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Motivation

• Instrument code to understand system 
behavior
– Profile basic blocks, methods
– Trace hardware & software metrics

• Instrumentation can perturb the system’s 
behavior

• How does perturbation impact the ability to  
reason about system behavior?
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Background
• NSF Grant “Understanding the Performance of 

Modern Systems”
– Amer Diwan (U of Colorado Boulder) 
– Mike Mozer (U of Colorado Boulder)
– Peter Sweeney (IBM Research)

• Vertical profiling
– Trace-based data
– Reason across software and hardware components

• General belief 
– Low overhead => low perturbation

Overhead is instruction or cycle perturbation!
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Methodology

• Reason about metrics
– Statistical correlation computes trend between 

two metrics
• e.g. L1 and L2 misses

– Compare correlation score before and after 
instrumentation
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Infrastructure 

• Extended CIL to instrument C programs
• Two types of instrumentation

– Low level: hardware metrics
• E.g. Cache misses, instructions executed, cycles

– High level: software metrics
• E.g. method calls, update global variable

• Periodically collect metric values
– Use settimer
– 10 to 100’s millisecond intervals
– reads counters and writes their values to disk 
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Reality Check 
• sjeng (SPEC CPU2006) 
• Multiple runs collecting same 

metrics
• Graph correlation of pairs of 

metrics within a trace
• Minimal perturbation across 

runs

runs    
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…
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Inner Perturbation

• Correlate pairs of metrics within a trace
• Compare inner correlation scores across traces

– E.g. compare corr(B.H1, B.H2) with corr(R.H1, R.H2)
• Observe how correlation changes as additional instrumentation is added

Trace B
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H3
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Significant Inner Perturbation
• sjeng (SPEC CPU2006) 
• Multiple runs collecting different 

software metrics
• Graph inner correlation scores of 

hardware metrics as instrumentation 
is added

• Same metrics as “Reality Check”
• Significant inner perturbation
• Small increase in instructions 

executed < 3%
• But recovers
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Minimal Inner Perturbation
• bzip (SPEC CPU2006)
• Multiple runs collecting different 

software metrics
• Graph inner correlation scores of 

hardware metrics as instrumentation 
is added

• Minimal inner perturbation
• Inner perturbation is benchmark 

specific 
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Outer Perturbation

• Correlate same metric in baseline and in another trace
• Compare outer correlation scores across pairs of traces

– E.g. compare corr(B.H1, R1.H1) with corr(B.H1, R2.H1)
• Observe how correlation changes as additional instrumentation is added
• Assumes technique to align traces

– We use DTW

Trace B

H1

H2

H3

Trace R2

H1

H2

H3

S1

S2

Trace R1

H1

H2

H3

S1



NSF/NSG 07 March 25, 2007 11

Significant Outer Perturbation
• Sim-outorder with gcc as input
• Multiple runs collecting different 

software metrics
• Graph outer correlation of hardware 

metrics as instrumentation is added
• Significant outer perturbation
• But recovers
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Minimal Outer Perturbation
• bzip (SPEC CPU2006)
• Multiple runs collecting with different 

metrics
• Graph outer correlation of hardware 

metrics as instrumentation is added
• Minimal outer correlation
• Outer perturbation is benchmark 

specific
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H1
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Conclusions
• Low overhead !=> low perturbation

– Minimal instrumentation overhead can result in 
significant perturbation

• Less than 3% increase in executed instructions prevented 
reasoning about metrics within or across traces

• Perturbation is application specific
• Perturbation is not monotonic

– Additional instrumentation may increase or decrease 
perturbation!

– Makes impact of instrumentation hard to predict
• This is a starting point for a more in depth study!
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Related Work

• Perturbation measurement [Daigle et al.]
– Operational definition of perturbation

• Aggregate runtime slowdown as function of 
instrumentation

• Perturbation management [Maloney]*
– Use perturbation model to eliminate 

perturbation effects from a trace
• Only as good as model

– Difficult to model out-of-order superscalar machines
• Overall program run time
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Questions 

?
• How does perturbation impact our ability to 

reason about system behavior?
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Inner Perturbation Details

• Each row different metric
• “Good” is trace before perturbation
• “Perturbed” is trace after perturbation 
• “S” is the software metric collected in 

“Perturbed” but not in “Good”

L1_DCM

L2_TCM

S not measured

Good Perturbed
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How to Evaluate Perturbation?

• Any instrumentation perturbs system behavior
• Count number of times a metric occurs

– Hardware: no charge
– Software: cost to increment

• Baseline trace
– Only collect hardware metrics

• Cost is to periodically collect metrics

– Expect minimal perturbation, but no guarantee
– Expect relationship between metrics are preserved
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IPC over time for SPECjvm98


