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Previous/On-Going Work

• MIT Dataflow Model (1973 – 1992)
• MDFA (McGill Dataflow Model, 1988-2003)
• EARTH (McGill/UDel: 1994-2004)
• HTMT (Sterling, Gao, et al 1996 - 1999)
• CARE (UDel: 1999-2004)
• OpenMP-XN (UDel: 2003- )
• Percolation (Gao, Sterling, et al)
• Parcel model  (Sterling, et al.)
• Gilgamesh (Sterling, Brodowicz, et al)
• LITL-X (Gao, Sterling, et al.)
• ParalleX (Sterling, Gao, et al.)
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Goals for Future Parallel 
Execution Models

• Technology trends
– Multicore components
– Heterogeneous structures and accelerators

• Performance degradation
– Latency (idle time due to round trip delays)
– Overhead (critical path support mechanisms)
– Contention (inadequate bandwidth)
– Starvation (sufficient parallelism and load balancing)

• Power consumption
– Just too much!
– Dominating practical growth in mission critical domains

• Reliability
– Single point failure modes cannot be tolerated
– Reduced feature size and increased component count

• Changing application workload characteristics
– Data (meta-data) intensive for sparse numerics and symbolics

• Programmability & ease of use
– System complexity, scale and dynamics defy optimization by hand
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Key Ideas in HTVM/Parallel-X 
Execution & Programming Models

• Hierarchical multi-grain multithreading
• Global name space

– Does not assume memory coherence
– Location consistency

• Fine grain synchronization
– Futures
– Lightweight event driven

• Message driven
• Data driven

– In-Memory atomic synchronization
• Memory contains parallel control state

– Split-phase transactions
• API: Runtime Optimization Aware

– SPMD and beyond (general fork/join)
– Future + fine-grain threads
– Locality specification 
– Percolation
– Domain-specific knowledge input
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Large-Grain Thread 
(LGT)

Small-Grain Thread (SGT) 

Tiny-Grain Thread (TGT)
Invoke an SGT/Sync 
a TGT within same 

SGT
SYNC ops

Data-SYNC ops
Inter-LGT Communication & 

Synchronization

Global Shared Memory Address Space

A Dynamic Multithreaded 
Execution Model and Virtual 

Machine

In the above execution scenario:  three large grain threads are in progress, within each a number
of small grain threads are forked each in turn invokes the execution of a collection of tiny grain
threads.

Note: the lower two levels of the
two threads are fine-grain
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Classes of Target Architectures

• Application space
– Data intensive
– Dynamic sparse data structures
– e.g.: AMR, directed graphs, heuristic driven search problems

• Conventional systems
– MPP and commodity clusters
– Multicore
– Heterogeneous
– FPGA enhanced for system software acceleration

• Cyclops
– IBM
– NSA sponsored
– Fine grain architecture

• Gilgamesh-2 point design
– Heterogeneous with respect to temporal locality
– Combines PIM structures with dataflow streaming accelerators 
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ParalleX Semantics
• Locality domains

– Intra-locality: Controlled synchronous
– Inter-locality: Asynchronous between localities

• Distributed shared memory
– Not cache coherent
– Copy semantics
– Affinity relationships

• Split-phase transactions
– Work queue model 

• Only do work on local state
• No blocking or idle time for remote access

• Message-driven computation
– Parcels carry data, target address, action, continuation
– Percolation

• Multi-threaded
– First class objects
– Dataflow on transient values

• Local (lightweight) control objects
– Futures
– Dataflow
– Data-directed parallel control

• Meta-data embedded address translation
• Dynamic optimization
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Strategic Accomplishments

• LITLX running on Cyclops simulator
• ParalleX reference implementation

– Written in Lisp (for rapid prototyping)
– Running kernel applications

• Distributed ParalleX in-work
– Based on C++ libraries
– PRECISE binary instruction set

• Exploits prior NSF Percolation studies (UDel & 
Caltech)
– Prestaging of data at remote sites
– Work distribution and load balancing
– Offload overhead and latency from precious resources
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Gilgamesh-2 System Elements

• Executable Memory
– Supports low-temporal (e.g. touch once) locality global data operations
– Threads in memory with wide ALUs

• Dataflow Accelerator
– Supports high-temporal locality operations
– Very high throughput low latency processing
– Low power per operation 

• Data Vortex optical network
– Innovative topology
– Low latency, low logic
– Graceful degradation of injection rate with traffic density
– High degree switches

• Penultimate store
– Fast backing store for core computing
– Exploits highest density semiconductor memory
– Reconfigurable for fault tolerance
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Gilgamesh-2 Module
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Gilgamesh-2 System
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Enhancing Conventional Multicore
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FPGA ParalleX Accelerator

• Based on prior work performed 
on MIND architecture as part of 
Caltech/JPL Gilgamesh project

• Goal: enhance scalability and 
efficiency

– Hide system wide latency
– Reduce parallelism control 

overhead
• Design FPGA-based hardware 

drivers and co-processors to 
support ParalleX model

– Parcel message-driven 
computation handler

– Medium grained multithread 
execution scheduler

– Global address translation 
support

– Percolation pre-staging task 
manager

– (possibly) local control object 
synchronization acceleration
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Future Work at LSU

• Full function distributed ParalleX implementation
– Exploiting existing C++ libraries
– Commodity cluster

• Optimized performance implementation
– Custom threads model

• Application driven evaluation
– Performance advantage
– Time cost model of critical mechanisms
– Scalability sensitivity studies

• FPGA accelerators
– Key mechanisms
– CCT reconfigurable testbed

• Specification for Agincourt
– API for ParalleX
– Compiles to PXIF
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