
Improving MPI Independent Write
Performance Using A Two-Stage
Write-Behind Buffering Method

Alok Choudhary

IEEE International Parallel & Distributed Processing Symposium, 2007
The NSF Next Generation Software (NGS) Workshop

Wei-keng Liao*, Avery Ching*, Kenin Coloma*, Alok Choudhary*, and Mahmut Kandemir**

Pennsylvania State UniversityNorthwestern University
**CSE Department*EECS Department

HPC I/O System Layers
Compute

node

network

I/O
Server

I/O
Server

I/O
Server

Applications

Client-side File System

HDF, netCDF

MPI-IO

Compute
node

Compute
node

Compute
node

MPI I/O
• Collective I/O functions

– Synchronous: all processes must participate
– Better performance

• In many MPI I/O implementations, processes collaborate with
each other for better I/O strategies, for example, two-phase I/O

– Require defining file views
• Constructing MPI derived data types for file views can be

complicated

• Independent I/O functions
– No synchronization requirement
– Worse performance

• Difficult to improve due to its arbitrary nature
– No need of file view

• Often read/write with explicit file offsets

Write-only I/O Patterns
• Check-pointing for long-run applications

– Data is periodically written to files
• Data for restart in case of interruption
• Data for post-simulation analysis

– Once written, data will not be accessed for the rest of
the run

• Write-behind strategy
– Improve I/O by accumulating small requests to large

requests for better network utilization
– Part of the client-side file caching

Parallel File Systems
• Many adopt client-side file caching
• Cache coherence control

– Distributed file locking protocol is used to avoid
centralized management

– Lock granularity is not in byte range
• For example, file block size, disk sector size, file stripe size, etc.

– Conflicting locks serialize I/O parallelism
• In particular, conflicts at block level, not in byte range

3 KB 4 KB

Requested by Pi Requested by Pj

file

Two-stage Write Behind
P0

P0

First stage write behind

P3P2P1

block 0
block 4
block 8

block 4 block 5 block 6 block 7

Second stage buffering

File logical partitioning

local buffers
(one for each

remote process)

P1

P1

P3P2P0

block 1
block 5
block 9

P2

P2

P3P1P0

block 2
block 6

block 10

P3

P3

P2P1P0

block 3
block 7

block 11

Design
• Goal

– Enable write behind locally
– Avoid file system lock conflict globally

• 1st-stage buffering
– Data is accumulated locally
– Flushed to 2nd-stage buffers once full
– Flushing is based on the file block assignment at the 2nd-stage

• 2nd-stage buffering
– A file is logically divided into blocks
– The ownership of blocks is statically assigned to all MPI processes

in round robin
– Evict blocks to file system if allocated buffers exceed a pre-defined

upper bound, for example 64 MB

I/O Thread
• One thread per MPI process

– Created at the first file open
– Destroyed at the last file close

• Handle local write behind buffering
– Write to first-stage buffers
– Communicate with main thread

through a mutex protected variable
– Flush to remote 2nd-stage buffers

• Receive data from remote
– Receive flushed data and copy to the

2nd-stage buffers
– MPI_Iprobe() is used to probe remote

requests
• I/O

– Write to file system when 2nd-stage
buffers are full

file open

read/write

If open first file

If close last file

create thread

no
yes

sh
ar

ed
 v

ar
ia

bl
es

file close

check local
request

probe for
remote request

destroy thread

request
to remote

main
thread

I/O
thread

request
from

remote

Experiments
• Platforms

– Tungsten, a Linux cluster @ NCSA running Lustre
– Mercury, an IBM cluster @ NCSA running GPFS

• MPICH
– Configured with using Gigabit Ethernet (currently MPICH’s

multi-threading is only supported for socket channel)
• BTIO Benchmark NASA

– Traditionally, using collective I/O has been reported much
better than using independents

– Independent BTIO has significantly larger number of requests

Number of write requests per MPI process

13124040520004064
15000040594004049
17496040693604036
20991040832404025
262440401040404016

independentcollectiveindependentcollective
BTIO Class CBTIO Class BNumber of

compute nodes

BTIO

P0,0 P0,1P0,2

P1,0 P1,1P1,2

P2,0 P2,1P2,2

P2,0

Local array is in 4D

P2,0

P2,0File view

• One-stage write behind uses only the 2nd-stage buffering
• The bandwidth for native independent I/O (not shown) is less than 5 MB/sec

Summary
• MPI independent I/O

– Usually, independents perform worse than collectives
– Most of the existing optimizations for collectives is not applicable

• Write-only pattern
– Occupies 90% of the I/O activities in scientific applications
– Can be improved by write behind

• File locking in parallel file system
– Ensures cache coherence
– The main cause of I/O bottleneck

• Improvement by two-stage write-behind method
– In our experience, MPI independent I/O can even outperform

collectives

