
NSF Next Generation Software Program March 25-26 2006

Virtual Execution Environments:
Support and Tools

PIs: Bruce Childers#, Jack Davidson*,
Mary Lou Soffa*

Apala Guha*, Jason Hiser*, Naveen Kumar#,
Jing Yang*, Min Zhao#, Shukang Zhou*,

Kim Hazelwood*
#University of Pittsburgh
*University of Virginia

NSF Next Generation Software Program March 25-26 2006

Virtual Execution Environments

• Increasing interest in Virtual Execution
Environments (VEEs)

• Research focus: Translation based VEE -
examines and translates a program’s
instructions

• Our goals
– Improve performance and memory

overhead
– Develop tools to enable the widespread

acceptance of VEEs

NSF Next Generation Software Program March 25-26 2006

A Typical Translation-Based VEE

• Application
layer

• OS +
hardware
layer

• VEE layer
– Translation

engine
– Code cache

Application

OS + Hardware

Translation
Engine

Code
Cache

Application
Code

Translated
Code

Request for
Translation

Executable
Code

NSF Next Generation Software Program March 25-26 2006

Techniques to improve performance

Performance
– Implemented VEE (Strata); explored
overheads

– Indirect branches expensive – context
switch

– Indirect branches from conditionals
– Indirect branch translation cache
– Reduced overhead from 4.1X to 1.7X

– Indirect branches from returns
– Reduced overhead from 1.7X to 1.3X

NSF Next Generation Software Program March 25-26 2006

Reduce memory overhead
• Reduction in memory

footprint of code
caches

• Exit stubs
– They are used very few

times
– They have standard

functionality
– They occupy a

considerable percentage
of code caches

Code Cache Occupancy as Percentages

Exit Stubs
64%

Traces and Other
36%

NSF Next Generation Software Program March 25-26 2006

Our Approaches

• Deleting exit stubs
• Avoiding generation of exit stubs
• Reducing the size of exit stubs
• Generating target address specific

stubs

NSF Next Generation Software Program March 25-26 2006

Evaluation – Stub Occupancy

Standard
implementation

After Technique 4

Code Cache Occupancy as Percentages

Exit Stubs
64%

Traces and Other
36%

Code Cache Occupancy after Applying R+TAS

Exit Stubs
43%

Traces and Other
57%

NSF Next Generation Software Program March 25-26 2006

Tools

• Tools
– Instrumentor for various VEEs
– Dynamic Optimizer
– Debugger for dynamically optimized
code

NSF Next Generation Software Program March 25-26 2006

Trace-based Dynamic Optimizer

Program

Host Machine

Dynamic Translator

Code Cache TDO

C
on

tro
l t

ra
ns

fe
r

Fetch blocks

Emit

Execute Optimize trace

EmitV
irt

ua
l M

ac
hi

ne

NSF Next Generation Software Program March 25-26 2006

1. Static debug information inconsistent
– Code is generated, modified, duplicated and

deleted continuously during execution
– Active debug environment needed
– Code location problem – opt and duplication

2. Re-optimization & trace combination
– Data-value problem – expected value

3. Efficiency
– Frequent optimization of traces
– Code duplication and code cache flushes

Challenges in Debugger

NSF Next Generation Software Program March 25-26 2006

Debug Information Repository

Mapping
Generator Annotator

Breakpoint
Manager

Execution
Manager

Record-replay
Manager

DIR

Dynamic Optimizer

Native Debugger

Debug
Engine

Mapping
Generator

DIR

Annotator

Execution
Manager

Breakpoint
Manager

Record-replay
Manager

NSF Next Generation Software Program March 25-26 2006

Experimental Results

• Dynamic Optimizer: Strata-DO;
• Native Debugger: Gdb 5.3
• SPARC v9; Sun Blade 100; 500 MHz; 256 MB
• SPECint2000

• Can report all expected values except those
deleted by optimizer

• Performance overhead - 2.6%
• Memory overhead average 685 KB

• Overheads are comparable to those debuggers
for statically optimized code

NSF Next Generation Software Program March 25-26 2006

Summary and future research

• Demonstrated that SDTs and tools
can be efficient

• Current and future research
– Limit study for dynamic optimizations to

determine potential
– Advanced execution system that

automatically adapt application’s
execution to resource landscape
originating from process variation

NSF Next Generation Software Program March 25-26 2006

Questions?

Thank You

For more information, please visit:

http://www.cs.pitt.edu/coco

