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Virtual Execution Environments

• Increasing interest in Virtual Execution 
Environments (VEEs)

• Research focus: Translation based VEE -
examines and translates a program’s 
instructions

• Our goals
– Improve performance and memory 

overhead 
– Develop tools to enable the widespread 

acceptance of VEEs
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A Typical Translation-Based VEE
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layer

• VEE layer 
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Techniques to improve performance

Performance
– Implemented VEE (Strata); explored 
overheads

– Indirect branches expensive – context 
switch

– Indirect branches from conditionals
– Indirect branch translation cache
– Reduced overhead from 4.1X to 1.7X

– Indirect branches from returns
– Reduced overhead from 1.7X to 1.3X



NSF Next Generation Software Program March 25-26 2006

Reduce memory overhead
• Reduction in memory 

footprint of code 
caches

• Exit stubs
– They are used very few 

times
– They have standard 

functionality 
– They occupy a 

considerable percentage 
of code caches 

Code Cache Occupancy as Percentages

Exit Stubs
64%

Traces and Other
36%
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Our Approaches

• Deleting exit stubs
• Avoiding generation of exit stubs
• Reducing the size of exit stubs
• Generating target address specific 

stubs
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Evaluation – Stub Occupancy

Standard 
implementation

After Technique 4

Code Cache Occupancy as Percentages

Exit Stubs
64%

Traces and Other
36%

Code Cache Occupancy after Applying R+TAS

Exit Stubs
43%

Traces and Other
57%
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Tools

• Tools
– Instrumentor for various VEEs
– Dynamic Optimizer
– Debugger for dynamically optimized 
code
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Trace-based Dynamic Optimizer
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1. Static debug information inconsistent
– Code is generated, modified, duplicated and 

deleted continuously during execution
– Active debug environment needed
– Code location problem – opt and duplication

2. Re-optimization & trace combination
– Data-value problem – expected value

3. Efficiency
– Frequent optimization of traces
– Code duplication and code cache flushes

Challenges in Debugger
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Debug Information Repository
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Experimental Results

• Dynamic Optimizer: Strata-DO;
• Native Debugger: Gdb 5.3
• SPARC v9; Sun Blade 100; 500 MHz; 256 MB
• SPECint2000

• Can report all expected values except those 
deleted by optimizer

• Performance overhead  - 2.6% 
• Memory overhead average 685 KB

• Overheads are comparable to those debuggers 
for statically optimized code
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Summary and future research

• Demonstrated that SDTs and tools 
can be efficient

• Current and future research
– Limit study for dynamic optimizations to 

determine potential
– Advanced execution system that 

automatically adapt application’s 
execution to resource landscape  
originating from process variation
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Questions?

Thank You

For more information, please visit:

http://www.cs.pitt.edu/coco


