
Understanding Measurement
Perturbation in Trace-Based Data

Peter F. Sweeney IBM Research, Hawthorne

Joint work with
Todd Mytkowicz U. of Colorado at Boulder
Amer Diwan U. of Colorado at Boulder
Matthias Hauswirth U. of Lugano, Switzerland

NSF/NSG 07 March 25, 2007 2

Motivation

• Instrument code to understand system
behavior
– Profile basic blocks, methods
– Trace hardware & software metrics

• Instrumentation can perturb the system’s
behavior

• How does perturbation impact the ability to
reason about system behavior?

NSF/NSG 07 March 25, 2007 3

Background
• NSF Grant “Understanding the Performance of

Modern Systems”
– Amer Diwan (U of Colorado Boulder)
– Mike Mozer (U of Colorado Boulder)
– Peter Sweeney (IBM Research)

• Vertical profiling
– Trace-based data
– Reason across software and hardware components

• General belief
– Low overhead => low perturbation

Overhead is instruction or cycle perturbation!

NSF/NSG 07 March 25, 2007 4

Methodology

• Reason about metrics
– Statistical correlation computes trend between

two metrics
• e.g. L1 and L2 misses

– Compare correlation score before and after
instrumentation

NSF/NSG 07 March 25, 2007 5

Infrastructure

• Extended CIL to instrument C programs
• Two types of instrumentation

– Low level: hardware metrics
• E.g. Cache misses, instructions executed, cycles

– High level: software metrics
• E.g. method calls, update global variable

• Periodically collect metric values
– Use settimer
– 10 to 100’s millisecond intervals
– reads counters and writes their values to disk

NSF/NSG 07 March 25, 2007 6

Reality Check
• sjeng (SPEC CPU2006)
• Multiple runs collecting same

metrics
• Graph correlation of pairs of

metrics within a trace
• Minimal perturbation across

runs

runs

Trace B1

H1

H2

H3

Trace B2

H1

H2

H3

…

NSF/NSG 07 March 25, 2007 7

Inner Perturbation

• Correlate pairs of metrics within a trace
• Compare inner correlation scores across traces

– E.g. compare corr(B.H1, B.H2) with corr(R.H1, R.H2)
• Observe how correlation changes as additional instrumentation is added

Trace B

H1

H2

H3

Trace R2

H1

H2

H3

S1

S2

Trace R1

H1

H2

H3

S1

NSF/NSG 07 March 25, 2007 8

Significant Inner Perturbation
• sjeng (SPEC CPU2006)
• Multiple runs collecting different

software metrics
• Graph inner correlation scores of

hardware metrics as instrumentation
is added

• Same metrics as “Reality Check”
• Significant inner perturbation
• Small increase in instructions

executed < 3%
• But recovers

Trace B

H1

H2

H3

Trace R

H1

H2

H3

S1

S2

NSF/NSG 07 March 25, 2007 9

Minimal Inner Perturbation
• bzip (SPEC CPU2006)
• Multiple runs collecting different

software metrics
• Graph inner correlation scores of

hardware metrics as instrumentation
is added

• Minimal inner perturbation
• Inner perturbation is benchmark

specific

Trace B

H1

H2

H3

Trace R

H1

H2

H3

S1

S2

NSF/NSG 07 March 25, 2007 10

Outer Perturbation

• Correlate same metric in baseline and in another trace
• Compare outer correlation scores across pairs of traces

– E.g. compare corr(B.H1, R1.H1) with corr(B.H1, R2.H1)
• Observe how correlation changes as additional instrumentation is added
• Assumes technique to align traces

– We use DTW

Trace B

H1

H2

H3

Trace R2

H1

H2

H3

S1

S2

Trace R1

H1

H2

H3

S1

NSF/NSG 07 March 25, 2007 11

Significant Outer Perturbation
• Sim-outorder with gcc as input
• Multiple runs collecting different

software metrics
• Graph outer correlation of hardware

metrics as instrumentation is added
• Significant outer perturbation
• But recovers

H2
H1

Trace B

H1
H2
H3

Trace R2

H1
H2
H3
S1
S2

Trace R1

H3
S1

NSF/NSG 07 March 25, 2007 12

Minimal Outer Perturbation
• bzip (SPEC CPU2006)
• Multiple runs collecting with different

metrics
• Graph outer correlation of hardware

metrics as instrumentation is added
• Minimal outer correlation
• Outer perturbation is benchmark

specific

H2
H1

Trace B

H1
H2
H3

Trace R2

H1
H2
H3
S1
S2

Trace R1

H3
S1

NSF/NSG 07 March 25, 2007 13

Conclusions
• Low overhead !=> low perturbation

– Minimal instrumentation overhead can result in
significant perturbation

• Less than 3% increase in executed instructions prevented
reasoning about metrics within or across traces

• Perturbation is application specific
• Perturbation is not monotonic

– Additional instrumentation may increase or decrease
perturbation!

– Makes impact of instrumentation hard to predict
• This is a starting point for a more in depth study!

NSF/NSG 07 March 25, 2007 14

Related Work

• Perturbation measurement [Daigle et al.]
– Operational definition of perturbation

• Aggregate runtime slowdown as function of
instrumentation

• Perturbation management [Maloney]*
– Use perturbation model to eliminate

perturbation effects from a trace
• Only as good as model

– Difficult to model out-of-order superscalar machines
• Overall program run time

NSF/NSG 07 March 25, 2007 15

Questions

?
• How does perturbation impact our ability to

reason about system behavior?

NSF/NSG 07 March 25, 2007 16

Inner Perturbation Details

• Each row different metric
• “Good” is trace before perturbation
• “Perturbed” is trace after perturbation
• “S” is the software metric collected in

“Perturbed” but not in “Good”

L1_DCM

L2_TCM

S not measured

Good Perturbed

NSF/NSG 07 March 25, 2007 17

How to Evaluate Perturbation?

• Any instrumentation perturbs system behavior
• Count number of times a metric occurs

– Hardware: no charge
– Software: cost to increment

• Baseline trace
– Only collect hardware metrics

• Cost is to periodically collect metrics

– Expect minimal perturbation, but no guarantee
– Expect relationship between metrics are preserved

NSF/NSG 07 March 25, 2007 18

IPC over time for SPECjvm98

