maps and tracks dynamically changing code regions 6

‘VIProf Implementation

* Runtime profiler
= Attributes performance data (HPM values) to code addresses
» Which are later mapped to methods/functions offline

s Daemon that periodically samples the system

» Extended to enable registration of
¢ Dynamically generated code (due to dynamic (re-)compilation)
¢ Code bodies that are moved via a copying garbage collection (GC)

e VM Agent

= Virtual machine module that tracks dynamic compilation and GC
» Creates code maps (method signatures to addresses)
» We handle GC as a cascade of epochs
» Portable

= Asynchronously logs registration details
= Highly optimized for minimal application interruption

‘VIProf Post-Processing Toolkit and API

e Set of tools that categorize, sort, and display sample
Information in a variety of ways
= Handle the map files from the VM agent

s Search the cascade from most recent to earliest epoch

» If the code body for a particular sample is not found in current epoch
¢ The previous epoch is searched
¢ This continues until the code body is found

e Clean API available that enable integration of any system that
generates or moves code dynamically

= VIProf is currently integrated into
» Mono (.Net), Hotspot, JikesRVM, and soon Microsoft Phoenix

= Any Linux 2.6 system

|‘ Experimental Methodology

e OProfile 0.9.2
e JikesRVM 2.4.5
e Linux Kernel 2.6.20.16
e Single core Intel 3.4 MHZ Xeon with 2GB of RAM
e Benchmarks:
s SpecJ]VM9I8, Dacapo, SpecJBB

= Repeated runs, averaged
= Average runtime without profiling: 33s

‘VIProf Overhead

Benchmarks from SpecJVM98, Dacapo, SpecJBB; Averaged over 10 runs (max removed)

1.2
1.15
11 Obase
g B Oprof 90K
[=]
g 1.05 OVIProf 45K
% OVIProf 90K
1 W VIProf 450K
0.95
0.9
P o o 2 R) o & @
\.}b@? ‘3‘3‘\@ S \O O e %&b Q@ 4313’ Q F é@@
Q& 5
benchmark

Sampling rates: 1/N cycles

Oprof 90K -> sample once every 90000 cycles L0

‘Related and Ongoing Work

e Related work
= OProfile Linux profiler (http://oprofile.sourceforge.net)

s Other HPM-based sampling systems (non-integrated)
» Virtual machines [Hauswirth05]
» Performance and event monitoring (PEM) [IBM04]
= Instrumentation systems (complementary to VIProf)
» JVM [Arnold01, Sastry0Ol, Newhall99]
» OS [Mirgorodskiy03, Tamches99]

e Currently, we are working on
= Integrating VIProf into Xen
= Supporting multiple OS instances concurrently

s Performance analysis of VIProfiles
» When is instrumentation required? Profile-guided profiling
» Capture phase, threading, 1/0, memory management behavior,

|‘ RACELab VIVA-Related Projects

e Automatic deployment systems for Xen images
= Batched clusters for scientific computing
= Distributed systems

e XEN performance evaluation for HPC
= File 1/0, MPI communication, computationally-bound

= Automatic installation of OS images over Xen
» Integrated with development environment

e Customization of Linux & integration with higher-level services
= Specialization of Linux modules for application-specific behaviors
= Virtual machines, Grid and web services

12

‘ Conclusions

e Traditional static compiler techniques have difficulty extracting
high-performance from programs in modern PLs given increasing
complexity in hardware and software

= Our work: novel dynamic compiler and runtime techniques that
adapt the software stack to changes in the execution environment

e Key first step toward this goal
m Accurate and low overhead full-system profiling: VIProf
= Tracks hardware performance counters across all code in system
» Kernel, library, application
» Handles dynamism efficiently (dynamic compilation, moving GC)

m For efficient generation of online performance data

» That can be used to guide optimization, specialization of the
application or runtime

For more info: http://www.cs.ucsb.edu/—racelab == 1ERITL.

