
Automatic MPI Application
Transformation with ASPhALT

Anthony Danalis, Lori
Pollock, Martin Swany

Overview
• Goal

• High performance communication for MPI
applications that is easy to achieve

• Solution
• An automatic system that transforms simple

communication code into more efficient code by
improving the overlap of computation with
communication

• Impact
• Existing applications can enjoy improved

performance
• New applications can be written more simply and

automatically optimized for various platforms

Overlapping Computation and
Communication

Overlapping Details
• Minimize effective overhead of data movement

by overlapping it with useful work
• An old idea
• Different approach than using large messages for

high bandwidth
• What does it mean for parallel application

development?
• Post a send as soon as sufficient data is ready
• Do useful work
• Check status after completion (minimal polling or

sleeping)
• Difficult to optimize, difficult to maintain

• Particularly as platforms change

Overlapping Transformation -
Simple Example

- Automatic System for Parallel AppLication
Transformation

ASPhALT

ASPhALT Framework
• Based on the Open64 compiler

• Early work was based on Nestor and was Fortran77-
only (Parco ‘05)

• Open64 uses intermediate representation known
as WHIRL

• WHIRL has 5 levels and the compiler works by
progressively lowering from the highest to the lowest

• A WHIRL tree can be transformed and unparsed
to high-level source code

• At the highest two levels

Transformer Structure

Evaluation of Transformations
• Initial manual transformations to evaluate

efficacy
• A. Danalis, K. Kim, L. Pollock, M. Swany,

"Transformations to Parallel Codes for Communication-
Computation Overlap", SC05

• Two scientific applications as targets
• Chem E. and Physics apps from UD
• FFTW and MPI_ALLTOALL

• Created communicationless versions of the code
• Normalized execution time

ExperimentRuntime
CommunicationlessRuntime

Evaluation of Automatic Transformation -
Synthetic Kernel

interconnect:Ammasso, NP:16, size:1440x1440x48x16 Bytes

Evaluation of Automatic Transformation -
Synthetic Kernel

interconnect:Myrinet-MX, NP:48, size:1440x1440x48x16 Bytes

Evaluation of Automatic Transformation -
Application “visco”

interconnect:Myrinet-MX, NP:48, size:9216x2305x48x16 Bytes

Evaluation of Automatic Transformation -
Application “visco”

interconnect:Myrinet-GM, NP:24, size:9216x2305x48x16 Bytes

System Benchmarks

System Benchmarks

Ongoining Efforts
• Apply technique to Scatter/Gather (C)
• Apply technique to large send “fission” (C)

• Matching sends/recvs impossible without out of band
information

• Use OpenFabrics APIs
• DAPL

• Support for compilation of communication into
lower-level routines

• Abstract hardware details
• Abstract protocol/library details
• Abstract language issues (Fortran and pointers)

Acknowledgements
• UD Students

• ASPhALT: Anthony Danalis, Aaron Brown,
Andrew Gearheart, Magnus Johnsson

• (alumni: Lewis Fishgold, Ki-Yong Kim)

• ASPhALT co-PI: Lori Pollock

Questions?

