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MPI I/O
• Collective I/O functions

– Synchronous: all processes must participate
– Better performance

• In many MPI I/O implementations, processes collaborate with 
each other for better I/O strategies, for example, two-phase I/O

– Require defining file views
• Constructing MPI derived data types for file views can be 

complicated

• Independent I/O functions
– No synchronization requirement
– Worse performance

• Difficult to improve due to its arbitrary nature
– No need of file view

• Often read/write with explicit file offsets



Write-only I/O Patterns
• Check-pointing for long-run applications

– Data is periodically written to files
• Data for restart in case of interruption
• Data for post-simulation analysis

– Once written, data will not be accessed for the rest of 
the run

• Write-behind strategy
– Improve I/O by accumulating small requests to large 

requests for better network utilization
– Part of the client-side file caching



Parallel File Systems
• Many adopt client-side file caching
• Cache coherence control

– Distributed file locking protocol is used to avoid 
centralized management

– Lock granularity is not in byte range
• For example, file block size, disk sector size, file stripe size, etc.

– Conflicting locks serialize I/O parallelism
• In particular, conflicts at block level, not in byte range
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Design
• Goal

– Enable write behind locally
– Avoid file system lock conflict globally

• 1st-stage buffering
– Data is accumulated locally
– Flushed to 2nd-stage buffers once full
– Flushing is based on the file block assignment at the 2nd-stage

• 2nd-stage buffering
– A file is logically divided into blocks
– The ownership of blocks is statically assigned to all MPI processes 

in round robin
– Evict blocks to file system if allocated buffers exceed a pre-defined 

upper bound, for example 64 MB



I/O Thread
• One thread per MPI process

– Created at the first file open
– Destroyed at the last file close

• Handle local write behind buffering
– Write to first-stage buffers
– Communicate with main thread 

through a mutex protected variable
– Flush to remote 2nd-stage buffers

• Receive data from remote
– Receive flushed data and copy to the 

2nd-stage buffers
– MPI_Iprobe( ) is used to probe remote 

requests
• I/O

– Write to file system when 2nd-stage 
buffers are full
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Experiments
• Platforms

– Tungsten, a Linux cluster @ NCSA running Lustre
– Mercury, an IBM cluster @ NCSA running GPFS 

• MPICH
– Configured with using Gigabit Ethernet (currently MPICH’s

multi-threading is only supported for socket channel)
• BTIO Benchmark NASA

– Traditionally, using collective I/O has been reported much 
better than using independents

– Independent BTIO has significantly larger number of requests
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BTIO

P0,0 P0,1P0,2

P1,0 P1,1P1,2

P2,0 P2,1P2,2

P2,0

Local array is in 4D

P2,0

P2,0File view

• One-stage write behind uses only the 2nd-stage buffering
• The bandwidth for native independent I/O (not shown) is less than 5 MB/sec



Summary
• MPI independent I/O

– Usually, independents perform worse than collectives
– Most of the existing optimizations for collectives is not applicable

• Write-only pattern
– Occupies 90% of the I/O activities in scientific applications
– Can be improved by write behind

• File locking in parallel file system
– Ensures cache coherence
– The main cause of I/O bottleneck

• Improvement by two-stage write-behind method
– In our experience, MPI independent I/O can even outperform 

collectives


