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1. INTRODUCTION

To meet the computational and economic demands of high-
performance computing (HPC) applications, developers of-
ten structure their applications as coupled software compo-
nents running in parallel on a single computational resource
(e.g., a workstation cluster) or across multiple distributed
computing resources (i.e. the Grid).

Our experience suggests that launching these applications is
more difficult than many people realize. Although it hasn’t
been deeply studied, we believe this situation greatly hinders
productivity and that solutions to this problem could save
considerable time and effort for HPC developers and end
users.

To investigate this problem we conducted a small case study
of a two-program coupled simulation of Sun to Earth space
weather. During the study, we enacted a single researcher
workflow operating in two modes: exploring the simulation
code to better understand and improve it, and using the
production code to study a particular scientific phenomenon.

During the study, we repeatedly executed the following steps
for every launch. First, we discovered the computing re-
sources on which to run the programs. Then we allocated
the resources and transfered the input data for each pro-
gram to their specified locations. Next, we launched the
programs, producing simulation output data. Finally, we
gathered the data and analyzed them.

This high-level process was the same for both workflow us-
age modes, although the difficulty of the individual steps
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changed. For example, in development mode, the study sub-
ject launched the application to plan modifications, to run
tests and to assess performance under multiple use scenarios.
In use mode, he launched the application with many differ-
ent parameter settings and with different launching com-
mands tailored for different hardware, OS, and middleware
combinations.

Based in part on this study, we concluded that the produc-
tivity in HPC application development and utilization can
be significantly improved by providing better support for
launching. In the next sections we describe the case study
that motivated our research, explain the issues that arise
when launching complex HPC applications, and discuss how
existing systems handle these issues. After that we present
our prototype launch support system.

2. CASE STUDY AND MOTIVATION

Space weather simulations are used to help understand how
the Sun influences the Earth’s environment. Such simula-
tions typically require coupling together software compo-
nents that simulate different regions of space, including the
solar corona, the Earth’s magnetosphere, and the region be-
tween the Earth and the Sun.

In this case study, we investigated launching a 2-component
space weather simulation, with one component employing
a magnetohydrodynamics model of the region between the
Sun and the Earth and the other component modeling the
Earth’s ionosphere [13]. These two components periodi-
cally exchange data at the shared boundary of their do-
mains, to maintain a consistent set of physical values across
that boundary. We believe that this application is typical of
many (but certainly not all) HPC simulation applications.

To implement and execute this application a developer re-
peatedly follows the development cycle shown in Figure 1.
In contrast to many other kinds of applications, we quickly
observed that launching HPC applications is quite complex
(i-e., not just clicking on an icon or making a command line
invocation). In fact, the process is time-consuming, error-
prone and cumbersome since multiple resources must be dis-
covered, allocated and managed. In the next section we de-
scribe several issues arising from HPC application launching.

3. LAUNCHING HPC APPLICATIONS
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Figure 1: HPC Software Development Cycle

In this section, we address specific issues arising from each
core activity in the launching process shown in Figure 1, as
well as some issues that cut across multiple activities. We
also describe how each issue is handled by two widely-used
toolkits: the Globus Toolkit (GTK) [4] and Condor [12].

3.1 Resource Discovery Issues
In this section, we describe issues related to job specification,
resource information management and resource discovery.

To do resource discovery software developers currently pro-
vide job specifications that contain low level information
about the resources and software needed to launch the HPC
application. This might include information such as the
name of the executable and the file system location for a
component, and the number of processes desired for a par-
allel component.

In practice, developers often are only concerned with hav-
ing certain quantities or types of resources, not with having
specific named resources. In these cases it would be desir-
able to provide an abstract job specification, specifying only
information such as the program(s) to be run and the num-
ber of parallel tasks (if a program is to be run in parallel),
along with the input/output arguments for each program.
Of course, if the developer knows and wants to specify de-
tailed information, such as a particular resource to run on,
he should be able to write the details directly into the job
specification.

A discovery service refines the job specification by search-
ing an information repository for the software and resources
needed to complete the job, if the specification is not already
fully bound to a set of resources. To enable this function-
ality, services for managing information about the software
and available resources must be provided to the develop-
ers and resource owners before resource discovery, and an
optimized discovery mechanism should be provided to find
the desired resources. Such a mechanism is crucial for effi-
cient HPC application execution since the application com-

ponents may communicate with each other and potentially
exchange large amounts of data.

Condor users provide the job specification and resource spec-
ification separately using a ClassAd - essentially an extensi-
ble property list. The ClassAds are advertised to a match-
maker process and the matchmaking is performed based on
the properties. Both Requirements and Rank are speci-
fied in the ClassAds. Requirements are the minimum con-
straints that must be satisfied by other ClassAds for match-
making, and Rank is a metric to evaluate the fitness of the
satisfying ClassAds. The matchmaker assigns a job to the re-
source with highest rank. GTK users describe each job with
the necessary software and resource information, such as
program path/name, cluster name and the number of hosts.
This information is specified in the Resource Specification
Language (RSL), and the RSL is refined with the help of
an information service before launching the program(s) that
make up the job. In Condor and GTK, the relationships
between the jobs in a specification are not considered in the
resource discovery process, even though such relationships
are important for executing complex HPC applications con-
sisting of multiple programs, as described in Section 2.

3.2 Resource Allocation Issues

After resources are discovered, jobs will be allocated to them.
In this section, we describe several issues related to resource
co-allocation and advance reservation.

Resource co-allocation is required when coupled components
must run in parallel on multiple resources. For example,
during our case study we ran the space weather simulation
components on two different computing clusters. This re-
quired co-allocation as the two programs must frequently
exchange run-time data.

Resource co-allocation is very cumbersome for software de-
velopers, and makes it more difficult for them to focus on the
software development process. In addition, co-allocation can
be time-consuming in complex computational environments,
and also error-prone since developers must learn the prop-
erties of the diverse resources for successful co-allocation.

A co-allocation manager must be aware of the diverse condi-
tions under which the resources are managed. For example,
resources might be actively managed by independent single-
resource schedulers such as PBS or LSF for workstation clus-
ters, or passively managed as a shared set of machines. Each
structure requires different allocation mechanisms. In addi-
tion, the co-allocation manager must release pre-allocated
resources in the case that allocation failure occurs. The
Version 2 release of GTK supported this feature through
its Dynamically-Updated Request On-line Co-allocator ser-
vice (DUROQC) [3], which treats resource co-allocation like
an atomic transaction. Condor also adopted DUROC for
executing parallel software modules in a Grid environment.
However, Version 3 of GTK does not provide resource co-
allocation.

Advance reservation is another important issue in resource
allocation. Advance reservation provides quality-of-service
(QoS) guarantees for running the application. If programs
must be launched on multiple coordinated resources, ad-



vance reservation is crucial for resource allocation. For ex-
ample, if a program needs to transfer data to another pro-
gram periodically with a minimum data transfer rate, the
network bandwidth required for transfers between the re-
sources should be reserved before launching the programs.
CPUs, disk and network bandwidth can also be reserved.
By providing advance reservations, multiple components can
employ all the reserved resources simultaneously and reli-
ably. Advance reservation also allows high-level resource
management environments to best use resources flexibly and
effectively. GTK Version 2 supported advance reservation
for nodes and a single-domain network using General-purpose
Architecture for Reservation and Allocation (GARA), which
is an extension of the Globus Resource Allocation and Man-
agement (GRAM) package. However, GTK Version 3 and
Condor do not support advance reservations.

3.3 Issues After Launching HPC Applications
Failure and output handling issues also affect launch-time
behavior. Failures can happen at any point, from resource
discovery to application launching. Those occurring prior
to launch, such as insufficient available resources, can be
caught by the launching environment and the user notified.
However, it is very hard to detect program execution failures
because the launching environment has little control over the
programs running on remote resources. GTK and Condor
handle such errors by redirecting the stderr stream from the
program. Execution failures can also happen when allocated
resources fail or launched programs crash accidentally. To
detect diverse runtime faults, GTK Version 2 used Heart-
beat Monitors (HBMs) running on each resource [11]. Each
HBM monitors the status of a resource and the launched
programs running on that resource using the standard Unix
ps command, and reports the status to a data collector pro-
cess that takes appropriate actions on failures. The collector
can restart the program or reallocate the resource if neces-
sary. Condor takes a similar approach to GTK Version 2.

In addition, program output(s) must be made accessible to
the user. The outputs such as stdout or other application-
specific files should be redirected to the user or stored per-
sistently at a reliable location. GTK Version 2 realized this
strategy with the Global Access to Secondary Storage ser-
vice (GASS) [2] and GridFTP [1], whereby the files explicitly
described in the RSL can be stored at the specified loca-
tions during or after program execution. In GTK Versions
3 and 4, the Reliable File Transfer service (RFT) utilizes
GridFTP for large data file transfers, and two instances of
the File Stream Grid service (FSS) are dynamically created
to redirect stdout and stderr, respectively. The streams are
transferred via standard SOAP messages from the remote
resources to the locations specified in the RSL. In Condor,
all the generated files are moved by default from the remote
resources to the user’s originating machine.

3.4 Cross-Cutting Issues

There are also several issues that cross-cut launching ac-
tivities. For example, security must be addressed since all
Grid resources and services should be protected from unau-
thorized access. Secure resource access can be achieved by
applying strong user authentication and authorization. The
types of access allowed can be controlled through the use of
user credentials local to each resources. GTK and Condor
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Figure 2: The Overall Architecture

provide authentication mechanisms based on X.509 certifi-
cates or Kerberos. For authorization, they adopt user-based
authorization based on files that describe access controls on
each resource.

Another issue is how to design the launching environment.
The emergence of service-oriented architectures [5] holds
great promise, since they make Grid services flexible, modu-
lar, reusable and easy-to-integrate, by separating the inter-
face from the implementation of a Grid service. Version 3 of
GTK supports a service-oriented architecture, by being com-
pliant with the Open Grid Service Architecture (OGSA) [6].
However, Condor is not service-oriented, although efforts are
underway to offer Condor services via standard Grid services
interfaces.

4. OUR PROTOTYPE ENVIRONMENT

To address the above issues we are designing and implement-
ing a prototype HPC application launching environment.
Figure 2 depicts the environment’s design.

To provide secure Grid services to consumers we use a strong
authentication mechanism based on two-way SSL handshak-
ing, like GTK and Condor. We also assume that the authen-
ticated service consumers are authorized to invoke the de-
sired services. For SSL handshaking, each service provider
and consumer must have a certificate issued by a certificate
authority, and the certificates are exchanged to mutually au-
thenticate. After successful authentication, a service can be
securely invoked over the secure session using SOAP, and
commands, such as a resource allocation request, can be
passed to the resource owner using SSL. This has the ad-
vantage that a service can be invoked even if it is behind
a firewall, and enables a reasonable level of security. GTK
Version 3 goes further and provides services compatible with
recently available Web Service security standards [7].



Our environment is service-oriented. Unlike GTK Version 3,
our implementation is solely based on Web Services. In the
future, other features such as service lifetime management
specified in the OGSA can be plugged into our design and
implementation.

4.1 Resource Discovery

As discussed Section 3.1, we must manage resources and
refine a given job specification with a resource discovery
service. Before resource discovery begins, resources must
be registered with an information repository and updated
periodically. Independent resource managers deployed by
resource owners register and monitor their resources. For
example, if the resource type is a workstation cluster man-
aged by a local scheduler (e.g., LoadLeveler or PBS), the
resource manager deployed at the cluster head node would
register information about the cluster to the repository. A
resource manager provides an XML Resource Description
(XRD) that describes the resource, such as a resource iden-
tifier, number of processors, type of processors (e.g., 2.6
GHz Pentium4), operating system (e.g., Linux) and resource
owner. This data is registered using the RegisterResource
service and resource availability is periodically updated us-
ing the UpdateResource service. Our current implementa-
tion supports two distinct resource types, cluster, man-
aged by a local (PBS or LoadLeveler) scheduler, and a time-
shared node, because HPC applications are usually launched
on such resources. Unlike GTK and Condor, in our ap-
proach, we regard the software deployed by the resource
owners as another type of resource, which is also used for
XML Job Description (XJD) refinement. Thus, that infor-
mation must be registered by invoking the RegisterSoftware
service with an XML Software Description (XSD) that con-
tains information such as the software owner, directory path
for the software and the name of the executable program.

In addition to the registered resources, a job specification
is required for the discovery process. A user provides an
XJD consisting of two sections for describing the required
components and how those components are connected. A
software identifier and the number of tasks requested to
execute the (parallel) software component are among the
attributes described in the software section of the XJD. If
the user wants to execute a software component on a spe-
cific resource, that can also be specified in the XJD. In this
case, the discovery service only checks for the availability of
the resource. The connection section describes the informa-
tion between the jobs, which consists of an identifier and the
job-to-job properties such as data transmission rate between
two components. Appropriate resources satisfying the XJD
are discovered by the DiscoverResource service, and then a
message object is returned to the client with either an error
message or the discovered resource information. For exam-
ple, a discovery failure message will be sent if there is no set
of resources fully satisfying the XJD.

4.2 Resource Allocation

To allocate resources manually, a developer must understand
the details of the underlying resources, and requires direct
access to the resource for allocation. This is made even more
difficult because different resources have different allocation
mechanisms that depend on the type of the resource. Since

resource allocation is handled transparently by our alloca-
tion service, a developer can focus on software development.

For each job description (XJD), resource allocation starts by
obtaining a unique job identifier from the allocation service.
The identifier is stored in a repository and managed until
all jobs in the description finish. The identifier is also used
to create temporary work directories at the server running
the allocation service and at the nodes managing the remote
resources, because both the allocation service and the HPC
software components may generate files during job execu-
tion. For example, machine files and lock files are often cre-
ated by a local resource scheduler in a user-owned directory.
The allocation service then uses the resource requirements
in the refined XJD to make allocation requests based on the
type of each resource. If a resource is directly SSH accessi-
ble, the service just checks its availability. However, if the
resource is managed by a local scheduler (i.e. it is managed
as a space-shared cluster), a script is queued to the sched-
uler that starts the job using the resources assigned by the
local scheduler. The main purpose of the script is to prevent
the scheduler from releasing the resources too early. Since
the script waits until the lock file created by the allocation
service is removed by the launching service after the soft-
ware running on the resources terminates, the job can use
the resources exclusively until the entire job (potentially at
multiple resources) completes execution.

The sequence described above works for allocating resources
for a single program execution. However, it is not adequate
to execute complex HPC applications that dynamically ex-
change large amounts of data, because such applications
often use specific runtime libraries and other services for
efficient data exchange. For example, the space weather
application introduced in Section 2 uses InterComm [9] for
exchanging and redistributing data between two software
components running on different number of processes on dif-
ferent resources. In this case, the resources must be joined
into a single communication group (in InterComm, using
PVM [8]) after allocation on each resource, due to the con-
straints enforced by InterComm. To enable this functional-
ity, the script queued to the local schedulers at each resource
must be modified to join the allocated resources into a com-
munication group after allocation.

After sending allocation requests to the resource owners,
the allocation service periodically monitors the allocated re-
sources until all resources are acquired or a failure message
arrives. If all the allocations succeed, the launching ser-
vice can then take over. However, resource allocation can
fail occasionally because the resources are inherently shared
among multiple users and simultaneous accesses to a re-
source can happen. For example, a resource can be allocated
by other users bypassing our allocation service. Therefore,
the allocation service stops after a given number of retries
and releases the allocated resources. Finally, the user is no-
tified of the failure by sending a message with an error code.

4.3 Launching HPC Applications

Complex HPC applications often consists of multiple com-
ponents, each of which may be launched in different ways.
For example, one component may run as a message passing
program with MPI [10] while another uses PVM. We have



implemented different launching modules to support diverse
launching methods for HPC software components.

For each type of HPC software component, we require a
machine file defining the resources used by that component.
Our launching service generates that file by partitioning the
machine file allocated by the allocation service. For exam-
ple, if 12 nodes (processors) are allocated by the allocation
service, a machine file with 12 nodes is created in the (tem-
porary) work directory of the server holding the allocation
service, and that set of nodes will be partitioned for the com-
ponents to be launched on each resource. However, gener-
ating the machine file is not all that is needed to launch the
components. For example, if a component transfers data to
another component dynamically using InterComm, informa-
tion such as the name and the numbers of tasks (processes)
for the component on the other end of the transfer must be
known by each component for successful execution.

The HPC components are executed at the resources spec-
ified in the machine files and may generate output data.
In our implementation, stderr and stdout are redirected to
user-specified files and forwarded to the user in a message
object containing the execution result. Other output files
specified in the XJD are also delivered to the client after
a component terminates. To do this, we must determine
when a component terminates. Currently this is done by in-
specting the processes of the launched component running
at the resources specified in the machine file, using the stan-
dard Unix ps command. If no processes related to the com-
ponent are found, the service assumes that the component
has terminated. Such periodic checking uses cycles at each
resource, and is not a perfectly reliable method for check-
ing component termination. Future research will investigate
more reliable termination detection methods.

After all the components terminate, the launching service
removes the lock files created at the resources. If the com-
ponents utilize InterComm for data exchange, the launching
service must also terminate PVM by sending a kill command
to each node before removing the lock files, since removing
lock files allows the local schedulers to release the allocated
resources. Finally, the launching service clears the tempo-
rary directories created when the resource was allocated.

5. CONCLUSIONS

Launching HPC applications on multiple resources occurs
frequently throughout the HPC software development cycle,
and includes many repetitive, time-consuming and possibly
error-prone tasks. Since this additional work can seriously
decrease the productivity in development and utilization,
we argue that the use of an effective and automated HPC
software launching environment can improve productivity.

We have explored several issues that should be handled by
a launching environment, and have described a prototype
implementation of such an environment that uses a secure
service-oriented design. The services provided by our en-
vironment encapsulate the low-level details needed for re-
source management and effective HPC application launch-
ing on multiple computational resources. In future work,
we plan to improve this environment by devising diverse
resource discovery algorithms and by employing additional

HPC software runtime services developed both within our
project and in the wider HPC community.
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