
1

Formal Analysis for
Debugging and

Performance Optimization of
MPI

Ganesh Gopalakrishnan
Robert M. Kirby

School of Computing
University of Utah

NSF CNS 0509379

2

On programming machines
that turn electricity into numbers...

4/17/2007

Our focus: Reactive bugs in HPC Programming

An inconvenient truth: Bugs wasted energy, bad numbers

(BlueGene/L - Image courtesy of IBM / LLNL) (Image courtesy of Steve Parker, CSAFE, Utah)

3

Correctness of HPC Software

A very opportune time to be addressing!
– Multicores, Threads, Transaction memories, MPI, OpenMP, UPC, …
– Msg Passing, Libraries, Memory Models, Combined Threads and Processes

…

Can’t apply existing FV solutions directly

– Formal Analysis must Consider Library Implementation
» Message Passing and Threading issues

– Correctness needs to PORT and SCALE

– Need domain-specific adaptations of existing FV Research

4/17/2007

4

“Correctness”
MPI Bugs do occur !

4/17/2007

1. Incorrect Understanding of MPI
e.g., collectives have “barrier semantics”

2. Reuse Send Buffers Prematurely
3. Deadlocks After Porting to New Platform
4. Forgotten Deallocation of Communicators

shows up when scaled

5. MPI one-sided operations are very tricky
breaks out of the msg passing comfort-zone

5

“Ad-hoc Testing” “Model Checking”

On the use of Model Checking
in HPC Software Verification…

We Employ Static Analysis, Instrumentation and Direct Execution
along with Model Checking…

We Emphasize Formal Specs of Libraries

6

Project 1:

Direct Use of Existing Model Checking Technology

– SPIN
– Helped take first steps; now abandoned

– But Gave Us our First Collaborative EuroPVM / MPI Paper
(2006; One of Three Outstanding Papers)
with Rajeev Thakur and Bill Gropp

– Our Fixed Algo Performs Better, as well (see next)!
» To appear in Parallel and Distributed Computing

– (Most Recent News): The SAME bug has been caught
using our MPI In-Situ Model Checker that incorporates Dyn.
Partial Order Reduction

4/17/2007

7

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 128 96 64 48 32 16 8 4 2

T
im

e
(m

ill
is

ec
.)

Processes

Alt. 1, nonconflicting
Alt. 2, nonconflicting

Measurement under Low Contention

8

 0.5

 1

 1.5

 2

 2.5

 3

 128 96 64 48 32 16 8 4 2

T
im

e
(m

ill
is

ec
.)

Processes

Alt. 1, conflicting
Alt. 2, conflicting

Alt. 1, random
Alt. 2, random

Measurement under High Contention

9

Developed NEW and FASTER
Byte-Range Locking Protocol

after Fixing Bug in Earlier Protocol …
lock_acquire (start, end) {

Stage 1
1 val[0] = 1; /* flag */ val[1] = start; val[2] = end;
2 while(1) {
3 lock_win
4 place val in win
5 get values of other processes from win
6 unlock_win
7 for all i, if (Pi conflicts with my range)
8 conflict = 1;

Stage 2
9 if(conflict) {
10 val[0] = 0
11 lock_win
12 place val in win
13 unlock_win
14 MPI_Recv(ANY_SOURCE)
15 }
16 else{
17 /* lock is acquired */
18 break;
19 }
20 }//end while

P0 P1

flag start end 0 -1 -1 0 -1 -1 0 -1 -1

10

Project 2:

Wrote MPI + Threads Parallel and Distributed Model Checker

– Helped study domain of interest closely

– Software Released : Eddy-Murphi

– Details already reported during last PI meeting…

4/17/2007

11

Project 3:

Modeled MPI 1.1 Primitives in TLA+

– Helped understand MPI

– Helped find corner cases (confirmed by ANL experts)

– Built direct model-checker based on MPI semantics

– Integrated with C-MPI TLA+ model extractor

– Integrated with VisualStudio Debugger

4/17/2007

12

Project 3: Given This Program…
/* Add-up integrals calculated by each process */

if (my_rank == 0) {
total = integral;
for (source = 0; source < p; source++) {

MPI_Recv(&integral, 1, MPI_FLOAT,
source, tag,
MPI_COMM_WORLD, &status);

total = total + integral;
}

} else {
MPI_Send(&integral, 1, MPI_FLOAT, dest,

tag, MPI_COMM_WORLD);
}

4/17/2007

13

…Our TLA+ MPI Model …

4/17/2007

MPI 1.1 API

Point to Point
Operations

Collective
Operations

Requests

Communicator

Collective

Context Group

Constants

14

…and Integration into
Phoenix/VisualStudio….

4/17/2007

TLA+ MPI
Library Model

TLA+ Prog.
Model

MPIC Program
Model

Visual Studio
2005

Phoenix Compiler

TLC Model Checker MPIC Model
Checker

Verification
Environment

MPIC IR

15

…Using The Formal Semantics of MPI
At THIS Level… (MPI_Issend & MPI_Irecv Shown)

4/17/2007

16

…helps enumerate states, finds bugs....

4/17/2007

TLA+ MPI
Model

TLA+ MPI
Program Model

TLC Model
Checker

17

…And Steps VisualStudio Debugger to
Show the Error Traces!

18

Project 4:

Wrote a Customized MPI Model Checker called MPIC

– Our MPI Formal Semantics Helped Write MPIC Reliably

– MPI Formal Semantics Gave us the Independence Theorems

– This Helped Cut Down Interleavings

– Seamlessly Integrated Into Same Framework Through

Common Intermediate Representation (MPIC IR)

4/17/2007

19

Project 4: Again, Given This Program…
/* Add-up integrals calculated by each process */

if (my_rank == 0) {
total = integral;
for (source = 0; source < p; source++) {

MPI_Recv(&integral, 1, MPI_FLOAT,
source, tag,
MPI_COMM_WORLD, &status);

total = total + integral;
}

} else {
MPI_Send(&integral, 1, MPI_FLOAT, dest,

tag, MPI_COMM_WORLD);
}

4/17/2007

20

…Our MPI Formal Semantics…

4/17/2007

21

…Gives Us Independence Theorems…
1. Local actions (Assignment, Goto, Alloc, Assert) are

independent of all transitions of other processes.

2. Barrier actions (Barrier_init, Barrier_wait) are
independent of all transitions of other processes.

3. Issend and Irecv are independent of all transitions
of other processes except Wait and Test.

4. Wait and Test are independent of all transitions of
other processes except Issend and Irecv.

4/17/2007

22

…To Mitigate State Explosion Using
Dynamic Partial Order Reduction…

DPOR is GREAT for
Handling MPI Wildcards
with Associated Waits
and Tests

With 3 processes, the
size of an interleaved
state space is ps=27

Partial-order reduction
explores representative
sequences from each
equivalence class

Delays the execution of
independent transitions

4/17/2007

23

…and our Customized Model Checker
MPIC, Integrated Into Framework….

4/17/2007

TLA+ MPI
Library Model

TLA+ Prog.
Model

MPIC Program
Model

Visual Studio
2005

Phoenix Compiler

TLC Model Checker MPIC Model
Checker

Verification
Environment

MPIC IR

24

…runs much faster, finds bugs…

4/17/2007

MPIC with and without DPOR

Model States Time Trans Memory

2D Diffusion (4
processes)

>20,000,000 >15 Minutes >75,000,000 ~500MB

2D Diffusion (4
processes)
(using dpor)

7769 < 1 second 7768 ~10MB

25

…And Steps VisualStudio Debugger to
Show the Error Traces!

26

Project 5:
In-Situ Model Checking of PThread Programs

Avoids Model Extraction
– (VERY difficult and huge up-keep chore)
– Models and Verifies the “real thing”

First Implementation of Dynamic Partial Order Reduction for
PThreads Programs (as far as we know)

– Tool is Called Inspect
– Implemented in In-House C/C++ Front-end Derived by

Modifying GCC

(We also have a DPOR-enabled In-situ Model
Checker for MPI under construction)

4/17/2007

27

Dynamic Partial Order Reduction works
really well for direct model-checking of
REAL CODE…

Static POR relies on static analysis

– Imprecise Information About Run-time

– Pointers Coarse Info Limited POR State Explosion

Dynamic POR

– More run-time information

– Independence can be dynamically determined

28

Given a PThreads Program,
We Instrument it ……

pthread_mutex_lock(&a); data++;
pthread_mutex_unlock(&a);

inspect_mutex_lock(&a);
inspect_obj_write((void*)&data)
data++;
inspect_mutex_unlock(&a);

Original code

Instrumented
code

29

…So that a DPOR-Aware Scheduler can
Schedule Relevant Interleavings…

4/17/2007

Program Instrumented
at MPI Functions

or PThread-Call / Global-Var
Interactions

Scheduler that receives
Process / Thread

requests, and permits
one interleaving

at a time

Permesso?

Avanti!
P1 P2 P1 P2

Redundant Interleavings
Not Explored
(thanks to DPOR)

30

…Using Inspect’s workflow…

Scheduler
with

dynamic
partial order

reduction

request/permit

request/permit
request/permit

executable

compile

thread1

thread2

threadn

...

Multithreade
d C/C++

programs
Source Code
Transformer

Instrumented
programs

thread library
wrapper

re-run the program until all
interleavings are explored

report
errors

31

…Which Has These Plusses ….
Avoids Model Extraction

– (VERY difficult and huge up-keep chore)

– Models and Verifies the “real thing”

First Implementation of Dynamic Partial Order Reduction for
PThreads Programs (as far as we know)

– Tool is Called Inspector

– Implemented in In-House C/C++ Front-end Derived by
Modifying GCC

4/17/2007

32

…And Gives us These Results!

splay-tree

hashlist

heap

avl

0

1

0

0

0

4

0
others

0

0

0

0

0

0

0
deadlockData race

11-31,211

11-31,953

01-3716

023,074tplay

141,073pfscan

131,098aget

2

Error

1,432

LOC

1-3
libcprops

thread Benchmark

33

Project 6: Wait! We can have a
Distributed Inspect…

34

①: unloading request

②: idle worker id

③: send work description

worker a worker b

Load Balancer

④: report summary

..Which has THIS Communication Flow...

35

…Helping Obtain Linear Speed-up
with respect to THESE Seq Inspect
Runs…

39710.431,938,8168bbuf

5662.96113,4006aget

1188.7332,76816indexer

291.32

sequential
checking (sec)

8,192

runs

26

threads

fsbench

benchmark

36

..Out of Parallelism (overheads) on two
Small benchmarks…

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70

sp
ee

du
p

number of nodes

indexer
fsbench

37

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

sp
ee

du
p

number of nodes

with extended algo
with original algo

..But Look at Speedup on bbuf and aget
(11 hours of work in 11 minutes…)

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

sp
ee

du
p

number of nodes

with extended algo
with original algo

38

PLANS FOR THE 3rd and 4th YEARS

EXTEND MPI FORMAL SEMANTICS
FULL IN-SITU DPOR for MPI PROGRAMS
LEARN HOW TO VERIFY MPI + THREADED CODES
LEARN WHERE HPC IS HEADED AND REACT TO IT!

Scaling MPIC

MPI Plus PThreads / OpenMP

MPI That Supports Four Thread Models

Multicore MPI

Transactions

Compilation of MPI from High-level Specs

39

ACKNOWLEDGEMENTS

Robert Palmer --- Finishing PhD and Joining Intel in
their new Multicore FV Group

– Summer internships at Microsoft Research (05) and Intel (06)

Yu Yang -- Aiming to finish PhD in 2008
– Internships at NEC Research (06) and Cadence/ Berkeley Labs (07)

Salman Pervez – Converted from PhD to MS
– Aiming to finish MS in 2007 and continue at (?Purdue?)
– Summer Internship at Argonne National Labs (06)

Geof Sawaya – MANY Projects (e.g. MPI Optimization)
Michael DeLisi – UG who built VisualStudio Integration
Subodh Sharma – PhD in 2009? (Testing MPI)
Sarvani Vakkalanka – PhD in 2009? (High Level HPC?)

40

PUBLICATIONS and SOFTWARE

Paper on Eddy-Murphi (SPIN 06) Appeared
– Journal version Accepted into STTT (07)

EuroPVM / MPI Paper (06)
– Special Issue Parallel Computing Journal Version under Review

Submission to ISSTA (07) under review
Submission to SPIN (07) under review
Submission Planned to

– PADTAD (07)
– EuroPVM / MPI (07)

Organized TV (Thread Verification, Seattle, 11 / 17 / 06)
Software and Benchmarks: MPI Formal Semantics;
Inspect; Soon DInspect; Phoenix / Visual Studio
Integration of Model Extraction and Verification; and
soon In-Situ MPI Verif

41

Questions ?

42

Answers!
1. We plan to investigate what breaks when scaled

- lesson learned from de Supinski

2. We plan to analyze 1-Sided within CLAM/Prema
- Nikos Chrisochoides

3. We plan to analyze mixed MPI / Threads
- Context-ID Generation Algorithm within MPI Thread-Multiple Libs
- Suggested by Bill Gropp
- Will involve creating environment models for

- THREADS, when doing MPI In-Situ Model Checking
- MPI, when doing THREADS In-Situ Model Checking

4. That is a very good question – let’s talk!

