
Workshop on New Visions for
Software Design and Productivity:

Research and Applications

Software Design and Productivity Coordinating Group

Interagency Working Group on Information Technology
Research and Development

December 13-14, 2001
Nashville, Tennessee

Released February 2003

Table of Contents

Government Introduction ... i
About the software problem: background and current status................................... i
Modern software-intensive systems: an example of complexity i
Areas for further research and development ... iv
Summary of research needs ... vi
About the Software Design and Productivity Coordinating Group vii
About the workshop .. vii
Summary of presentations at the Government panel ... viii

Letter to Vanderbilt University Chancellor E. Gordon Gee xi

Workshop Report ... 1
Foreword .. 2
Contents.. 3
Executive Summary... 4

Where Are We Now?.. 6
Future Challenges.. 7
New Research Directions.. 7
Concluding Remarks.. 9

Reports of Breakout Sessions .. 11
The Future of Software and Software Research ... 11
New Software Development Paradigms.. 18
Software for the Real World (Embedded Systems)... 25
Large-scale, Network-centric Systems.. 34

List of Participants .. 46
Panelist Presentations http://www.itrd.gov/iwg/pca/sdp/sdp-workshop/vanderbilt/
Participant White Papershttp://www.itrd.gov/iwg/pca/sdp/sdp-workshop/vanderbilt/

i

GOVERNMENT INTRODUCTION

About the software problem: background and current status

By any measure — qualitative or quantitative — software-intensive systems being
developed today are on a scale unheard of a generation ago. Today’s software boasts
levels of complexity and confidence that could not have been achieved even a dozen
years ago. Systems networked to each other or embedded in real-world environments
(and that must monitor and affect those environments in real time) are commonplace
today, even though both are quite recent innovations.

These advances have been brought about by continuing research achievements spanning
all aspects of software and system development. New software development models
increase both functionality and quality, while also reducing costs. Modern software
development organizations employ interdisciplinary teams of domain users, subject-
matter experts, and software engineers who are widely dispersed, even spread around the
world, to capitalize on available skills. Methods such as the Capability Maturity Model
(CMM) seek to improve systematically the fundamental processes by which software is
designed and implemented. All of these factors have contributed to continuing
improvements in software productivity and quality.

Despite these advances, major problems remain in developing software-intensive
systems. Today’s systems are expected to satisfy more and more requirements,
mandating both functionality (what the software actually does) and assurance (how
reliable and robust it is). Simply “getting the right answer” is no longer enough. In many
ways, these expectations are a result of systems engineering becoming a victim of its own
success. As the power of computing hardware grows according to Moore’s Law (i.e.,
computing performance roughly doubles every 18 months while chip size, power, etc.,
remain constant), it is natural for users to expect that software capabilities will keep pace.

But the engineering of software has not kept pace with that of hardware, even though
computer systems are being deployed in ever more sophisticated applications. Moreover,
the engineering gap is growing wider. Requirements can have inherent inconsistencies or
gaps in their specification, as well as errors in their implementation. Larger numbers of
requirements are disproportionately more complex to manage, which in turn multiplies
the cost and difficulty of creating the software. This increased complexity is a central
cause of problems in modern software-based systems, and the problems will inevitably
become worse as functional demands on software-intensive systems continue to evolve.

Modern software-intensive systems: an example of complexity

A detailed hypothetical example can serve to illuminate the complexity issue. In a land
combat scenario, a soldier has been critically wounded and must be immediately
evacuated from the battlefield to a military field hospital. Field medical personnel
ascertain that his injuries require immediate and intensive treatment, so they place the
soldier in a portable casualty trauma unit for stabilization and transport. The trauma unit

ii

is a completely self-contained intensive-care facility. Yet it is only large enough to hold
its own equipment and the wounded soldier, and is transportable by land or air without
being accompanied by medical personnel. The trauma unit ascertains the soldier’s
condition and monitors his vital signs, then administers critical medications and certain
other medical interventions, transmitting medical data on his condition by a wireless
communications link to the field hospital continually during transport. From the hospital,
medical personnel monitor the transmissions and, if needed, send new instructions to the
trauma unit to modify the soldier’s treatment. All of this is designed to stabilize the
soldier’s condition until he can arrive at the hospital and be treated directly. All of the
equipment in the trauma unit is controlled by onboard computer systems and their
attendant software. Finally, of course, the trauma unit must meet all relevant standards for
military use, such as those for reliability, transportability, security, and so on.

Even a quick survey at the functions the trauma unit must perform suggests the enormous
complexity of the software challenges. Providing unassisted medical treatment to an
injured person in real time may require dozens of simultaneous and coordinated software-
governed functions, from reading sensors that monitor the soldier’s pulse, respiration,
blood pressure, etc., to activating devices that supply oxygen, fluids, and medications,
administer CPR, and so forth in response. The unit must establish and maintain wireless
connectivity with the hospital while still under combat conditions and in transit, and must
smoothly combine its own autonomous actions with any overriding instructions that may
be sent from medical personnel at the hospital. These treatment-related capabilities can
be called the system’s “core” requirements.

That is far from the entire story, however. The design of this highly specialized unit also
is subject to many other requirements – such as the military’s physical specifications for
its size, shape, and weight – that are outside the scope of emergency medicine per se. But
these “non-core” requirements are equally non-negotiable imperatives in the development
of the overall system, and they dramatically increase the complexity of integrating all the
necessary software functionalities and stakeholder specifications into one highly reliable
system of systems. Examples of such widely varying requirements might include the
following:

� When the trauma unit is not actively in use, it must monitor its own supply of power
and materials (quantity and age of medications, battery charge, etc.) and report when
replacements are needed.

� Because the unit’s onboard computers, sensors, and medical devices are all subject to
failure (especially under battlefield conditions), the unit must monitor all of these and,
if any should fail, take appropriate corrective action (e.g., invoke redundant backups
or reconfigure those that remain functional).

� The trauma unit’s physical parameters — size, weight, power consumption, etc. —
must all meet specific constraints for military transport and use.

iii

� Since the unit must be usable by field medical personnel under adverse battlefield
conditions such as low light, excessive heat/cold, dust, and so forth, the design must
reflect such crucial human factors.

� Security is also a vital issue. All radio devices, including wireless computer networks,
emit radio-frequency signals that could potentially be monitored and exploited by an
enemy, even when the devices are not actively transmitting a message. The military
tactical commander must therefore exercise continuous and complete control over all
such devices and, in combat conditions, may at any moment order the instant and
total shutdown of all of them. When it is in use, the trauma unit’s wireless networking
activity must detect and resist enemy intrusion. On the other hand, if radio
communication is disrupted, the unit’s onboard systems must have the capacity to
carry on autonomously with appropriate treatment.

� The military must certify the overall suitability and security of the trauma unit for

operational use. In current military practice, software developers are increasingly
asked for certification of their use of established software development processes in
accord with accepted standards such as those of the Capability Maturity Model
(CMM). The Food and Drug Administration also must certify the unit’s safety as a
medical device.

Now consider the implications of all these factors for the software development and
testing process. In the first place, much of the software almost certainly comes from
multiple, independent sources, including experts in medical software and individual
vendors of sensors, medical devices, and wireless communications technologies; other
software components are likely to be developed by distributed teams. All of these
software elements have to be seamlessly integrated, so that they work together without
catastrophic failure in all imaginable combinations of factors, such as the soldier’s
condition and the treatments needed, the radio communication status and intrusion
attempts on the wireless network, environmental conditions, failure of crucial
components, and a wide range of actions by battlefield and hospital personnel.

If this sounds like a tall order, it is, and it is one we have not yet learned how to fill
effectively. Ideally, this kind of inherently complicated array of integrated software
functionalities should be tested rigorously in several ways. First, the various sets of
functionalities (e.g., wireless communications, sensor monitors, treatment devices,
backup mechanisms, etc.) should be implemented, tested, and certified independently of
one another, so that each subsystem is known to function well by itself prior to
integration. As a total system, the trauma unit’s integrated functionalities should then be
thoroughly evaluated in a sophisticated testbed capable of simulating all aspects of real-
world operation with simultaneous variation of many parameters. Such a multifaceted
testing process would assure correct system behavior and enable the system as a whole to
be developed in the shortest possible time and at the lowest possible cost.

iv

Areas for further research and development

As the example illustrates, the complexity of such a system stems from a number of
factors. The SDP Workshop identified five major factors and recommended research
directions for each. The first three consider requirements and functionalities. The last two
are methodological, in that their primary impact is on the process whereby the software is
developed and deployed. The factors and research directions are:

� Large number and inherent complexity of requirements — In modern software-
intensive systems, the requirements — both core and non-core — are more numerous
and complex than in past systems. In the scenario, the casualty trauma unit’s core
requirements call for autonomous and multifunctional emergency medical treatment.
Its software is embedded in a real-world, real-time application, and that application is
networked with the field hospital. Embedded and networked applications each
contribute special problems of their own to the complexity of the software. The non-
core requirements are also inherently more complex than in the past. For example,
military security requirements for control of radio-frequency emissions have normally
been implemented as manual procedures, i.e., telling an operator when he or she may
or may not use a radio. Here the wireless network must be controlled automatically.

One of the most difficult problems in dealing with such large and disparate sets of
requirements is that they may actually conflict with each other or have gaps in their
completeness. In the scenario, for example, the battlefield commander might order the
shutdown of all radio-frequency emissions at precisely the moment that the field
hospital is executing a complicated medical treatment in the trauma unit that requires
continuous monitoring. The unit will be required to recognize the situation and take
appropriate action, but the stakeholders must first specify what that appropriate action
should be. Each of these interrelated possibilities must be anticipated, and the
appropriate actions for each one must be specified, implemented ,validated, and tested
independently and in the operating environment.

The workshop recommended more research into the software development process
and the creation of new paradigms and richer development environments, including
improvements in framework-based design, component-based middleware, and model-
based software development. The workshop also recommended more research on
ways to improve the management of complexity, particularly such areas as domain-
specific languages and semi-automated applications frameworks. These tools would
allow subject-matter experts to develop software more directly in terms of their
application expertise, rather than requiring them to be computer experts.

� Multiple, independent sets of requirements and their associated functionalities —
In addition to core requirements, modern systems may be subject to multiple sets of
non-core requirements. These sets of non-core requirements are specified
independently of each other and of the core requirements, and may call for
functionalities such as network quality-of-service (QoS); reliability, maintainability,

v

and availability (RMA); safety; security (including confidentiality and integrity); and
usability.

All functionalities — core and non-core —must ultimately coexist within the one
total system (here, the trauma unit). In an ideal development environment, each set of
functionalities would be implemented independently and without substantial
interactions with other sets. Under current software development paradigms,
however, they often do interfere with one another once the software is integrated.
Conflicts and gaps in requirements can (in theory) be identified before
implementation begins, but interference among functionalities often cannot be
detected until implementation or testing is underway or until deployment.

The workshop recommended increased research into improved technologies to
manage multiple sets of functionalities, particularly research in new approaches such
as aspect-oriented programming. The ultimate goal is to allow each aspect of
functionality (i.e., arising from each set of requirements) to be specified,
implemented, validated, and tested independently across the total system. This is a
very ambitious and difficult goal, and there is no certainty that it can ever be fully
achieved. For the foreseeable future, it will still be necessary to test all functionalities
in a fully integrated and interacting manner.

� Testing, verification, and certification of large, complex systems — The increased
number and variety of functionalities in modern software-intensive systems increases
the difficulty of testing the system. Any functionality can interact with any other, and
as their numbers grow, the number of possible interactions surpasses the ability to test
every combination. Some of these interactions occur only in specific situations that
are difficult to test (e.g., user actions under difficult environments, such as darkness
or bad weather).

Some requirements sets (e.g., safety, security, and usability) demand independent
certification of the assurance of their correct implementation, independent of any
other functionalities. This is difficult under current paradigms, where any
functionality might interact with any other or with the environment.

The workshop recommended the creation of sophisticated testbeds that could simulate
real-world operating conditions and test the systems under wide variations of
environment and operational use.

� Composition and integration of software from multiple sources – With demands for
increased functionality, modern software-intensive systems must make use of
software from many sources, including existing systems, software repositories (both
open and proprietary), and hardware manufacturers. Even if each piece of software
functions correctly within its own original specifications, there is currently no way to
ensure — other than by repeating all of the tests — that the total system will still
function correctly once the different pieces are integrated into a single system.

vi

The workshop recommended research into better ways to manage problems of
composing software from multiple sources. One promising approach is to enhance
model-based methods to include capabilities to specify, implement, and verify correct
composition. After composition, correct functioning must also be verified.

� Multidisciplinary distributed software development — As the economics underlying
the software marketplace becomes more challenging, developers continually seek
better, more efficient ways to develop software. The trend in modern software and
system development is toward multidisciplinary teams that combine system and
software developers, subject-matter experts, and end users, and are widely distributed
both geographically and temporally. The tools to support this emerging paradigm are
currently inadequate.

The workshop recommended increased research into the methods and tools that are
needed to support collaborative software development by multidisciplinary,
geographically and temporally distributed teams. New forms of collaboration must be
developed to support the full spectrum of the software and system life cycle, from
early requirements gathering through post-release maintenance and evolution.

Summary of research needs

In recent years, software systems have undergone a profound increase in capability and
sophistication and a correspondingly profound increase in complexity and cost.
Improving the productivity of software development, however, is not a simple matter of
improving a small, clearly defined set of quantitative (or even qualitative) metrics, such
as lines of code per staff-day or number of instructions executed per second, or any
others. As software-intensive systems become increasingly complex, the bulk of their
increased cost arises in managing that very complexity. The most profound productivity
improvements will come in improving the clarity and efficiency with which application
subject-matter experts can translate their expertise and insight faithfully into reliable
software-intensive systems, without being overcome either by the detail of the application
itself or by the artificiality of computer languages and equipment.

The SDP Workshop recommended increased efforts in three broad areas of research.
First, there is a need for improved ways to specify and manage system requirements. This
need is especially critical in networked and embedded systems, which must interact
intimately with their real-world environment. Second, there is a need for better software
development and management environments that can allow designers to create and
validate software-intensive solutions in their own application-specific terms. This would
reduce the possibility of mistranslations that might lead to errors, while at the same time
making the most efficient use of existing systems and infrastructure. Third, there is a
need for sophisticated testbeds that can simulate realistic operational situations, including
environmental conditions and user interactions. In all three areas, the ultimate goal is to
incorporate application-specific intelligence into the process of creating correct and
robust software, to relieve software developers of the burden of detail and allow them to

vii

concentrate their efforts and expertise on expressing the desired behaviors of the systems
that they are creating.

About the Software Design and Productivity Coordinating Group

The Interagency Working Group (IWG) on Information Technology Research and
Development (IT R&D) coordinates Federal IT R&D efforts. Within the IWG/IT R&D,
the Software Design and Productivity (SDP) Coordinating Group (CG) coordinates
software design and productivity research programs among seven agencies:

� Defense Advanced Research Projects Agency (DARPA)
� Department of Energy (DOE /NNSA)
� National Aeronautics and Space Administration (NASA)
� National Institutes of Health (NIH)
� National Institute of Standards and Technology (NIST)
� National Oceanographic and Atmospheric Administration (NOAA)
� National Science Foundation (NSF)
� Department of Defense, Office of the Director, Defense Research and Engineering

(ODDR&E).

The SDP CG was formed in part in response to the recommendation of the President's
Information Technology Advisory Committee (PITAC) that the U.S. “make fundamental
software research an absolute priority.”1 The CG initiated a phase of planning and
coordination for agency software research programs that address agency software needs
to meet mission requirements and, in a broader sense, enable improved future software
technologies.

About the workshop

The Workshop on New Visions for Software Design and Productivity: Research and
Applications, held December 13-14, 2001, at Vanderbilt University in Nashville,
Tennessee, was initiated by the SDP CG to obtain input from the research community
about promising research to advance solutions to SDP problems. The workshop was
funded by the National Science Foundation2 and supported by the National Coordination
Office for IT R&D.

The goal was to stimulate bold thinking and to explore new directions that could
revolutionize the production of high-quality, cost-effective software. The objectives of
the workshop were to develop a vision of the research to be carried out over the next 10
to 20 years on software methods and tools, including experimental evaluations in real-
world situations needed to support the increasing demands being placed on software.
Invitations to the meeting were based on white paper submissions received in response to
a call for papers. The call was distributed publicly to the software research community

1 PITAC February 1999 report, Information Technology Research: Investing in Our Future, pg. 32.
2 Workshop was funded by the National Science Foundation, CCR-0138554, September 2001.

viii

and to participants in an SDP Planning Workshop held April 18-19, 2001.3 The
December workshop participants included 63 invited researchers from industry and
academia and 14 government researchers and managers. Material on the workshop is
available at http://www.itrd.gov/iwg/sdp/vanderbilt/index.html.

The workshop included panel discussions and breakout sessions that addressed the
following issues central to software design and productivity:

� The Future of Software and Software Research
� New Software Development Paradigms
� Software for the Real World (Embedded Systems)
� Software for Large-Scale Network-Centric Systems

The panel sessions set the context for discussion in the breakout sessions. Four panels
focused on technology needs and promising solutions that could revolutionize the way we
design and produce software in the coming decades, but that are currently beyond the
scope of today’s time-to-market and profit-driven research and development programs. A
fifth panel, offering government perspectives, included Federal laboratory managers,
agency program officers or managers and invited presenters representing the PITAC and
the European Union (EU) who described their needs in software design and productivity.

Breakout sessions included an assessment of the current state of software design practice
and capabilities (Where Are We Now?), a statement of known problems in meeting
current software-driven system requirements in a timely cost-effective manner (Future
Challenges), and recommended promising research directions that could meet these
needs (New Research Directions).

Breakout session participants helped develop the SDP workshop recommendations that
were reported out by the session leaders (panel chairs) during the closing plenary session.
Findings from the workshop will serve as guidance to the SDP agencies in developing
future software design and productivity research programs.

Summary of presentations at the Government panel

The government panel was organized to provide a broader context for discussions within
the breakout groups. The presentations, summarized below, are available at the workshop
Web site.

The SDP CG Co-Chairs, Douglas C. Schmidt, Program Manager in the Information
Exploitation Office (IXO) at DARPA and Frank D. Anger, Program Director in Software
Engineering and Languages at NSF, presented software issues from a government
funding perspective and outlined general government concerns to be addressed at the
breakout sessions.

3 Planning workshop for New Visions for Software Design and Productivity, VA, April 18-19, 2001 with
support from DARPA and the NCO/ITR&D at http://www.itrd.gov/iwg/sdp/planning/index.html.

ix

Schmidt presented the software dilemma facing the community. The dilemma is that
software is perceived to be a commodity, but the reality is that the ability to develop
software to meet today’s complex requirements is far beyond what the community knows
how to do. Since the popular perception is that there is no software problem, many
software research programs continue to be reduced. Schmidt tasked the breakout groups
to address this dilemma in their discussions and reports back to the workshop and to
suggest ways that the software research community can better showcase achievements
that have changed the way missions are accomplished. He also urged the researchers to
document where software research can enable a solution to current non-deliverable
functionality.

Anger expanded on Schmidt’s comments by describing how SDP problems are related to
the interests of its sister Federal CG, High Confidence Software and Systems (HCSS). He
summarized goals for the HCSS CG as focusing on system performance or operational
requirements that are not explicitly represented in the code, such as reliability, quality,
and safety of software and systems. In contrast, the SDP CG focuses on developing
methods and procedures for software design and implementation to meet all
requirements, functional and operational, within well-understood time-to-market and cost
factors over the entire software life cycle. The issue for SDP is to understand the design-
process tools and capabilities to be able to make intelligent decisions about the function
and performance of software for specified investments of time and cost.

In addition to these two presentations, representatives from several other Federal agencies
provided mission-oriented views of software needs that illustrate broad demands being
placed by Federal agencies on software-enabled systems. These presentations provided
additional background information for the breakout groups.

Thuc T. Hoang, Computer Engineer at DOE/NNSA, described the Advanced Scientific
Computation Initiative program (http://www.llnl.gov/asci) that requires code
development for high-end simulation and modeling systems to be built and distributed
across the three DOE laboratories. Scientists who develop the codes need better parallel
programming models, debuggers, run-time systems, and performance tuning methods.
Software technologies and tools are needed that enable applications to be parallelized and
at the same time remain scalable and portable.

Steven D. Ray, Chief of the Manufacturing Systems Integration Division at NIST,
discussed the need for standards to enable systems integration through interoperability.
Much of manufacturing depends on IT interoperability and relies on sharing of
information from many sources. The increased complexity of the process due to use of
model-based designs and computer-based production methods requires greater
interoperability across systems. Ray cited an automotive interoperability cost study
finding that the primary cost driver was the number of flaws in data exchanges. To
address such problems, representations of standards that include product description and
that support and allow model-based use of standards are needed to enable interoperable
solutions for systems integration. The goal is to develop computer-based standards that

x

can convey “meaning” from one system to another, to use an explicit formal semantics to
enable self-describing systems and their integration.

Two special presentations put SDP into both a national and a global perspective.

Susan L. Graham, the Software Subcommittee Chair of the President’s Information
Technology Advisory Committee (PITAC), provided a historical overview of the PITAC
and the reports it has produced that make recommendations about research necessary to
meet U.S. information technology needs. Graham charged the community to explain what
software design and implementation are by talking about how they do the work and what
they need to do to create a final product in a way that is understandable to non-technical
persons.

The presentation by Alkis Konstantellos of the EU included a comprehensive overview of
EU software research and development programs and concerns. He mentioned EU/U.S.
shared interests in software for embedded control, programs in hard real-time systems, as
well as programs in safety-critical systems. He concluded by providing an overview of
EU/U.S. collaboration such as joint workshops and joint efforts with several SDP CG
participating agencies.

• Agency for Healthcare Research and Quality (AHRQ) Suite II-405

• Defense Advanced Research Projects Agency (DARPA) 4201 Wilson Boulevard

• Department of Energy (DOE) Arlington, VA 22230

National Nuclear Security Administration (NNSA) Phone: 703-292-4873 (ITRD)

• DOE Office of Science Fax: 703-292-9097
Web: www.itrd.gov

Email: nco@itrd.gov

August 31, 2001

Chancellor E. Gordon Gee
211 Kirkland Hall
Vanderbilt University
Nashville, TN 37240

Dear Chancellor Gee,

The National Coordination Office (NCO) for Information Technology Research and
Development (IT R&D), on behalf of the Interagency Working Group (IWG) on IT
R&D and the IWG’s Software Design and Productivity (SDP) Coordinating Group,
thanks you for agreeing that Vanderbilt University will host the Workshop on New
Visions for Software Design and Productivity, tentatively scheduled for December 13
and 14, 2001. We are especially pleased that Dr. Janos Sztipanovits, E. Bronson Ingram
Distinguished Professor of Engineering in the School of Engineering at Vanderbilt,
who has just finished serving as a Program Manager and Deputy Director of the
Information Technology Office at DARPA under the Intergovernmental Personnel Act,
will be the Principal Investigator responsible for holding this workshop.

The SDP Coordinating Group invites you to open the workshop by addressing the
participants on the morning of December 13, 2001.

In this letter I’d like to provide you with some background about these organizations
and convey to you how important this workshop is in our eyes.

The NCO coordinates planning, budget, and assessment activities for the Federal IT
R&D Program, which pioneers research in future generations of information
technologies such as computing and communications. Reporting to the White House
Office of Science and Technology Policy and the National Science and Technology
Council, the NCO works with 12 participating Federal agencies through the IWG and
its Coordinating Groups, to prepare and implement the Nation's $2 billion IT R&D
budget crosscut, helping to shape the Nation's 21st century information infrastructure
and to ensure continued U.S. technological leadership. Since no one Federal agency
cites IT R&D as its primary mission, it is vital for agencies to coordinate, collaborate,
and cooperate to help increase the overall effectiveness and productivity of Federal IT
R&D.

The IT R&D Federal agencies are:

NATIONAL COORDINATION OFFICE
FOR INFORMATION TECHNOLOGY
RESEARCH AND DEVELOPMENT

xi

� Page 2 August 31, 2001

• Environmental Protection Agency (EPA)
• National Aeronautics and Space Administration (NASA)
• National Institutes of Health (NIH)
• National Institute of Standards and Technology (NIST)
• National Oceanographic and Atmospheric Administration (NOAA)
• National Security Agency (NSA)
• National Science Foundation (NSF)
• Office of the Deputy Under Secretary of Defense for Science and Technology

(ODUSD [S&T])

Vanderbilt University undoubtedly receives substantial funding from several of these
agencies.

The Coordinating Groups are focused on the following research areas:

• HEC High End Computing
• LSN Large Scale Networking
• HCSS High Confidence Software and Systems
• HCI&IM Human Computer Interaction and Information Management
• SDP Software Design and Productivity
• SEW Social, Economic, and Workforce Implications of IT

The NCO also supports the President's Information Technology Advisory Committee
(PITAC), which is comprised of 22 industry and academic leaders, including two
recipients of the National Medal of Technology. The PITAC is charged with providing an
independent assessment of the Federal government's role in high performance computing
and communications and IT R&D.

One unique role of the NCO is to inform the public of Federal achievements and
challenges in IT R&D. As part of our effort to do this, the NCO maintains the irtd.gov
Web site and publishes several annual budget documents in cooperation with the IT R&D
agencies. These documents include the supplement to the President's FY 2002 Budget,
“Networking and Information Technology Research and Development.” I have enclosed a
copy of this supplement, the February 1999 PITAC report, and more recent PITAC
reports.

The main purpose of the workshop to be held at Vanderbilt University is to document
Software Design and Productivity (SDP) research needs, with the goal of using that
documentation to propose increased SDP R&D funding. (President Bush has proposed a
budget of $157 million for SDP R&D in his FY2002 budget request to Congress.)

The December workshop follows an initial SDP research needs planning workshop that
was held April 18-19, 2001, here in Arlington, Virginia under the leadership of the SDP
Coordinating Group Co-Chairs, Dr. Sztipanovits and Dr. Frank Anger, National Science
Foundation. At that initial “Workshop on New Visions for Software Design and

xii

� Page 3 August 31, 2001

Productivity,” forty participants, including researchers from academia and industry and
Government policy makers and program managers, considered four topics:

• Future of Software and Software Research
• New Paradigms for Software Design/Development
• Software for the “Real World”
• Network-centric Distributed Software

The April workshop participants were well-informed and enthusiastic SDP researchers
who accomplished their goal of identifying “revolutionary new directions in software
development methods that can both attain dramatic increases in software productivity and
result in software of the highest quality,” and laid a firm foundation for December. More
information about the April workshop can be found at:

http://www.itrd.gov/iwg/pca/sdp-workshop/

The December workshop will expand on the April planning workshop in several ways.
There will be a nationwide call for white papers on SDP research needs, to be followed by
detailed workshop planning and implementation. The workshop will be by invitation only,
and that invitation list will include Federal agency and department heads, top Government
policy makers and program managers, senior researchers throughout U.S. academia and
industry, and selected international researchers. The product of the workshop will be a
report documenting SDP research needs. Federal SDP R&D program managers will rely
heavily on this report when they plan and coordinate their activities.

We know that holding such a workshop is an intensive, time-consuming effort involving a
large number of people with a wide range of skills. But we also know that involving
university and industry researchers in identifying R&D needs is essential to the success of
Federally funded programs like IT R&D and SDP. In their widely cited February 1999
report, “Information Technology Research: Investing in Our Future,” PITAC had one
major recommendation, which was to, “Make fundamental software research an absolute
priority.” We are confident that this workshop will help us make their recommendation a
reality.

Once again, let me thank you for agreeing to host this workshop. As host, and given the
importance to the Federal research agencies, I hope you will accept our invitation to
welcome the participants and add any remarks you wish. I look forward to meeting you in
Nashville in December.

Sincerely yours,

Cita M. Furlani
Director
NCO/IT R&D

xiii

� Page 4 August 31, 2001

Cc: Dr. Kenneth F. Galloway, School of Engineering
Dr. Frank D. Anger (NSF), SDP CG Co-Chair
Dr. Douglas C. Schmidt (DARPA), SDP CG Co-Chair
Dr. Janos Sztipanovits

Enclosures: “Networking and Information Technology Research and Development,”
FY 2002 Supplement to the President’s Budget, July 2001

“Information Technology Research: Investing in Our Future,” President’s
Information Technology Advisory Committee, February, 1999

“Developing Open Source Software to Advance High End Computing,”
PITAC, October, 2000

“Transforming Access to Government Through Information Technology,”
PITAC, September 2000

 “Digital Libraries: Universal Access to Human Knowledge,” PITAC,
February 2001

 “Transforming Health Care Through Information Technology,” PITAC,
February 2001

“Using Information Technology To Transform the Way We Learn,”
PITAC, February 2001

xiv

New Visions for Software Design and Productivity:
Research and Applications

Workshop of the
Interagency Working Group on Information Technology Research and Development

(IWG/IT R&D)
Software Design and Productivity (SDP) Coordinating Group

December 13 - 14, 2001
Vanderbilt University

Nashville, TN

Workshop Report

Edited by:

Adam Porter
Janos Sztipanovits

NSF Grant CCR-0138554

Supported by:

National Science Foundation Vanderbilt University

2

New Visions for Software Design and Productivity: Research and Applications
Workshop of the Interagency Working Group on Information Technology Research and

Development (IWG/ IT R&D) Software Design and Productivity (SDP) Coordinating Group
December 13 - 14, 2001
Vanderbilt University

Nashville, TN

Foreword

The late 1980s and 1990s were the “Big Bang” of information technology (IT). Forged from
decades of prior R&D investment and triggered by research breakthroughs in computing
hardware, software, and networking, an explosive expansion in IT occurred during this period,
proceeding simultaneously in many directions.

The effects of this process are profound:

� The most exciting developments occur at the “wave-front,” i.e., at the intersection of IT with other areas.
There are many examples of new science and technology fields, such as bioinformatics, nanotechnology,
computer-assisted learning, embedded software and real-time systems, and many others that have yielded
new disciplines and have the potential to jumpstart important new industries.

� IT is becoming so pervasive that the classical structure of IT research and industry is changing drastically.
For example, the tight integration of physical and information processes in embedded systems requires
the development of a new systems science, which is simultaneously computational and physical. These
advances will ultimately require new educational approaches and project management structures
representing radical departures from existing models.

At the heart of the IT-driven transformation of our economy is high-quality software for complex
computing and information systems. At stake are the very success and future progress of our
technological dominance in the world. Given the difficulties of building quality software quickly
and efficiently, the President’s Information Technology Advisory Committee (PITAC)
recommended that the U.S. “make fundamental software research an absolute priority.” Carrying
through with this recommendation by establishing a substantial research initiative on software
design and productivity is therefore critical for U.S. security and continued economic viability.

The workshop on “New Visions for Software Design and Productivity” provided a forum for
scientists, engineers, and users to identify revolutionary thinking about software development
techniques that could dramatically increase software productivity without compromising software
quality. This workshop was the second event initiated by the Software Design and Productivity
(SDP) Coordinating Group of the Interagency Working Group on Information Technology
Research and Development (IWG/IT R&D). The planning workshop was held in Arlington,
Virginia, on April 18-19, 2001. The second SDP workshop built upon and expanded the results
and insights gained at the planning workshop. Invitations to the meeting were issued based on
evaluation of White Papers that were received in response to a Call for Position Papers distributed
to leading members of the research and development communities. Workshop participants
included 64 invited researchers from industry and academia and 14 government researchers. Full
material on the SDP workshop is available on http://www.itrd.gov/iwg/pca/sdp/sdp-
workshops/Vanderbilt.

Workshop Co-Chairs: SDP Co-Chairs:

Dr. Janos Sztipanovits Dr. Frank Anger
Vanderbilt University NSF

Dr. Adam Porter Dr. Douglas C. Schmidt
University of Maryland DARPA

3

Contents

Foreword 2

Contents 3

Executive Summary 4
Where Are We Now? 6
Future Challenges 7
New Research Directions 7
Concluding Remarks 9

Reports of Breakout Sessions 11
The Future of Software and Software Research 11
New Software Development Paradigms 18
Software for the Real World (Embedded Systems) 25
Large-scale, Network-centric Systems 34

List of Participants 46

Panelist Presentations http://www.itrd.gov/iwg/pca/sdp/sdp-workshop/vanderbilt/
Participant White Papers http://www.itrd.gov/iwg/pca/sdp/sdp-workshop/vanderbilt/

4

Executive Summary

The goals of the SDP workshop on “New Visions for Software Design and Productivity” were to:

� Bring together leading-edge researchers and practitioners

� Encourage brainstorming and out-of-box thinking

� Inform the Federal research agenda

� Involve Federal agencies and research community

Of particular interest were technology needs and promising solutions that could revolutionize the
way we design and produce software in the coming decades, but that are currently beyond the
scope of today’s time-to-market and profit-driven research and development (R&D) programs.
The SDP workshop included panel discussions, breakout sessions, and plenary discussions. The
panels and breakout sessions addressed the following four issues central to software design and
productivity:

1. The Future of Software and Software Research

Software’s rapid penetration throughout all sectors of the economy challenges both the
fundamentals underlying software research and how that research is conducted. Today, it is
estimated that at least 50 percent of large software projects fail. Moreover, even though new and
old software applications often cannot work together seamlessly, investments in legacy software
cannot be abandoned. Clearly, new ideas are needed to help us move beyond this situation. For
this reason, the workshop included discussions of the following:

� What should software and software development teams look like in the future?

� What should the role of programming languages be?

� How should the software research community evolve, e.g., should it move to more
empirical foundations, focus on support tools, divide into multiple domain-based
paradigms, develop whole new abstractions, or go in entirely new directions?

� How should we train future software practitioners, who range from scientists to
programmers to end users?

2. New Software Development Paradigms

Software is increasingly the universal integrator for large-scale systems, which themselves are
network-centric “systems of systems.” Paradigms are needed that include careful engineering
processes and systematic validation methods. Questions related to these issues that were
addressed include:

� In what ways and contexts should software development become more dynamic and fluid
versus more rigid and rule-driven?

� What should be the balance between formal and informal methods, engineering and
artistry, evolution and rebuild, correct-by-construction and correct-by-consensus?

5

� What will be the role of open standards and open-source software development, end-user
programming, and other radically different development models?

� What effect will legal and societal demands have on software development, testing, and
certification paradigms?

� How will distributed and collaborative development environments impact the design,
productivity, and quality of software?

3. Software for the Real World

Well over 90 percent of all microprocessors are now used for embedded systems. The
characteristics of many of these embedded systems are constrained by the physical world. We
need principled methods for specifying, programming, composing, integrating, and validating
software for embedded systems while enforcing the physical constraints and satisfying
conventional functional requirements. Questions related to these issues that were addressed
include:

� How can a myriad of real-world physical constraints be integrated with functional
constraints when designing software?

� How can hardware/software co-design contribute to a solution?

� Models and generators are possible solutions at many levels of software design, but what
are other promising approaches?

� How can we handle the legacy systems (and legacy developers) that constitute a
substantial portion of today’s world?

4. Software for Large-scale Network-Centric Systems

Next-generation applications will increasingly be run on networks, posing hard configuration and
workload challenges, including latency hiding partial failure, causal ordering, dynamic service
partitioning, and distributed deadlock avoidance. To address these challenges, we need techniques
for end-to-end quality of service (QoS) frameworks, understanding multi-level distributed
resource management, and adaptive middleware architectures. Questions related to these issues
that were addressed include:

� What are the fundamental design challenges to be solved in this emerging network-
centric world?

� How can we effectively specify and enforce end-to-end QoS requirements across
heterogeneous networks, operating systems, and applications?

� What analytical methods and tools are needed to design and implement mission-critical,
continuously operational systems?

� When risk management is part of the system, how will that affect software products?

Invited panelists discussed the questions above during the first-day plenary sessions. The panel
discussions were followed by breakout sessions led by the panel chairs. The breakout discussions

6

allowed all attendees to provide input for the SDP workshop recommendations. The session
chairs presented the final recommendations from the breakout sessions during the closing plenary
session.

The full documentation of the SDP workshop includes (a) the executive summary, (b) breakout
group summaries, (c) outbriefing presentations of the session chairs, (d) presentations of the
panelists, and (e) position statements of the participants. The documentation is accessible on the
workshop web site: http://www.itrd.gov/iwg/pca/sdp/sdp-workshops/Vanderbilt

Summarized below are the main findings and recommendations from the SDP workshop.

Where Are We Now?

There has been an inevitable and continuous ”software crisis” since the inception of the software
field in the mid-1960s. This is due to the fact that end-user demands inevitably exceed technology
advances. Software research and better engineering practices clearly have resulted in tremendous
productivity increases during the past decades, particularly in business applications. In fact, at this
point we often take for granted how pervasive software is in our everyday world. From home
appliances, automobiles, streetlights, office security systems, business and personal
communications, to banking functions, medical instruments, emergency services, power
distribution, scientific discovery, national security, and warfare systems, software now pervades
our lives.

Ironically, some claim that not much progress has occurred over the past quarter-century since
today we still cannot reliably build dependable, high-quality, affordable complex software
successfully. This critique, however, misses a fundamental point: we build vastly different
systems today that are orders of magnitude more complex than those of even a decade ago. Since
IT is driven by escalating user needs, software research is a continuous struggle to expand the
complexity limit for the systems we build. The software R&D community can take credit for
advancing the state of the practice in the following ways:

� Due to advances in modern development practices, such as model-based code generation,
automated testing suites, higher-level programming languages, and reusable patterns and
object-oriented tools, small teams can now create high-quality software systems up to
100,000+ LOC (lines of code) in a fraction of the time it used to take. As recently as 10 years
ago it was considered a daunting task to develop software at this scale.

� Comprehensive commercial application frameworks, such as web browsers, user interface
generators, and the standard Java class libraries, combined with plug-and-play component
technology, such as the CORBA Component Model and J2EE (Java 2 Platform Enterprise
Edition) and .NET web services, have enabled huge productivity increases in business
desktop and enterprise applications, such as data warehousing, enterprise resource planning,
and e-commerce websites.

� QoS support in distributed object computing middleware, such as real-time CORBA, is
beginning to have significant impact on design productivity and dependable end-to-end QoS
enforcement for distributed real-time and embedded applications.

� There are some highly successful examples of end-user programmable applications,
application-specific model-based front ends, and program generators that provide strong
motivation to proceed in these directions.

7

� Maturation and adoption of software life-cycle process models are improving quality in a
range of projects. For example, standard processes, such as the Rational Unified Process and
eXtreme Programming, can predictably reduce the development time and cost and increase
the quality of large-scale and smaller-scale software systems.

Future Challenges

Despite periodic economic downturns driven by business cycles, it is clear that IT will continue to
gain momentum. The exponential expansion driven by the relentless progress in processor and
networking technologies is predicted to continue well into the next decade. IT will increasingly
pervade and transform our quality of life as it impacts application domains and global
competitiveness. The panels and breakout sessions at the SDP workshop identified the following
emerging application challenges that will require further major advances in software technology:

� System integration. Perhaps the biggest impact of the IT explosion in the last decade has
been the emerging role of computing and software as the “universal system integrator.” The
potential consequence of this integration for software technologies is twofold. On the one
hand, there is an ever-tighter fusion of computing and software with application domains. On
the other hand, there is a rapid diversification in software technologies, and the diversity is
increasing with each new application direction.

� Critical infrastructure role. Large-scale software systems increasingly serve as critical
infrastructure for banking functions, medical instruments, emergency services, power
distribution, telecommunications, transportation, and national security and defense. Since
much of this infrastructure must never be shut down entirely, we need to devise systems that
can monitor and repair themselves and evolve continuously without disruption.

� Real-time and embedded systems. A rapidly growing sector of applications, such as
pacemakers, controllers for power plants, and flight-critical avionics systems, embeds
intelligence in physical devices and systems. Since these applications are inextricably
connected to the physical environment, they must be designed to satisfy physical demands
and limitations, such as dynamics, noise, power consumption, and physical size, within
critical time boundaries.

� Dynamically changing distributed and mobile applications. As connectivity among
computers and between computers and physical devices proliferates, our systems have
become network-centric. Distributed network-centric applications are dynamic, continuously
changing their topologies and adapting their functionality and interaction patterns in response
to changes in their environment.

New Research Directions

Given the growing diversity of major application domains with many unique challenges, it is not
surprising that no single technology silver bullet exists. Still, the diverse challenges created by
new types of applications – along with the universal demand to push the complexity limit – define
the following core research goals to be addressed by the IT R&D community in the next decade:

� Multifaceted programming. A general theme that surfaced throughout the SDP workshop is
the need to expand composition from today’s hierarchical, modular composition to
multifaceted composition. The increased fusion and deep integration of application domains

8

with computing implies that essential characteristics of systems are strongly influenced – or
simply determined – by the software. Consequently, software requirements become
multifaceted, i.e., computation and software architectures must satisfy many functional and
physical requirements simultaneously. The goal of multifaceted program composition is
separation of concerns in design by enabling the simultaneous use and management of
multiple design aspects. The primary challenge in multifaceted composition is the explicit
representation of the interdependence among different design aspects, such as dependability,
scalability, efficiency, security, and flexibility, and its use for the automated composition of
systems that satisfy different objectives in different contexts. Multifaceted composition can
be and must be integrated with development paradigms working at different levels of
abstractions, such as procedural and object-oriented languages or declarative modeling
languages.

� Model-based software development. Discussions at the workshop showed wide agreement
among participants that source code alone is inadequate for documenting and managing
design and maintenance processes. An important research goal is to integrate the use of high-
level, domain-specific abstractions into the development process. These high-level, domain-
specific modeling languages must be formal enough to be used directly for analysis of
designs and for software generation. In addition, tools are needed to facilitate developing and
associating models post hoc with large quantities of software generated without them. Model-
based software development technologies should serve as a foundation for creating systems
that utilize their own models to provide a wide range of new capabilities such as self-
monitoring, self-healing, self-adaptation and self-optimization.

� Composable and customizable frameworks. Software applications have historically been
developed as monolithic implementations of functionality that are hard to understand,
maintain, and extend. An important technology that has emerged to alleviate these problems
is object-oriented frameworks, which contain reusable components that can be composed and
specialized to produce custom applications. Frameworks help to reduce the cost and improve
the quality of application software by reifying proven designs and patterns into concrete
source code that enables larger-scale reuse of software than can be achieved by reusing
individual classes or stand-alone functions. Thus another important research goal is to
significantly extend and improve framework-based approaches. A central research challenge
is to devise tools and techniques that can refactor key application domains, such as
telecommunications, e-commerce, health care, process automation, or avionics, into reusable
frameworks.

� Intelligent, robust middleware. Participants focusing on large-scale, network-centric
systems agreed that, to handle the complexity of this system category, we need to develop
and validate a new generation of intelligent middleware technologies that can adapt
dependably in response to dynamically changing conditions for the purpose of always
utilizing the available computer and network infrastructure to the highest degree possible in
support of system needs. This new generation of middleware is software whose functional
and QoS-related properties can be modified either statically, (e.g., to reduce footprint,
leverage capabilities that exist in specific platforms, enable functional subsetting, and
minimize hardware/software infrastructure dependencies) or dynamically (e.g., to optimize
system responses to changing environments or requirements, such as changing component
interconnections, power levels, CPU/network bandwidth, latency/jitter; and dependability
needs).

9

� Design of networked embedded systems. One of the fundamental trends in IT is the
increasing impact of embedded computing4. Software development for these systems is more
complex due to their physicality. Participants focusing on programming “for the real world”
identified a rich research agenda to meet challenges in this fundamentally important system
category. Research goals include extended use of models in the development process, new
execution frameworks that support self-adaptation and provide guarantees to prevent unsafe
behavior, and a deeper understanding of how to manage the effects of resource limitations by
developing lightweight protocols, power-constrained services, and fault-tolerant
architectures.

� Collaborative software development. As the economics underlying the software
marketplace change, companies reorganize themselves, redefine their business goals, and
develop software differently. Tools and paradigms are needed to support: (1) collaborative
software development by multidisciplinary, geographically and temporally distributed
development teams; (2) software development teams that will include both end users and
subject-matter experts (e.g., in biology, psychology, medicine, and finance); (3) development
processes that help groups strengthen domain and business models and pursue multifaceted
design and value-based development; and (4) the extension and continuity of these
collaborations across the full spectrum of the software life cycle, from early requirements
gathering through post-release maintenance.

� System/software co-design environments. As increasing numbers of components and
interactions in our real-world systems become computational, system design and software
design become inextricably combined. Increased design productivity requires the
development of a new science base for system/software co-design, a wide range of system
and software analysis and synthesis tools, and technologies for composing domain-specific
system/software co-design environments. In addition, the new design environments must
enable software/system developers to quickly change software, deploy it in real-world
environments or evaluate its performance in simulators, experiment with the updated
software, and then repeat the process.

Concluding Remarks

The ultimate goal of software development is to create quality systems with an acceptable
expenditure of time and effort. Software research that due to cost limitations remains purely
theoretical, i.e., not based on experimental data and not verified in real-life context, will lack
scientific credibility and will be considered speculative by practitioners. We need to restructure
our national software research strategy to incorporate fully a strong experimental component.
Software researchers must be allowed to evaluate their research in realistic settings and apply it to
more complex systems. They must also pay more attention to systems that involve people and do
more in-depth studies of existing and proposed large-scale systems to understand how and why
various techniques behave in various ways.

The last decade has shown that IT has been a crucial – perhaps the most crucial – factor in
increasing U.S. economic competitiveness. It is widely accepted that the tremendous productivity
increases in the U.S. economy during the last decade stemmed from aggressive enterprise
automation using IT. While the rest of the world’s industrialized nations try to catch up, we must
recognize that the expansion and transformational impact of IT will not stop at enterprise
automation, but will rapidly progress in products, infrastructure, education, and many other areas.

4 D. Estrin (ed), Embedded Everywhere, NRC Study, 2001

10

If we want to maintain and increase the economic advantages of our IT prominence, we must
increase our investment in understanding the relationship between emerging new application
domains and IT technologies. More important, we must aggressively seek out new methods and
tools to explore emerging opportunities and extend our strategic advantage. End users have
neither the expertise nor the resources to do this, and the dominant software industry may not
have the resources or the interest in changing the status quo. Expanded government investment in
IT is vital to accelerate this process. We believe that creating and maintaining a vibrant, active IT
research community in the U.S. is vital to our long-term economic and national security interests.

11

The Future of Software and Software Research
 Breakout Group Summary

Prepared by: Adam Porter

Panelists: Adam Porter, Chair

Barry Boehm, Daniel Jackson, Gabor Karsai, Bob Neches

Breakout session participants: Richard Buchness, Eric Dashofy, Laura Dillon, Rose Gamble,
Susan Gerhart, Helen Gigley, Susan Graham, Philip Johnson, Alkis Konstantellos, Kenny Meyer,
Marija Mikic-Rakic, William Pugh, Steven Ray, Steven Reiss

Introduction

Software research focuses on methods, techniques, and processes that help to improve the quality
and productivity of designing, constructing, implementing, and evolving complex software
systems. The software systems being built today differ dramatically from those built 20 years ago.
It is therefore natural to wonder how software research has evolved to reflect these changes. This
panel examined this issue, looking at how software research will need to change over the medium
and long term.

Where Are We Now?

Although we often no longer notice it, software touches us throughout our daily lives. Software
now runs in our home appliances, automobiles, streetlights, office security systems, business and
personal communications, banking functions, and medical instruments, as well in systems for
emergency services, power distribution, scientific discovery, national security, and warfare. The
fact that software was far less pervasive 30 years ago is itself testimony to the vast successes of
software. Looking forward, however, it is clear that this progress cannot continue without
fundamental advances in software technologies. In particular, current software development
techniques are reaching a complexity cap that limits their ability to deliver the affordable, safe
and reliable, easy to change, highly usable systems that are essential to improve our quality of
life. Such systems could enable automated traffic management, interconnected medical devices
(some of which would work inside the human body), coordinated management of emergency and
crisis services, microscale robotic services, and automated battlefield management.

What Can We Do Well?

To understand exactly what progress must be made to realize these systems, we must first take
stock of the current state of software research. When we compare contemporary software
practices with those from 20 years ago, we can readily see that software research has had a
dramatic positive effect. The indicators include:

� Tremendous productivity gains. High-quality, complex software systems can be built in
less time than it used to take. In fact, modern development practices routinely and easily
accommodate 100,000+ LOC (lines of code) systems. As recently as 10 years ago, this was
considered a daunting task. These productivity gains are supported by repeatable best
practices. For many classes of systems, developers can use standard processes with
predictable schedule and quality characteristics. These gains derive from research in software

12

processes, methods, and tools that are used throughout the software life cycle. Some
examples include:

- Techniques and languages for requirements capture (e.g., user-centered design, Z,
DOORS)

- Design principles, languages, and notations (e.g., information hiding, object-oriented
design, Java, UML)

- Software architecture styles (e.g., C2, client/server, event-based programming)
- Domain-specific languages, (e.g., Matlab, Simulink, Splus, Genoa, Lex, Yacc)
- Techniques and tools for software inspection and testing (e.g., FTArm, selective

regression testing, protocol conformance testing)
- Software process support (e.g., configuration management systems, CMM, process

modeling languages)

� Successful adaptation to new computational models. As computing hardware has evolved,
so have software development techniques. As a result, we can more easily build software for
new computing environments, e.g., batch vs. interactive computing, distributed vs. single
processor systems, text-oriented vs. graphical interfaces. This ability to adapt has been
enabled by software research on the following topics:

- Object-oriented modeling and implementation. (e.g., UML, patterns, and pattern
languages)

- Middleware (e.g., DCE, CORBA, COM+, J2EE, .NET)
- GUI generators (e.g., PowerBuilder)

� Software ubiquity. Software is now a fundamental part of our national infrastructure. It is as
crucial as energy, roads, and clean water. It runs a myriad of everyday devices. It has even
become an accepted part of safety-critical applications, such as airplane control, medical
technology, and factory automation. The success of safety-critical software is directly enabled
by software research including:

- Software safety (e.g., state charts, fault trees)
- Analysis and verification (e.g., model checkers, type checkers, Lint, Purify)
- Software testing (e.g., reliability modeling, test coverage analyzers)

� (Partially) automated solutions for limited domains. Software developers are increasingly
able to reduce development time and effort by generating and reusing code. Design tools can
sometimes be used to generate significant portions of systems. For tasks such as database
management and network communication, software developers can make use of high-quality,
systematically reusable frameworks and components, such as:

- Model-based development tools (e.g., Promula, Rational Rose, ObjecTime, GME,
MatLab)

- Application frameworks (e.g., JavaBeans, SAP, ACE)

Why Can’t We Declare Victory?

Despite many advances over the past two decades, software development remains hard. Several
factors contribute to the gap between the software we need to build and the software we can
afford to build, given our level of technology maturity. These factors range from the
technological to the social, from the theoretical to the practical, as described below:

13

� Pervasiveness and criticality of software. Software is a fundamental part of our national
infrastructure. As a result, the amount of software we have to write has increased
dramatically. Moreover, the reliability and safety requirements for much of this software have
become much more demanding.

� Rapid pace of change. Information technology changes at an extremely rapid pace. The
same goes for software. For example, as stand-alone computing systems have increasingly
been networked, software development techniques have been devised to support distributed
computing environments. Likewise, as embedded devices and sensors became cheaper and
more pervasive, development techniques and environments sprang up to support these
domains. But these changes are affecting the economics of software development, once again
calling for new software development techniques. Software is becoming a commodity,
cutting profit margins and increasing the need for agile – rather than monolithic – life-cycle
processes and development methods.

� Program scale. The scale and complexity of software systems is growing. Most dramatically,
they are being connected at a global scale. This growth motivates the need to manage the
massive concurrency created by the large numbers of interconnected systems of systems.
Moreover, since the individual systems that make up these systems of systems cannot be
designed simultaneously in a cost-effective manner, integration has become an enormous
problem. Due to the challenges associated with integrating large-scale software systems,
future systems will often have to be designed to adapt to changing computational
environments and runtime configurations, rather than being built from a clean slate.

� Poorly understood components. Large software systems are increasingly constructed from
existing components. While this reuse enables rapid construction of the initial system, it can
create other problems if individual components are not flexible or customizable. For example,
developers who use components are often incapable of predicting overall system performance
because the components may interact in unforeseen ways. They also are often optimized for
average conditions that differ from those in which specific applications will run. Moreover, it
may be hard to change a component-based system if component interfaces do not support
specific changes in application requirements.

� Slow adoption of best practices. Studies repeatedly show that mainstream software
development practice lags far behind software research and the best practices adopted by
leading software practitioners. In fact, individual technologies often require 20 years or more
to successfully transition from research to practice, which is far too slow to meet the growing
demands of end users.

� Low productivity in software testing. Since current development technology cannot provide
guarantees on the behavior of our software, testing still has a major role in software
development. As long as we remain unable to create “correct by construction” development
technology or “self-repairing” software, low software testing productivity will continue to be
a serious bottleneck in the development process.

Specific R&D Challenges

In order to deal effectively with the general forces described above, software research must
address several specific challenges:

14

� Richer computing environments. The physical elements with which software systems
interact and the environments in which they run are becoming increasingly sophisticated. In
the future, software will run in a multitude of computing environments ranging from
traditional single-CPU desktop environments, to multiple-host networked systems, to mobile
systems, to embedded systems, to wearable computers (inside the body as well as on it –
cochlear implants, pacemakers, etc.). Characteristics of these richer environments include:

- Highly distributed and concurrent. Software will increasingly run on multiple host
machines communicating across networks and networks of networks.

- Real-world sensing, location-aware computing. Software systems will be aware of
their physical surroundings, taking input from real-world sensors and sending output
intended to control the real-world environment. They will also understand their
proximity to other computing resources and use this information to guide their
behavior.

- Greater platform heterogeneity. Software will continue to run over computing
platforms characterized by diverse languages, operating systems, and hardware.

- Component-based system development. Due to global competition and time-to-
market pressures, developers of next-generation complex systems will increasingly
buy and build software components and integrate them to create systems. Software
components range from relatively small reusable classes to large-scale frameworks
and subsystems.

- Wide-ranging modalities. Software systems will routinely receive their input and
write their output in non-textual ways including speech, touch, electrical impulses,
etc.

� Integration mechanisms. Large systems are increasingly composed of other systems.
Understanding and facilitating the integration of these “systems of systems” is becoming
quite important. In particular, we must develop methods for ensuring system-wide properties,
such as quality of service (QoS), across these systems of systems.

� Changeability. Along with better systems integration, we also need better support for
modifying components and component interactions. For example, we must be able to upgrade
a specific component, remove the current version from the system (wherever and in whatever
quantities it may be running), and then replace all instances of the component system without
bringing down the whole system.

� Fault tolerance. We need to devise protocols and mechanisms to create systems that are
robust and resilient even if individual components and connected systems have faults and fail
in operation. Components must be able to operate even when the components they interact
with fail, exhibit poor performance, or provide incorrect input.

� Changing software developers, processes, and tools. Changes in the underlying economics
of the software marketplace are leading to the following changes in how companies organize
themselves, define their business goals, and develop software:

- Multidisciplinary, geographically distributed development teams. Software
development teams are now routinely distributed across time zones and composed of
both end users and subject-matter experts (e.g., in biology, psychology, medicine,
and finance). Development teams must employ stronger domain and business
models.

15

- Increased focus on time-to-market. While functionality and correctness are important,
many buyers will trade these for software that is available today.

- Incremental development with frequent change propagation. Time-to-market
pressures and distributed code updating encourage developers to make small changes
and frequently update the system, regression testing it and then propagating the
changed code to users.

- Rapid development and experimentation. Software developers must be able to
quickly change software, deploy it in real-world environments or evaluate it in
simulations, experiment with the updated software, and then repeat the process.

� Tool support. With computing power available on a massive scale, professional developers
can apply far more powerful support tools, such as:

- Testing, analysis, and verification tools. Increased computing power can be leveraged
by software developers. Tools include model checkers, generation and execution
tools for regression and functional testing, design critics, program analysis tools, and
semantics-aware tools.

- Collaboration tools. Developers must have greater support for collaboration, design,
change integration, automated testing, analysis and verification, and requirements
and design specification and reuse.

- Software process support. Software development organizations need help in
modeling, understanding, and improving their development processes. They also
need better support for recording and analyzing performance data and using it to
consistently improve their performance.

� Ever-persistent legacy components. Even if our technology improves, software developers
often cannot take immediate advantage of technology changes because they cannot afford to
throw away their investment in existing software and development tools. Consequently,
software written with new technology often must interoperate with that written using older
technology. Legacy software requires maintenance.

Research Agenda

To meet the R&D challenges described above, software researchers must make progress in the
following areas:

� Design multi-objective techniques. Software researchers have historically emphasized
functional correctness above other concerns, such as time-to-market or cost containment.
Many techniques are now being redesigned with other metrics in mind. For example, the
following new techniques accept and even invite the use of heuristics, preferring practical
usefulness over theoretical soundness:

- Value-conscious techniques strive to help developers apply techniques in places and
in proportions such that the benefits are likely to outweigh the costs, i.e., in ways that
make sense economically. Some researchers, for example, are beginning to study
how to quantify the value of making a design decision today or deferring it till later.

- People-conscious techniques take human limitations and strengths into account. For
example, formal specification techniques traditionally rely on complicated
mathematical notations. Recently, some new specification notations have been
designed with the goal of being easily readable by non-computer professionals.

16

- Opportunistically applied techniques strategically apply lightweight techniques, in
piecemeal fashion, throughout the life cycle. These techniques can often be heuristic
in nature, theoretically unsound, and limited in scope. For example, design
refactoring techniques emphasize improving software designs after each coding
iteration, rather than designing the system once at the outset.

- Non-uniformly applied techniques can be applied to specific parts of a software
artifact, not just to the whole program. For example, recent work on software analysis
has focused on checking of partial, focused models rather than complete models of
system behavior.

� Conduct large-scale empirical evaluation. Software development is done in the field.
Software research benefits heavily from contact with industrial development. Software
researchers must increasingly evaluate their research in realistic settings and apply it to larger
systems. They must also pay more attention to systems that involve people and do more in-
depth studies of existing large-scale systems.

� Incorporate domain qualities into development languages. Developers are asked to
program at higher and higher levels of abstraction. Programming languages research is
starting to create languages with high-level, application-specific concepts, such as trust
management, security, power management, and timeliness built in.

� Collaborative software development. New techniques and tools are being discovered that
make it easier for distributed developers to work simultaneously. For example, some work
has been done to better understand how to automatically decompose systems to make it easier
for distributed developers to modify a system without undue conflicts. Work is also being
done to support distributed testing and profiling of multi-platform systems.

� Leverage increase in machine power. Research involving computationally expensive
techniques, such as model checking, has not yet had great success in software domains
because these techniques have not scaled up to industrial-sized programs. Increases in
computing power, however, are making it possible to apply these techniques in broader
situations. New work is investigating novel and highly focused ways to apply these
techniques that seem to work for industrial-sized programs.

� Bridge gap between design and code. Programming at the source-code level simply does
not scale. Work is being done on tools for modeling and analyzing design-level artifacts.
Domain-based models and tools (i.e., those that represent and manipulate application-specific
information) have had some success in well-understood domains, such as embedded systems.

� Explore new computing paradigms. New computing paradigms, such as biological,
quantum, and market-based computing, are being developed. Software research is studying
these paradigms and developing tools to support programming in them.

� User-accessible techniques. Software development by “non-programmers” is increasing and
needs to be supported. Techniques are needed to help non-programmers record and negotiate
system requirements from multiple points of view and develop, test, and modify programs.

� Improved software engineering education and training techniques. New techniques need
to be developed that shorten the learning curve for software technology. These techniques
should address multiple levels of IT personnel. They should also focus on drastically

17

shortening learning time to master the new methods and techniques that will be developed to
improve software design and productivity.

Concluding Remarks

Software research has had an enormous, positive effect on our ability to put important, useful
software into the field. These successes, however, have only increased the appetite of our
consumers, thereby creating new and tougher challenges. To meet these challenges, software
researchers have put together a broad and ambitious research agenda. In particular, they need to
scale up their research to match the increasing scale of software systems. For instance, future
software research will require the following investments from government funding agencies:

� Large-scale, multi-domain testbeds. Software researchers need access to very large
software artifacts to conduct research on new techniques to improve software design and
productivity. Pursuing this vital type of research will require:

- Software archeology. Industrial-scale software artifacts are needed to help
researchers understand where and how often problems really exist.

- Software artifacts. To validate their research, software researchers need more than
just source code. They need artifacts that span the software life cycle, including
requirements specs, designs, code, test cases, test case outputs, configuration
management system (CMS) logs, and bug databases.

- Sponsorship of open-source software projects as a research enabler. Funding
agencies might be able to partially support some open-source projects (which make
many of their artifacts public anyway) on the condition that they construct their
artifacts in ways that will be useful to later researchers. Funding agencies could also
encourage sponsored projects to instrument their artifacts.

� Industry pilot projects . For specific promising research technology, it may be desirable to
fund large demonstration projects that involve interactions with industrial development
personnel. It may also be desirable to incorporate software research in collaboration with
funded research in non-software research, such as physics, biology, medicine, and MEMS.

� Larger research staff. Many software research projects are rendered ineffective before they
start because funding levels do not allow for programming support staff.

� Increased production of professionals. Graduate students have increasingly moved away
from software research toward other areas where funding has been more plentiful, such as
scientific computing. This has left a shortage of highly trained young researchers in software.
If we are to implement the vision of this workshop, we will need to substantially increase the
number of graduate students doing software research.

18

New Software Development Paradigms
Breakout Group Summary

Prepared by: Janos Sztipanovits, Doug Schmidt, and Gregor Kiczales

Panelists: Gregor Kiczales, Chair

Don Batory, Ira Baxter, James Larus, Charles Simonyi

Breakout session participants: Karl Crary, Prem Devanbu, Tzilla Elrad, Paul Hudak, Ralph
Johnson, Shriram Krishnamurthi, Karl Lieberherr, Tom McGuire, Mike Mislove, Benjamin
Pierce, Joy Reed, Spencer Rugaber, Frank Sledge, Doug Smith, Kurt Stirewalt, Janos
Sztipanovits

Introduction

As information technology (IT) has expanded aggressively to all areas of science, technology,
and the economy, the pressure to create software for an exploding number and variety of
computer applications has increased substantially. The past decades have brought about major
improvements in software technology, including advances in architectural styles and patterns,
reusable object-oriented frameworks and component libraries, higher-level programming
languages, and new development processes (such as extreme programming and open-source).
Although these advances have yielded a tremendous increase in software productivity, any
individual breakthrough has had a limited impact since the rapid growth of user demands quickly
outpaces the gain.

Software productivity and quality depend heavily on software development paradigms. A
development paradigm is characterized by a collection of design methods, programming
languages, computation models, validation and verification techniques, and tools used in the
development process, as follows:

� Design methods range from informal, such as flow diagrams, to formal, analyzable
representations, such as state-charts.

� Programming languages determine the notations, abstractions, and composition techniques
used by programmers to write programs. Determined by differences in composition methods,
programming languages support very different styles of programming, such as structured
programming, object-oriented programming, or aspect-oriented programming.

� Common examples of computation models are functional, logic, and imperative. The role of
validation and verification is to provide assurance that the software will satisfy functional and
non-functional requirements in the deployment environment.

� Modeling, analysis, debugging, and testing are important elements of the validation and
verification process.

Of course, other elements of development paradigms strongly influence software productivity and
quality. In current development paradigms, the predictability of designs is so weak that the cost of
validation and verification can exceed 50 to 75 percent of overall development costs. Improving

19

development paradigms is therefore a key factor in improving the productivity of software
developers and the quality of their output.

The tremendous cost of maturing and adopting development paradigms motivates standardization
and long-term stability. Successful development paradigms evolve over many years and may not
become widely accepted for over a decade or longer. Unfortunately, their effectiveness depends
largely on how well they support the characteristics of software to which they are applied. For
example, the structured programming paradigm works well for moderate-sized business
applications, but does not scale up effectively to meet the functional and quality of service (QoS)
needs of large-scale distributed, real-time, and embedded systems. Given the aggressive
penetration and transformational effect of IT in all conceivable areas, it is not surprising that
currently dominating programming paradigms, such as structured programming and object-
oriented programming, are challenged from many directions.

The goal of this panel was to identify new trends in the progress of software development
paradigms and to discuss their relationship to new application challenges.

Opportunities and Challenges

By all measures, the pervasiveness of IT is a huge success and a tribute to decades of R&D on
hardware and software design. Ironically, however, the same success that has yielded many new
opportunities also generates new challenges that make existing programming paradigms rapidly
obsolete. Unfortunately, this creates the impression of lack of progress in software – we seem to
have been in a chronic “software crisis” since the dawn of computer programming. Some of the
latest opportunities and related challenges include the following:

� Increased fusion of software into application domains. In many application domains,
computing has become the key repository of complexity and the primary source of new
functionality. For example, over 90% of innovations in the automotive industry come from
embedded computing. The increased significance of computing means that unless unique
characteristics of the application domain are reflected directly in the programming paradigms,
application engineering considerations must be mapped manually onto general-purpose
software engineering concepts and tools, which is tedious and error-prone. The difficulty of
this manual mapping process motivates the need for carefully tailored capabilities, such as
domain-specific languages, modeling tools, and middleware.

� Software as universal system integrator. Perhaps the biggest impact of the IT explosion in
the last decade has been the emerging role of computing and software as the universal system
integrator. Systems are formed by interacting components. The new trend is that an
increasing number of components and interactions in real-life systems are computational.
Complex information management systems, such as SAP (a popular business software
package from Germany), now provide the “IT backbone” that keeps organizations
functioning smoothly. Distributed control and process automation systems integrate
manufacturing production lines. Flight control and avionics systems keep airplanes flying.
The consequences of these changes are twofold. On one hand, there is an ever-tighter fusion
of computing and software with application domains. On the other hand, there is an
increasing diversification in software technologies, since the field is becoming much richer
with each new application direction.

20

The increased fusion and deep integration of application domains with computing implies that
essential characteristics of systems are strongly influenced – or simply determined – by the
software. Consequently, software requirements become multifaceted, i.e., computation and
software architectures must satisfy many functional and physical requirements simultaneously.

Where Do We Have Progress?

The past decade has brought about conspicuous successes in programming paradigms that fueled
the IT revolution. Some notable advances are listed below.

� Framework-based design. One of the most successful approaches to decreasing the cost of
large-scale applications is to minimize the need to develop new code. To reach this goal,
academic researchers and commercial vendors have created application frameworks that
provide an integrated set of classes that collaborate to provide a reusable architecture for a
family of related applications. By writing small amounts of code using a range of languages,
such as Visual Basic, Java, C++, and PERL, users can create complex applications that
customize the reusable frameworks. A sophisticated example of large-scale framework reuse
is the use of SAP on the top of R3 (a database system), which represents ~4.5 GByte base
code. Customization touches approximately 1% or less of the code and requires less than 1%
plug-ins. Interestingly, typical applications use only about 10% of the base code. Framework-
based design is successful due to the large-scale reuse of an existing and extensively tested
code base. The relatively minor, carefully guided extensions cannot upset the overall
consistency of the design, which minimizes the level of validation and verification effort.

� Component-based middleware. Component-based middleware encapsulates specific
building block services or sets of services that can be composed and reused to form larger
applications. At the programming language level, components can be represented as modules,
classes, objects, or even sets of related functions. Component technologies have achieved
significant progress toward providing composability and interoperability in large-scale
application domains. Commercial component middleware (such as CORBA, .NET, or J2EE)
offers “horizontal” infrastructure services (such as ORBs, interface and server repository,
transaction, etc.). “Vertical” models of domain concepts (a shared domain semantics for the
components), and “connector” mechanisms between components (message, event, work flow,
location transparency, etc.). Current component middleware technologies work well in small-
scale applications (such as GUIs) or with a few coarse-grained components (such as two- and
three-tier client/server business applications).

� Model-based software engineering. It has been increasingly recognized that source code is a
poor way to document designs. Starting from informal design documentation techniques,
such as flow charts, model-based software engineering is moving toward more formal,
semantically rich high-level design languages, and toward systematically capturing core
aspects of designs via patterns, pattern languages, and architectural styles. More recently,
modeling technologies have expanded their focus beyond application functionality to specify
application QoS requirements, such as real-time deadlines and dependability constraints.
These model-based tools provide application developers and integrators with higher levels of
abstraction and productivity than traditional imperative programming languages provide.

� Generative programming. The shift toward high-level design languages and modeling tools
naturally creates an opportunity for increased automation in producing and integrating code.
The goal of generative programming is to bridge the gap between specification and

21

implementation via sophisticated aspect weavers and generator tools that can synthesize
platform-specific code customized for specific middleware and application properties, such as
isolation levels of a transaction, backup server properties in case of failure, and authentication
and authorization strategies. Early research in this area is now appearing in commercial
products that support narrow, well-defined domains, such as the SimuLink and StateFlow
tools from MathWorks, which generate signal processing and control applications from high-
level models. The productivity increase achieved by generative programming is impressive,
e.g., users report a 40-50% efficiency gain in code production.

Why Can’t We Declare Victory?

Years ago, Donald Knuth wrote2: “One of the most important lessons, perhaps, is the fact that
software is hard…. The creation of good software demands a significantly higher standard of
accuracy than those other things to do, and it requires a longer attention span than other
intellectual tasks.” Knuth’s message remains valid today. Our development paradigms do not
measure up to the challenges of current and future applications. The lack of high standards of
accuracy in our design paradigms makes validation and verification incredibly expensive and
inefficient. Additionally, the targets keep changing. For example, the solutions to hard business
software problems do not necessarily translate into solutions to hard embedded software
problems. Moreover, effective solutions today generate new needs and enable expansion into new
domains and new levels of system complexity tomorrow.

Listed below are some areas of concern today that represent bottlenecks in our ability to exploit
IT in key emerging areas:

� Enabling end users to create and maintain complex applications. The meteoric growth in
the pervasiveness of IT means that either everyone will have to become a trained programmer
or benefits of programming will have to become accessible for everyone. Past and current
efforts in IT R&D have largely been proceeding along the first trajectory, i.e., “no matter
what career path you choose, you’ll eventually end up programming …” Unfortunately, this
approach does not scale. Economic pressure and solid technical arguments are therefore
forcing researchers to understand how to make programming accessible for end users. There
are sporadic examples of the huge impact of end-user programming. From spreadsheets to
CAD packages and from circuit simulators to workflow management systems, increasing
numbers of applications are built with end-user-oriented APIs. The main impediments to
succeeding with end-user programming today are the high cost of creating and maintaining
end-user programmable systems. We need technology for creating and evolving end-user
programmable applications.

� Addressing many concerns simultaneously. Programming must satisfy many different
concerns, such as affordability, extensibility, flexibility, portability, predictability, reliability,
and scalability. The current trends mentioned earlier, e.g., increased fusion with domains,
integration in physical systems, and increasing size, point toward the need to build systems
that satisfy these different concerns simultaneously. For example, business applications must
provide the required functionality and be safe and highly dependable. Likewise, embedded
system applications require the satisfaction of many types of physical constraints (e.g.,
dynamics, power, and size), in addition to being predictable, dependable, safe, and secure.
While composing software systems from a single (usually functional) point of view is
relatively well supported in modern programming paradigms via module interconnection

2 Keynote address to 11th World Computer Congress (IFIP Congress 89)

22

languages and hierarchical composition, we do not yet have scalable solutions for composing
systems dependably from multiple points of view.

� Building and understanding large, fine-grain distributed applications. One of the
fundamental trends in IT is the increasing impact of networking on computing systems.
Applications for these systems are not only more complex, they also interact with their
environment (including humans) and with each other in demanding and life-critical ways.
Many of these distributed applications are dynamic, i.e., they continuously change their shape
and interaction patterns as the environment is changing. Design and execution frameworks,
which constrain design decisions to bound the behavior of these systems and the related
development paradigms, constitute a major opportunity that must be addressed in the future.

Using more general terms, there is little or no science behind software design today. Right now, it
is an art form practiced well by great software engineers and poorly by most others. As long as it
remains an art form, our ability to resolve the challenges cited above will remain limited. Our
future R&D efforts must therefore move us toward a rigorous science of design, which can serve
as a solid foundation for future development paradigms.

Specific R&D Challenges

Given the expanding diversity of major application domains with many unique challenges, it is
not surprising that no single silver bullet exists. Still, the new challenges created by new types of
applications, along with the universal need to push the complexity envelope, define the following
core research goals that must be addressed by the IT R&D community in the next decade:

� Composition of domain-specific languages. As mentioned earlier, domain-specific
abstractions are increasingly important in software design. This need is driven by the
following major trends:

- Increased pervasiveness of computing, which means that domain engineering and
related software design are inextricably combined

- The need for end-user programmability, which translates into the use of powerful
application frameworks that can be customized with domain-specific languages

Unfortunately, current technology limitations discourage the wider introduction of domain-
specific programming paradigms due to the high cost of developing solid semantic
foundations and reasonable tool support required for safe application. We must therefore
build a new infrastructure that enables rapid composition of domain-specific languages on
different levels of abstraction, such as high-level, declarative modeling languages, languages
representing heterogeneous models of computation, semantically solid pattern languages, and
others.

� Tool infrastructure supporting reusability in broadly diverse domains. Increased
automation requires the application of a range of analysis and synthesis tools, which are
expensive to develop and expensive to learn. Since much tool development occurs in the
context of a specific domain or development paradigm, reusability is currently extremely
limited due to the many undocumented assumptions and the implicit, shared semantics of the
domain. While changing this situation toward increased reusability requires little justification,
actually doing it is an exceedingly hard problem since it requires comprehensive capture and
explicit representation of the stakeholders’ meaning and concerns in the many different sub-
domains used by individual tools and programming paradigms. Moreover, the selected

23

representation formalisms must provide support for modeling the relationships among sub-
domains and the ability to translate these relationship models into some form of “semantic
interfaces” among the tools. To make the problem even more challenging, success requires a
broad consensus on actually using the results. Aggressive research in this area will foster a
culture change, where precise semantic specification will be considered “good hygiene”
required for safe software development, rather than a burden.

� Composition for multifaceted programming. As mentioned earlier, composition is a key
means to achieve scalability. Modern programming languages support hierarchical, modular
composition, which is insufficient in key, emerging directions of computing, such as
embedded systems, large-scale distributed applications, and others characterized by the
presence of many crosscutting design constraints. Progress in these areas requires a
revolutionary change in programming paradigms to a completely new composition strategy,
multifaceted composition, in which:

- Programs are specified from different point of views
- Reusable components are developed to support these different views
- Automated composition mechanisms – called program weaving – combine and

produce the whole

Obviously, multifaceted composition can be and must be integrated with development
paradigms working on different levels of abstractions, such as procedural object-oriented
languages or declarative modeling languages.

The major challenge in multifaceted software development is the presence of crosscutting
constraints that make the different views interdependent. This results in a tremendous
increase in complexity during automated composition. Resources invested in solving
automated multifaceted composition are well spent, however. The alternative – doing it
manually – leads to the tedious, error-prone, and expensive state of system integration found
in current practice.

� Framework composition. Large-scale, dynamic, distributed applications represent very
different challenges. While the complexity of the behavior of the individual nodes is limited,
the global state and behavior of the overall system comprising a large number of interacting
nodes can be extremely complex. The problem in these systems is not the design of a specific
global behavior, which may not even be monitored or known with perfect accuracy, but
bounding the behavior in “safe regions” of the overall behavior space. This goal can be
achieved by design and execution frameworks that introduce constraints in the behavior of
and interaction among the distributed components. The constraints must be selected so that
they provide the required level of guarantees to prevent unsafe behavior. The development of
complex design and execution frameworks is extremely hard today and requires a long
maturation process. We need technology that can automate a large part of this process and
allow the automated synthesis of frameworks that are highly optimized for particular domain
characteristics.

Concluding Remarks

Even as computing power and network bandwidth increase dramatically, the design and
implementation of application software remain expensive, time consuming, and error prone. The
cost and effort stem from the growing demands placed on software and the continual rediscovery
and reinvention of core software design and implementation artifacts throughout the software

24

industry. Moreover, the heterogeneity of hardware architectures, diversity of operating system
and network platforms, and stiff global competition makes it hard to build application software
from scratch and ensure that it has the following qualities:

� Affordability, to ensure that the total ownership costs of software acquisition and evolution
are not prohibitively high

� Extensibility, to support successions of quick updates and additions to take advantage of new
requirements and emerging markets

� Flexibility, to support a growing range of multimedia data types, traffic patterns, and end-to-
end QoS requirements

� Portability, to reduce the effort required to support applications on heterogeneous operating
system platforms, programming languages, and compilers

� Predictability and efficiency, to provide low latency to delay-sensitive real-time
applications, high performance to bandwidth-intensive applications, and usability over low-
bandwidth networks, such as wireless links

� Reliability, to ensure that applications are robust, fault-tolerant, and highly available

� Scalability, to enable applications to handle large numbers of clients simultaneously

Creating applications with these qualities in a timely manner depends heavily on software
development paradigms. There is an important synergy between development paradigms and
application domains. In earlier generations when computing and communication machinery were
scarce resources and applications were relatively small-scale, development paradigms focused
largely on efficient use of hardware/software resources rather than efficient use of developer
resources. As hardware has grown more powerful and applications have grown in complexity,
elevating computation models, programming languages, and associated software tools closer to
application domains has become increasingly important. As IT continues its rapid expansion in
new domains, we expect that software technologies based on reusable frameworks and patterns,
component middleware, model-integrated computing, and generative programming will become
more pervasive, application-centric, and ultimately much more capable of improving software
productivity and quality.

25

Software for the Real World (Embedded Systems)
Breakout Group Summary

Prepared by: Robert Laddaga

Panelists: Robert Laddaga, Chair

Mitch Kokar, Paul Robertson, Scott Smolka, David Stewart, Brian Williams

Participants: Rajeev Alur, Mitch Kokar, Insup Lee, Calton Pu, John Reekie, Kang Shin

Introduction

Among the hardest problems software developers will face in the future are those associated with
producing software for embedded systems. Embedded systems are systems in which computer
processors control physical, chemical, or biological processes or devices. Examples of such
systems include airplanes, cars, CD players, cell phones, nuclear reactors, oil refineries, and
watches. Many of these embedded systems use several, hundreds, or even thousands of
processors. Although most embedded systems today are relatively small scale (e.g., operate with
limited memory and use eight-bit processors), they are still hard to program. The trend is toward
increasing memory and computational power and significantly increasing functionality. With the
added functionality and hardware resources comes an even greater increase in complexity. Each
year, the semi-conductor industry produces more processors than there are people on the planet,
and the number of processors produced is growing significantly. Almost all of these processors
are used in embedded applications, rather than the personal computer, workstation, server, or
mainframe systems with which users are traditionally familiar.

The real-world processes controlled by embedded systems introduce numerous hard constraints
that must be met when programming embedded processors. Among these constraints are:

� Real-time requirements, such as low latency and bounded jitter

� Signal processing requirements, such as truncation error, quantization noise, and numeric
stability

� High availability requirements, such as reliability and fault propagation/recovery across
physical and computation system boundaries

� Physical requirements, such as power consumption and size

Meeting the constraints listed above is hard precisely because they affect embedded systems
globally, and because embedded programs contribute globally to these problems. These real-
world issues have been with us for as long as we have attempted to control physical processes.
Therefore, they do not themselves explain the tremendous increase in complexity of embedded
software. Two important trends provide some of that impetus: (1) the increasing tendency to use
embedded software as the main integrator for complex systems, and (2) the increased dependence
on embedded software to supply novel and more intricate functionality. In each case, embedded
software is replacing something else. In the first case, the chief integrators of complex systems
were the human developers and users. We are now asking our embedded software to handle an

26

increasing amount of that integration burden. In the second case, we are replacing mechanical and
hydraulic linkages with computer-controlled electromechanical systems, because only they can
meet the new capabilities and stringent performance requirements that we set for our systems.

The main simplifying technique we have in software development is abstraction in the form of
functional, object-oriented, or component-based decomposition. To the extent that we can
modularize via these decompositions, we can reduce the effective complexity of the software that
we write. Complexity increases whenever such modularity is disrupted, in the sense of needing to
take account of the internals of other modules while coding a different module. As such cross
cutting concerns multiply, the job of software development, validation, and evolution become
complicated, and often impossible. Real-time requirements and coordination with physical
processes introduce tremendous numbers of such cross cutting concerns, violating modularity
with abandon. To address these problems, we need software technologies in several related areas,
including multi-layer distributed resource management, multiple decomposition dimensions, self-
adaptive software, and tolerant and negotiated interfaces, among others.

In this report, we discuss notable progress in the area of developing software for the real world,
then note several of the many things that we can’t do now, both from real-world application and
technological perspectives. Finally, we describe a number of promising new technologies for real-
world software development.

What We Can Do Well?

We have achieved significant progress in real-world software research and development in the
following areas:

� Use of tools. The past decade has seen significant advances in the maturity of code
generators, modeling tools, software validation and model checking tools, and tools for
generating test cases. Although there is a significant list of such tools, their use has only
recently become pervasive in certain domains of commercial embedded system practice such
as the automotive and avionics domains.

� Use of real-time operating systems. The use of real-time operating systems saves
considerable amounts of work in building embedded systems by implementing reusable
support for scheduling, memory allocation, interrupt handling, and peripheral device drivers.

� Implementation within memory/computation constraints. We are good at producing
software when either memory or computation is highly constrained. In such cases, the scope
of the problem is well suited to solution by a single highly skilled programmer (or a small
group of programmers), who can produce clever short code sequences that minimize
processor cycles or memory use. It is no small achievement that we can produce such
systems. Moreover, most embedded systems we have produced to date that can handle these
constraints successfully do so largely because, in the past, financial considerations or specific
application properties have constrained memory or computational power.

� Use of fault-tolerant protocols. Highly useful fault-tolerant protocols such as the TCP and
STCP (Secure TCP) networking protocols have been developed.

� Scheduling single processors. We are very good at scheduling single processors, using
technologies such as rate monotonic scheduling and related analysis techniques.

27

� Testing and validation. We have made significant progress with both testing and validation.
There are tools and techniques for testing, including use of cross products of feature sets and
sophisticated statistical techniques along with test generators. There has also been significant
progress in using formal methods to validate life- and safety-critical software for limited-
sized embedded systems.

� Implementation of fixed location automation. We are reasonably good at automating
factories, chemical processes, and devices that have fixed locations and limited scopes of
activity in the world.

Why We Can’t Declare Victory?

Despite the progress reported above, the following are important tasks or capabilities that we
need today but that are beyond the current state of the art:

� Flexible, complex sensing. The ultimate goal of embedded computing is to embed
intelligence in physical devices. A key element of embedded intelligence is high-level
sensing, which is the ability to understand images, audio signals, and other sensor data in
terms of real-world object actions and decision problems. We distinguish this intelligent
processing from signal processing, which is the low-level extraction of a signal from a noisy
environment. What we need is the ability to infer information about objects and their complex
relationships to each other, both current and future, from the information in the signals that
we process. A similar and related problem is our current inability to fuse information from
multiple sensors and data sources in real time into a coherent picture of the world.

� Control and automation. We do not know how to automate systems that move about in the
real world. We have great difficulty with both navigation and robust behavior in an unknown
context. Similarly, when control of a system or process needs to shift, either between
automated controllers or between an automated controller and human control, we do not
know how to accomplish the transition smoothly. Both these control shift issues make
cooperative engagement in warfare and in commercial activity very hard.

� Readily trusted embedded systems. The certification processes that we have adopted for
life- and safety-critical software are horribly expensive, but without them, our systems are
both too fragile and too complex to trust. To make embedded systems “invisible and ultra-
stable” we must go beyond simple trust to the point where people are entirely unaware of the
controlling software, because our systems will just “do the right things.”

� Adaptability to changing requirements/environment. Finally, we do not know how to
make systems that can adapt to changes in environment and to the varied uses to which they
are applied.

Specific R&D Challenges

The applications and services we are not able to support today stem from underlying technical
shortfalls. The reasons that we cannot do the important tasks or provide capabilities listed in the
previous section are because the following technologies have yet to be developed, accepted, or
widely deployed:

28

� Uncertainty and model selection. We have a very hard time correctly and efficiently
representing and computing about uncertainty in the world. Moreover, while we have
difficulty estimating parameters of models efficiently, we are often not even sure about what
model is correct at the outset. We therefore must either use data to decide about a model and
then attempt to estimate parameters, or do both simultaneously.

� System hardware/software co-design. We constantly make poor engineering trade-offs
because our sequential system design processes over-constrain our solution alternatives. For
example, if we design the embedding system hardware first, we may not account for choices
in the system that only become apparent during the software design phase, as well as software
capabilities based on those choices. We therefore need to develop a credible system
hardware/software co-design capability.

� Testing and validation of large integrated embedded systems. We can neither effectively
test nor validate large integrated embedded systems, because we lack system theory for
tightly integrated physical and computational systems. Existing theories are partial and
cannot predict essential behaviors. Moreover, the proofs for verification are too large and
computationally intractable, and the space of test cases is too large to be feasible. We need to
be able to compose verified or tested systems, and be assured that constraints met in the
subsystems are guaranteed to be met in the composed system. When testing is needed, only
modest testing (in addition to guarantees) should be required.

� Meeting systemic quality of service (QoS) constraints in integrated systems. Satisfying
systemic QoS constraints (such as limits on resource usage and scheduling or timing issues)
in an integrated system present substantial problems.

� Use of models in integration. We are relatively good at using substantive models, such as
mathematical models, to build a system, but not very good at using models to integrate
several systems or modules of code with one another.

� Automating what we know how to do. While we know how to manually build systems that
have stringent memory or computation constraints, we don’t know how to automate the
process so that tools can generate these types of systems automatically by refinement from
higher-level specifications of the problems to be solved.

� Distributed dynamic resource allocation. We can perform centralized resource allocation
well but have poor technologies for distributed resource allocation. Distributed resource-
based systems may have sub-optimal or pathological allocation or can get into live-lock or
deadlock.

� Fault management. Diagnosing faults is hard, uncertain, and expensive. For these reasons,
we currently do not do a very good job of fault management. We handle fault management
through static designs, such as multiple units and voting schemes, by human-in-the-loop
intervention, and by shutdown and replacement of faulty units. We need effective techniques
for proactive diagnosis and repair of running embedded systems.

� Handling harsh environments cost-effectively. The only approaches that we have
successfully applied to handling harsh environments are expensive forms of material and
structural over-design and hardening. We have not explored the use of computational power
to make systems adapt to harsh environments and to repair and recover from resultant error,
as an approach to dealing with difficult environments more cost effectively.

29

� Encoding and measuring functional redundancy. One of the chief issues we must resolve
is how to reuse good designs in embedded systems properly and successfully. Since software
itself represents only a small part of the overall embedded system design, we must first
understand exactly what we want to reuse. Reusables should range beyond software artifacts
to include patterns and architectural styles. Since effective reuse involves modifying or
customizing software, we need effective ways to measure functional redundancy and provide
descriptions that allow programs to compute functional redundancy. These descriptions will
then also be useful in building fault-tolerant systems, where we must ensure there is sufficient
functional redundancy to overcome subsystem failures.

Promising Research Strategies

To address the technical shortcomings listed in the previous section – and hence be able to
address the service and application needs listed in the section before it – we need focused
research and development efforts to mature and transition the following technologies:

� Model-based software development. Embedded systems can operate robustly in harsh
environments through careful coordination of a complex network of sensors and actuators.
Given the increasing complexity of future embedded systems, such fine-tuned coordination is
ordinarily a nearly impossible task, both conceptually and as a software engineering
undertaking. Model-based software development uses models of a system to capture and
track system requirements, automatically generate code, and semi-automatically provide tests
or proofs of correctness. Models can also be used to build validation proofs or test suites for
the generated code.

Model-based software development removes much of the need for fine-tuned coordination,
by allowing programmers to read and set the evolution of state variables hidden within the
physical system. For example, a program might state, “produce 10.3 seconds of 35% thrust,”
rather than specifying the details of actuating and sensing the hardware (e.g., “signal
controller 1 to open valve 12,” and “check pressure and acceleration to confirm that valve 12
is open”). Hence a model-based program constitutes a high-level specification of intended
state evolutions. To execute a model-based program an interpreter could use a model of a
controlled plant to continuously deduce the plant’s state from observations and to generate
control actions that move the plant to specified states.

Model-based software development research includes the creation of increasingly expressive
languages for specifying intended state evolutions and plant behavior, and automated
execution methods for performing all aspects of fine-grained coordination. The following are
important items in the research agenda for model-based software development:

- Closing the consistency gap between model and code
- Preserving structural design features in code
- Translating informal requirements into formal requirements
- Tracing requirements into implementation
- Integrating disparately modeled submodels
- Enriching formalisms supporting non-functional aspects
- More efficient testing
- Capturing models of distributed embedded systems

30

- Modeling and using uncertainty
- Understanding and building self-adaptive models
- Seamless extension of embedded languages to:

� Incorporate rich models of the embedded environment
� Shift the role of a program from imperative to advisory

- Managing interactions with fast on-line reasoning, including:
� State estimation
� Environment reconfiguration
� Planning and scheduling
� Discrete-event control and continuous control

- Automated partitioning of coordination between compile-time and run-time tasks
- Using frameworks for incorporating and reasoning from a rich set of modeling

formalisms

Model-based development of embedded software also provides comprehensive support for
autonomy in several ways. For example, it simplifies programming for autonomy by offering
a simpler model of interaction between the programmer and the environment, as well as
delegating reasoning about interactions to the language’s interpreter/compiler. It also
improves robustness for autonomy by systematically considering a wider set of possible
interactions and responses, responding to novel events on line, and employing provably
correct algorithms. Moreover, it supports adjustable levels of autonomy by allowing the
programmer to delegate the desired level of control authority within the control program.

Key benefits of model-based software development include:

- Lower cost of systems development and certification via streamlined testing, early
bug discovery, and powerful validation techniques

- More stable and robust embedded systems
- Greater trust in embedded software via improved understandability, reliability, and

certification

� Model selection and estimation. Research on model selection and estimation aims at
producing algorithms and methods to support high-level inference from applying models to
sensor data. It consists of techniques for simultaneously estimating model parameters and
comparing alternate models. A simplistic view of the world suggests that scientists
experiment to determine what parametric models apply to phenomena and that engineers use
those models to build systems, tuning the parameters of the model to the environment. In fact,
scientists and engineers often guess as much about the right model as about the parameter
settings, and they need to do both simultaneously. This is especially true when the
engineering task is to interpret sensor data to gain crucial information about an environment.
Model selection and estimation can be helpful in:

- Information fusion, by enabling integration over large, multidimensional information
spaces and distributed, potentially conflicting, information sources

- Understanding the behavior of embedded systems, for example by detecting incipient
states, which helps to detect masked states, and by detecting hidden states

- Enabling efficient development of deeply networked systems (systems with very
large numbers of relatively small components, all of which are networked)

- Enabling adaptive fault management, by adaptive model and parameter selection

The following are important items in the research agenda for model selection and estimation:

31

- Approximation and optimization techniques to allow tractable computation along
with realistic dependency assumptions

- Estimation of performance over large distributed parameter spaces
- Integration of multiple models across different representations – models include

constraints, logic, Baysian nets, hidden Markov models, and ordinary differential
equations

- How to seamlessly fold methods for model selection and estimation into embedded
languages

� Domain-specific languages for dynamic planning and scheduling. Our experience in
developing embedded software over the past several decades underscores that static plans or
schedules are good only until the first unexpected real-world twist or change. Then it
becomes clear that only plans that can be adapted to changed conditions while in use are
effective. Both artificial intelligence and operations research have contributed to the study of
algorithms and representations for planning and scheduling, but the bulk of that work has
supported only static planning and scheduling. Dynamic planning and scheduling creates
plans that include assessment of the situation during execution before enacting the plan and
replanning in a reactive manner as necessary. Better technologies for building such dynamic
plans are needed. Domain-specific or embedded languages allow the programmer to express
high-level constraints and conditions of computed actions. They involve planning using
expected values and the ability to track large numbers of execution trajectories. They involve
highly dynamic techniques using on-line tracking, projection, execution, and re-planning. The
following are important items in the research agenda for domain-specific languages for
dynamic planning and scheduling:

- How to decide which unlikely trajectories to track: while not all trajectories can be
tracked, it is not sufficient to track only highly likely trajectories because then
catastrophic but unlikely faults will be missed

- How to project forward consequences of traced trajectories to ensure safety
- On-line model checking
- How to fold temporal decision theoretic planning and execution into embedded

languages
- How to do temporal decision theoretic planning at a reactive timescale
- How to concurrently plan and execute on line

Temporal decision theoretic embedded languages are a promising way to enable automation
of embedded systems and help make them more adaptive and robust. They do this principally
through support for dynamic planning and scheduling, and by enabling flexible and dynamic
recovery strategies for fault management.

� Systemic QoS reasoning for embedded software development provides a bottom-up
approach to produce reliable components and building blocks. It can help improve
automation and certification and help assure the behavior of low-level components. It focuses
on designing techniques and tools to assist with systemic QoS constraints such as side effects
of the body of code rather than explicit code expressions. Examples are time and space
constraints that are not explicitly represented in source code. The following are important
items in the research agenda for systemic QoS reasoning for embedded software
development:

- System/software co-design, including software redesign and reconfiguration

32

- Reliable device drivers, such as reliable interfaces to unreliable hardware
- Aspect-oriented software development, including performance monitoring
- System QoS constraints, addressing time, space, imprecise computation, uncertainty,

and fault-tolerance issues
- Trade-off analysis
- Configurable hardware

� Self-adaptive software addresses high-level sensing, adaptation, and automation. It is
software that monitors itself and repairs or improves itself in response to changes or faults. It
effects the repair or improvement by modifying or re-synthesizing its programs and
subsystems using feedback-control-system behavior. Examples of uses of self-adaptive
software are:

- Networks of cooperating vehicles
- Reconfiguration of hardware within vehicles in the air, on land, on the sea, or under

the sea
- Adaptation of control laws for flight surfaces and for submarines
- Adaptation of numerical codes for optimization or simulation
- Adaptation of assumptions to track changing conditions during high-level sensing

(for example, for vision or speech)

The following are important items in the research agenda for self-adaptive software:

- Investigate ways of ensuring stability
- Investigate ways of ensuring that the high-level system goals are met
- Investigate how to represent models and monitor models for different classes of

systems
- Investigate ways of synthesizing programs
- Investigate how to achieve acceptable performance (for example, good enough, soon

enough, or in terms of QoS metrics)
- Architectures and design of self-adaptive software
- Design languages that incorporate sensing and adaptation ideas

Concluding Remarks

Most of today’s computational cycles are expended in controlling electromechanical devices such
as aircraft, automobile engines, cameras, chemical plants, hospital patient monitoring equipment,
missiles, radar systems, satellites, and watches. In addition to being an information processing
system, a personal computer is an embedded system with specialized chips that control
communications among its main processor, memory, and peripherals. Each peripheral device,
such as a disk, printer, or audio card, also has embedded software. The rate at which mechanical
controls and linkages are being replaced by software controllers is high and accelerating. This
means that more essential features of our lives and economy increasingly depend on the quality
and cost of embedded software. We need to know that our devices will continue to work well and
will be diagnosable and repairable in a timely and cost-effective manner when they fail.

Every year the semiconductor industry manufactures a range of microprocessors and
microcontrollers, from 4 bit through 64 bit processors, and in various special sizes. Several years
ago the embedded systems industry made the transition from mostly 4-bit to mostly 8-bit
microprocessors. We are on the verge of transitioning to mostly 16-bit processors, with the

33

transition to 32-bit processors expected quickly thereafter. Memory sizes in these controllers are
doubling at roughly the same rate. The increasing size of the most prevalent processor provides a
modest measure of the exponential growth of complexity of embedded software applications.
Each time we add functionality by applying newly affordable processor and memory resources to
an increasing number of roles. However, old approaches of hand-coding in assembler
programming languages and hand-proving behavioral assurance do not scale up either in the
complexity or sheer number of embedded applications. New technologies for building such
applications are therefore absolutely essential, both from a national security and an economic
perspective.

Most of the technical approaches advocated above involve techniques for raising the level of
abstraction that designers and programmers need to be concerned about. This is the only way we
can tackle issues of exponentially increasing complexity. But part of the complexity of embedded
software lies in the fact that it is not possible to build nicely insulated layers of abstraction since
there are too many interdependencies that cross abstraction boundaries. That is one reason why
embedded systems developers have resisted use of abstraction for decades. The promising
research strategies described above include different approaches to managing the complexities
that cross abstraction boundaries. By employing these strategies we can better build and assure
embedded systems for the real world.

34

Large-scale, Network-centric Systems
Breakout Group Summary

Prepared by: Rick Schantz, Doug Schmidt

January 16, 2002

Panelists: Rick Schantz, Chair

Prem Devanbu, Mike Masters, Priya Narasimhan, Dave Sharp

Participants: Betty Cheng, Joe Cross, Gary Daugherty, Cordell Green, Thuc Hoang, Sally Howe,
Jim Hugunin, Kane Kim, Joe Loyall, Martin Rinard, Doug Schmidt

Introduction

Next-generation commercial and military applications will operate in large-scale, network-centric
configurations that take input from many remote sensors and provide geographically dispersed
operators with the ability to interact with the collected information and to control remote
effectors. In circumstances where the presence of humans in the loop is too expensive or their
responses are too slow, these systems must respond autonomously and flexibly to unanticipated
combinations of events during execution. Moreover, these systems are increasingly being
networked to form long-lived “systems of systems” that must run unobtrusively and largely
autonomously, shielding operators from unnecessary details (but keeping them apprised so they
may react during emergencies), while simultaneously communicating and responding to mission-
critical information at heretofore infeasible rates. Examples of these types of systems include (but
are not limited to):

� Metropolitan area traffic control systems that process sensor data from thousands of vehicles

� Coordinated swarms of unmanned air vehicles

� Command and control systems for theater-level battle management

� Supply chain management

� Community analysis of scientific data

� Home power management

� Integrated health-care delivery systems

� Terrorist tracking and identification systems

In such systems, it is hard to enumerate, even approximately, all possible physical system
configurations or workload mixes a priori.

An increasing number of these large-scale, network-centric systems include many interdependent
levels, such as network/bus interconnects, local and remote endsystems, and multiple layers of
software. Desirable properties of these systems include predictability, controllability, and

35

adaptability of operating characteristics for applications with respect to such features as time,
quantity of information, accuracy, confidence, and synchronization. All these issues become
highly volatile in systems of systems, due to the dynamic interplay of the many interconnected
parts. These parts are often constructed in a similar way from smaller parts. While it is possible in
theory to develop these types of complex systems from scratch, contemporary economic and
organizational constraints, as well as increasingly complex requirements and competitive
pressures, make it infeasible to do so in practice.

To address the many competing design forces and execution-time quality of service (QoS)
demands, sustained government R&D investments in comprehensive software methodologies and
design-time/run-time environments are required to dependably compose large, complex,
interoperable applications from reusable components. Moreover, the components themselves
must be sensitive to the environments in which they are packaged. What is desired is to take
components that are built independently by different organizations at different times and
assemble them to create complete systems that are customized for their requirements and
environmental conditions. Ultimately, each complete system often must function as a component
embedded in still larger systems of systems. Given the complexity of this undertaking, various
tools and techniques are needed to configure and reconfigure these systems in layers so they can
adapt to a wider variety of situations – even those that may be global in scope – without changing
their basic design and implementation.

Where Are We Now?

During the past decade, IT researchers, practitioners, and end users have benefited from the
availability of commodity-priced hardware (such as CPUs and storage devices) and networking
elements (such as IP routers). More recently, the maturation of programming languages (such as
Java and C++), operating environments (such as POSIX and Java Virtual Machine), and enabling
middleware (such as CORBA, Enterprise Java Beans, and .NET) is helping to commoditize many
software components and architectural layers as well. The quality of such commodity software
has generally lagged behind hardware, and more facets of middleware are being conceived as the
complexity of application requirements increases. This situation has yielded variations in maturity
and capability across the layers needed to build working systems. Nonetheless, recent
improvements in frameworks, patterns, design tools, and development processes have
encapsulated the knowledge that enables commercial off-the-shelf (COTS) network-centric
software to be developed, combined, and used in an increasing number of large-scale real-world
applications, such as e-commerce web sites, consumer electronics, avionics mission computing,
hot rolling mills, command and control systems, backbone routers, and high-speed network
switches.

Over the past decade, various technologies have been devised to alleviate many complexities
associated with developing software for network-centric systems. Their successes have added a
new category of systems software to the familiar operating system, programming language,
networking, and database offerings of the previous generation. In particular, some of the most
successful emerging technologies have centered on middleware, which is systems software that
resides between the applications and the underlying operating systems, network protocol stacks,
and hardware. The primary role of middleware is to

� Functionally bridge the gap between application programs and the lower-level hardware and
software infrastructure in order to coordinate how parts of applications are connected and
how they interoperate

36

� Enable and simplify the integration of components developed by multiple technology
suppliers

� Provide a common reusable accessibility for functionality and patterns that formerly were
placed directly in applications, but in actuality are application-independent and need not be
developed separately for each new application

Middleware architectures are composed of relatively autonomous software objects that can be
distributed or co-located throughout a wide range of networks. Clients invoke operations on target
objects to perform interactions and invoke functionality needed to achieve application goals.
When implemented properly, middleware can help to:

� Shield software developers from low-level, tedious, and error-prone platform details, such as
socket-level network programming

� Amortize software life-cycle costs by leveraging previous development expertise and
capturing implementations of key patterns in reusable frameworks, rather than rebuilding
them manually for each use

� Provide a consistent set of higher-level network-oriented abstractions that are much closer to
application requirements in order to simplify the development of distributed and embedded
systems

� Provide a wide array of reusable developer-oriented services, such as logging and security,
that have proven necessary to operate effectively in a networked environment

Some notable successes in the middleware domain include:

� Java 2 Enterprise Edition (J2EE), CORBA, and .NET, which have introduced advanced
software engineering capabilities to the mainstream IT community and which incorporate
various levels of middleware as part of the overall development process, albeit with only
partial support for performance-critical and embedded solutions

� Akamai et al, which legitimized a form of middleware service as a viable business, albeit
using proprietary and closed, non-user-programmable solutions

� Napster, which demonstrated the power of having a powerful COTS middleware
infrastructure to start from in quickly (weeks/months) developing a very capable system,
albeit without much concern for system life-cycle and software engineering practices, i.e., it
is one of a kind

� WWW, where the World Wide Web middleware/standards led to easily connecting
independently developed browsers and web pages, albeit also the worldwide wait, because
there was no system engineering or attention paid to enforcing end-to-end quality of service
(QoS)

The Global Grid, which is enabling scientists and high-performance computing researchers to
collaborate on grand challenge problems, such as global climate change modeling, albeit using
architectures and tools that are not aligned with mainstream IT COTS middleware

37

Why Can't We Declare Victory?

In certain ways, each of the successes listed above can also be considered a partial failure,
especially when viewed from an overarching perspective. In addition, other notable failures come
from air traffic control, late opening of the Denver Airport, lack of integration of military systems
causing misdirected targeting, and countless numbers of smaller, less visible systems that are
cancelled – or are fielded but just do not work properly. More generally, connectivity among
computers and between computers and physical devices, as well as connectivity options, are
proliferating unabated, which leads to society’s demand for network-centric systems of increasing
scale and demanding precision to take advantage of the increased connectivity to better organize
collective and group interactions/behaviors. Since these systems are growing and will keep
growing, their complexity is increasing, which motivates the need to keep application
programming relatively independent of the complex issues of distribution and scale (in the form
of advanced software engineering practices and middleware solutions). In addition, systems of
national scale, such as the U.S. air traffic control system or power grid, will of necessity evolve
incrementally through development by many different organizations contributing to a common
solution on an as yet undefined common high-level platform and engineering development
paradigm.

Despite all the advances in the past decades, there are no mature engineering principles, solutions,
or established conventions to enable large-scale, network-centric systems to be repeatably,
predictably, and cost-effectively created, developed, validated, operated, and enhanced. As a
result, we face a complexity threshold that limits our ability to create large-scale, network-centric
systems successfully. Some of the inherent IT characteristics that contribute to this complexity
threshold include:

� Discrete platforms must be scaled to provide seamless end-to-end solutions.

� Components are heterogeneous yet they need to be integrated seamlessly.

� Most failures are only partial in that they effect subsets of the distributed components.

� Operating environments and configurations are dynamically changing.

� Large-scale systems must operate continuously, even during upgrades.

� End-to-end properties must be satisfied in time and resource constrained environments.

� Maintaining systemwide QoS concerns is expected.

To address these complexities, we must create and deploy middleware-oriented solutions and
engineering principles as part of the commonly available new, network-centric software
infrastructure that is needed to develop many different types of large-scale systems successfully.

Specific R&D Challenges

An essential part of what is needed to alleviate the inherent complexities outlined above is the
integration and extension of ideas that have been found traditionally in network management,
data management, distributed operating systems, and object-oriented programming languages.
The payoff will be reusable middleware that significantly simplifies the development and

38

evolution of complex network-centric systems. The following are specific R&D challenges
associated with achieving this payoff:

� Demand for end-to-end QoS support, not just component-level QoS. This area represents
the next great wave of evolution for advanced middleware. There is now widespread
recognition that effective development of large-scale network-centric applications requires the
use of COTS infrastructure and service components. Moreover, the usability of the resulting
products depends heavily on the properties of the whole as derived from its parts. This type of
environment requires predictable, flexible, and integrated resource management strategies,
both within and between the pieces that are understandable to developers, visible to users, and
certifiable to system owners. Despite the ease of connectivity provided by middleware,
however, constructing integrated systems remains hard since it requires significant
customization of non-functional QoS properties, such as predictable latency/jitter/throughput,
scalability, dependability, and security. In their most useful forms, these properties extend
end-to-end and thus have elements applicable to:

- The network substrate
- The platform operating systems and system services
- The programming system in which they are developed
- The applications themselves
- The middleware that integrates all these elements together

Two basic premises underlying the push towards end-to-end QoS support mediated by
middleware are that:

1. Different levels of service are possible and desirable under different conditions and
costs

2. The level of service in one property must be coordinated with and/or traded off
against the level of service in another to achieve the intended overall results

� Adaptive and reflective solutions that handle both variability and control. It is important
to avoid “all or nothing” point solutions. Systems today often work well as long as they
receive all the resources for which they were designed in a timely fashion, but fail completely
under the slightest anomaly. There is little flexibility in their behavior, i.e., most of the
adaptation is pushed to end users or administrators. Instead of hard failure or indefinite
waiting, what is required is either reconfiguration to reacquire the needed resources
automatically or graceful degradation if they are not available. Reconfiguration and
operating under less than optimal conditions both have two points of focus: individual and
aggregate behavior. Moreover, there is a need for interoperability of control and management
mechanisms needed to carry out such reconfiguration. To date interoperability concerns have
focused on data interoperability and invocation interoperability across components. Little
work has focused on mechanisms for controlling the overall behavior of the end-to-end
integrated systems. “Control interoperability” is needed to complement data and invocation
interoperability if we are to achieve something more than a collection of independently
operating components. There are requirements for interoperable control capabilities to appear
in the individual resources first, after which approaches can be developed to aggregate these
into acceptable global behavior through middleware-based multi-platform aggregate resource
management services.

To manage the broader range of QoS demands for next-generation network-centric
applications, middleware must become more adaptive and reflective.

39

Adaptive middleware is software whose functional and QoS-related properties can be
modified either:

- Statically, e.g., to reduce footprint, leverage capabilities that exist in specific
platforms, enable functional subsetting, and minimize hardware/software
infrastructure dependencies, or

- Dynamically, e.g., to optimize system responses to changing environments or
requirements, such as changing component interconnections, power levels,
CPU/network bandwidth, latency/jitter, and dependability needs

In mission-critical systems, adaptive middleware must make such modifications dependably,
i.e., while meeting stringent end-to-end QoS requirements.

Reflective middleware goes further to permit automated examination of the capabilities it
offers and automated adjustment to optimize those capabilities. Reflective techniques make
the internal organization of systems – as well as the mechanisms used in their construction –
both visible and manipulable for middleware and application programs to inspect and modify
at run-time. Thus, reflective middleware supports more advanced adaptive behavior and more
dynamic strategies keyed to current circumstances, i.e., necessary adaptations can be
performed autonomously based on conditions within the system, in the system's environment,
or in system QoS policies defined by end users.

� Toward more universal use of standard middleware. Today, it is too often the case that a
substantial percentage of the effort expended to develop applications goes into building ad
hoc and proprietary middleware substitutes, or additions for missing middleware
functionality. As a result, subsequent composition of these ad hoc capabilities is either
infeasible or prohibitively expensive. One reason why redevelopment persists is that it is still
often relatively easy to pull together a minimalist ad hoc solution, which remains largely
invisible to all except the developers. Unfortunately, this approach can yield substantial
recurring downstream costs, particularly for complex and long-lived network-centric systems.

One of the most immediate challenges is therefore to establish and eventually standardize
middleware interfaces, which include QoS attributes. It is important to have a clear
understanding of the QoS information so that it becomes possible to:

1. Identify the users’ requirements at any particular point in time
2. Understand whether or not these requirements are being (or even can be) met

It is also essential to aggregate these requirements, making it possible to form decisions,
policies, and mechanisms that begin to address a more global information management
organization. Meeting these requirements will require flexibility on the parts of both the
application components and the resource management strategies used across heterogeneous
systems of systems. A key direction for addressing these needs is through the concepts
associated with managing adaptive behavior, recognizing that not all requirements can be met
all of the time, yet still ensuring predictable and controllable end-to-end behavior.

� Leveraging and extending the installed base. In addition to the R&D challenges outlined
above there are also pragmatic considerations, including incorporating the interfaces to
various building blocks that are already in place for the networks, operating systems, security,

40

and data management infrastructure, all of which continue to evolve independently.
Ultimately, there are two different types of resources that must be considered:

1. Those that will be fabricated as part of application development
2 . Those that are provided and can be considered part of the substrate currently

available

While not much can be done in the short term to change the direction of the hardware and
software substrate that is installed today, a reasonable approach is to provide the needed services
at higher levels of (middleware-based) abstraction. This architecture will enable new components
to have properties that can be more easily included in the controllable applications and integrated
with each other, leaving less lower-level complexity for application developers to address and
thereby reducing system development and ownership costs. Consequently, the goal of next-
generation middleware is not simply to build a better network or better security in isolation, but
rather to pull these capabilities together and deliver them to applications in ways that enable them
to realize this model of adaptive behavior with tradeoffs between the various QoS attributes. As
the underlying system components evolve to become more controllable, we can expect a
refactoring of the implementations underlying the enforcement of adaptive control.

Research Strategies

The following three concepts are central to addressing the R&D challenges described above:

� Contracts and adaptive meta-programming. Information must be gathered for particular
applications or application families regarding user requirements, resource requirements, and
system conditions. Multiple system behaviors must be made available based on what is best
under the various conditions. This information provides the basis for the contracts between
users and the underlying system substrate. These contracts provide not only the means to
specify the degree of assurance of a certain level of service but also a well-defined, high-level
middleware abstraction to improve the visibility of adaptive changes in the mandated
behavior.

� Graceful degradation. Mechanisms must also be developed to monitor the system and
enforce contracts, providing feedback loops so that application services can degrade (or
expand) gracefully as conditions change, according to a prearranged contract governing that
activity. The initial challenge here is to establish the idea in developers’ and users’ minds that
multiple behaviors are both feasible and desirable. The next step is to put into place the
additional middleware support – including connecting to lower-level network and operating
system enforcement mechanisms – necessary to provide the right behavior effectively and
efficiently given current system conditions.

� Prioritization and physical world constrained load invariant performance. Some systems
are highly correlated with physical constraints and have little flexibility in some of their
requirements for computing assets, including QoS. Deviation from requirements beyond a
narrowly defined error tolerance can sometimes result in catastrophic failure of the system.
The challenge is in meeting these invariants under varying load conditions. This often means
guaranteeing access to some resources, while other resources may need to be diverted to
insure proper operation. Generally, collections of such components will need to be resource
managed from a system (aggregate) perspective in addition to a component (individual)
perspective.

41

Although it is possible to satisfy contracts, achieve graceful degradation, and globally manage
some resources to a limited degree in a limited range of systems today, much R&D work remains.
The research strategies needed to deliver these goals can be divided into the seven areas described
below:

1 . Individual QoS Requirements. Individual QoS deals with developing the mechanisms
relating to the end-to-end QoS needs from the perspective of a single user or application. The
specification requirements include multiple contracts, negotiation, and domain specificity.
Multiple contracts are needed to handle requirements that change over time and to associate
several contracts with a single perspective, each governing a portion of an activity. Different
users running the same application may have different QoS requirements emphasizing
different benefits and tradeoffs, often depending on current configuration. Even the same user
running the same application at different times may have different QoS requirements, e.g.,
depending on current mode of operation and other external factors. Such dynamic behavior
must be taken into account and introduced seamlessly into next-generation distributed
systems.

General negotiation capabilities that offer convenient mechanisms to enter into and control a
negotiated behavior (as contrasted with the service being negotiated) need to be available as
COTS middleware packages. The most effective way for such negotiation-based adaptation
mechanisms to become an integral part of QoS is for them to be “user friendly,” e.g.,
requiring a user or administrator to simply provide a list of preferences. This is an area that is
likely to become domain-specific and even user-specific. Other challenges that must be
addressed as part of delivering QoS to individual applications include:

- Translation of requests for service among and between the various entities on the
distributed end-to-end path

- Managing the definition and selection of appropriate application functionality and
system resource tradeoffs within a “fuzzy” environment

- Maintaining the appropriate behavior under composability

Translation addresses the fact that complex network-centric systems are being built in layers.
At various levels in a layered architecture the user-oriented QoS must be translated into
requests for other resources at a lower level. The challenge is how to accomplish this
translation from user requirements to system services. A logical place to begin is at the
application/middleware boundary, which closely relates to the problem of matching
application resources to appropriate distributed system resources. As system resources change
in significant ways, either due to anomalies or load, tradeoffs between QoS attributes (such as
timeliness, precision, and accuracy) may need to be (re)evaluated to ensure an effective level
of QoS, given the circumstances. Mechanisms need to be developed to identify and perform
these tradeoffs at the appropriate time. Last, but certainly not least, a theory of effectively
composing systems from individual components in a way that maintains application-centric
end-to-end properties needs to be developed, along with efficient implementable realizations
of the theory.

2. Run-time Requirements. From a system life-cycle perspective, decisions for managing QoS
are made at design time, at configuration/deployment time, and/or at run-time. Of these, the
run-time requirements are the most challenging since they have the shortest time scales for
decision-making, and collectively we have the least experience with developing appropriate
solutions. They are also the area most closely related to advanced middleware concepts. This
area of research addresses the need for run-time monitoring, feedback, and transition

42

mechanisms to change application and system behavior, e.g., through dynamic
reconfiguration, orchestrating degraded behavior, or even off-line recompilation. The primary
requirements here are measurement, reporting, control, feedback, and stability. Each of these
plays a significant role in delivering end-to-end QoS, not only for an individual application
but also for an aggregate system. A key part of a run-time environment centers on a
permanent and highly tunable measurement and resource status service as a common
middleware service, oriented to various granularities for different time epochs and with
abstractions and aggregations appropriate to its use for run-time adaptation.

In addition to providing the capabilities for enabling graceful degradation, these same
underlying mechanisms also promise to provide flexibility that supports a variety of possible
behaviors, without changing the basic implementation structure of applications. This
reflective flexibility diminishes the importance of many initial design decisions by offering
late- and run-time-binding options to accommodate actual operating environments at the time
of deployment, instead of only anticipated operating environments at design time. In
addition, it anticipates changes in these bindings to accommodate new behavior.

3. Aggregate Requirements. This area of research deals with the system view of collecting
necessary information over the set of resources across the system, and providing resource
management mechanisms and policies that are aligned with the goals of the system as a
whole. While middleware itself cannot manage system-level resources directly (except
through interfaces provided by lower-level resource management and enforcement
mechanisms), it can provide the coordinating mechanisms and policies that drive the
individual resource managers into domain-wide coherence. With regard to such resource
management, policies need to be in place to guide the decision-making process and the
mechanisms to carry out these policy decisions.

Areas of particular R&D interest include:

- Reservations, which allow resources to be reserved to assure certain levels of service
- Admission control mechanisms, which allow or deny certain users access to system

resources
- Enforcement mechanisms with appropriate scale, granularity, and performance
- Coordinated strategies and policies to allocate distributed resources that optimize

various properties

Moreover, policy decisions need to be made to allow for varying levels of QoS, including
whether each application receives guaranteed, best-effort, conditional, or statistical levels of
service. Managing property composition is essential for delivering individual QoS for
component-based applications and is of even greater concern in the aggregate case,
particularly in the form of layered resource management within and across domains.

4. Integration Requirements. Integration requirements address the need to develop interfaces
with key building blocks used for system construction, including the OS, network
management, security, and data management. Many of these areas have partial QoS solutions
underway from their individual perspectives. The problem today is that these partial results
must be integrated into a common interface so that users and application developers can tap
into each, identify which viewpoint will be dominant under which conditions, and support the
tradeoff management across the boundaries to get the right mix of attributes. Currently,
object-oriented tools working with middleware provide end-to-end syntactic interoperation
and relatively seamless linkage across the networks and subsystems. There is no managed

43

QoS, however, so these tools and middleware are useful only for resource-rich, best-effort
environments.

To meet varying requirements for integrated behavior, advanced tools and mechanisms are
needed that permit requests for differing levels of attributes with differing tradeoffs
governing this interoperation. The system would then either provide the requested end-to-end
QoS, reconfigure to provide it, or indicate the inability to deliver that level of service,
perhaps offering to support an alternative QoS, or triggering application-level adaptation. For
all of this to work together properly, multiple dimensions of the QoS requests must be
understood within a common framework to translate and communicate those requests and
services at each relevant interface. Advanced integration middleware provides this common
framework to enable the right mix of underlying capabilities.

5. Adaptivity Requirements. Many of the advanced capabilities in next-generation information
environments will require adaptive behavior to meet user expectations and smooth the
imbalances between demands and changing environments. Adaptive behavior can be enabled
through the appropriate organization and interoperation of the capabilities of the previous
four areas. There are two fundamental types of adaptation required:

- Changes beneath the applications to continue to meet the required service levels
despite changes in resource availability

- Changes at the application level to either react to currently available levels of service
or request new ones under changed circumstances

In both instances, the system must determine if it needs to (or can) reallocate resources or
change strategies to achieve the desired QoS. Applications need to be built in such a way that
they can change their QoS demands as the conditions under which they operate change.
Mechanisms for reconfiguration need to be put into place to implement new levels of QoS as
required, mindful of both the individual and the aggregate points of view, and the conflicts
that they may represent.

Part of the effort required to achieve these goals involves continuously gathering and
instantaneously analyzing pertinent resource information collected as mentioned above. A
complementary part is providing the algorithms and control mechanisms needed to deal with
rapidly changing demands and resource availability profiles and configuring these
mechanisms with varying service strategies and policies tuned for different environments.
Ideally, such changes can be dynamic and flexible in handling a wide range of conditions,
occur intelligently in an automated manner, and can handle complex issues arising from
composition of adaptable components. Coordinating the tools and methodologies for these
capabilities into an effective adaptive middleware should be a high R&D priority.

6. System Engineering Methodologies and Tools. Advanced middleware by itself will not
deliver the capabilities envisioned for next-generation embedded environments. We must also
advance the state of the system engineering discipline and tools that come with these
advanced environments used to build complex distributed computing systems. This area of
research specifically addresses the immediate need for system engineering approaches and
tools to augment advanced middleware solutions. These include:

- View-oriented or aspect-oriented programming techniques, to support the isolation
(for specialization and focus) and the composition (to mesh the isolates into a whole)
of different projections or views of the properties the system must have. The ability

44

to isolate, and subsequently integrate, the implementation of different, interacting
features will be needed to support adapting to changing requirements.

- Design-time tools and models, to assist system developers in understanding their
designs, in an effort to avoid costly changes after systems are already in place (this is
partially obviated by the late binding for some QoS decisions referenced earlier)

- Interactive tuning tools, to overcome the challenges associated with the need for
individual pieces of the system to work together in a seamless manner

- Composability tools, to analyze resulting QoS from combining two or more
individual components

- Modeling tools for developing system performance models as adjunct means (both
on-line and off-line) to monitor and understand resource management, in order to
reduce the costs associated with trial and error

- Debugging tools, to address inevitable problems

7. Reliability, Trust, Validation, and Certifiability . The dynamically changing behaviors we
envision for next-generation large-scale, network-centric systems are quite different from
what we currently build, use, and have gained some degree of confidence in. Before such
next-generation systems can be deployed, considerable effort must be focused on validating
the correct functioning of the adaptive behaviors, and on understanding the properties of
large-scale systems that try to change their behavior according to their own assessment of
current conditions. But even before that, longstanding issues of adequate reliability and trust
factored into our methodologies and designs using off-the-shelf components have not reached
full maturity and common usage, and must therefore continue to improve. The current
strategies organized around anticipation of long life cycles with minimal change and
exhaustive test case analysis are clearly inadequate for next-generation dynamic systems with
stringent QoS requirements.

Concluding Remarks

In this age of IT ubiquity, economic upheaval, deregulation, and stiff global competition, it has
become essential to decrease the cycle time, level of effort, and complexity associated with
developing high-quality, flexible, and interoperable large-scale, network-centric systems.
Increasingly, these types of systems are developed using reusable software (middleware)
component services, rather than being implemented entirely from scratch for each use.
Middleware was invented in an attempt to help simplify the software development of large-scale,
network-centric computing systems, and to bring those capabilities within the reach of many
more developers than the few experts who could master the complexities of these environments.
Complex system integration requirements were not being met from either the application
perspective, where it was too difficult and not reusable, or the network or host operating system
perspectives, which were necessarily concerned with providing the communication and
endsystem resource management layers, respectively.

Over the past decade, middleware has emerged as a set of software service layers that help to
solve the problems specifically associated with heterogeneity and interoperability. It has also
contributed considerably to better environments for building network-centric applications and
managing their distributed resources effectively. Consequently, one of the major trends driving
researchers and practitioners involves moving toward a multi-layered architecture (applications,
middleware, network and operating system infrastructure), which is oriented around application
composition from reusable components, and away from the more traditional architecture, where
applications were developed directly atop the network and operating system abstractions. This

45

middleware-centric, multi-layered architecture descends directly from the adoption of a network-
centric viewpoint brought about by the emergence of the Internet and the componentization and
commoditization of hardware and software.

Successes with early, primitive middleware have led to more ambitious efforts and expansion of
the scope of these middleware-oriented activities, so we now see a number of distinct layers of
the middleware itself taking shape. The result has been a deeper understanding of the large and
growing issues and potential solutions in the space between:

� Complex distributed application requirements

� The simpler infrastructure provided by bundling existing network systems, operating
systems, and programming languages

There are significant limitations with regard to building these more complex systems today. For
example, applications have increasingly more stringent QoS requirements. We are also
discovering that more things need to be integrated over conditions that more closely resemble a
volatile, changing Internet than a stable backplane.

One problem is that the playing field is changing constantly, in terms of both resources and
expectations. We no longer have the luxury of being able to design systems to perform highly
specific functions and then expecting them to have life cycles of 20 years with minimal change.
In fact, we more routinely expect systems to behave differently under different conditions, and
complain when they just as routinely do not. These changes have raised a number of issues, such
as end-to-end-oriented adaptive QoS and construction of systems by composing off-the-shelf
parts, many of which have promising solutions involving significant new middleware-based
capabilities and services.

In the brief time we met at the SDP workshop, we could do little more than summarize and lend
perspective to the many activities, past and present, that contribute to making middleware
technology an area of exciting current development, along with considerable opportunity and
challenging unsolved problems. This breakout group summary also provides a more detailed
discussion and organization for activities that SDP workshop participants believe represent the
most promising future R&D directions of middleware for large-scale, network-centric systems.
Downstream, the goals of these R&D activities are to:

1. Reliably and repeatably construct and compose network-centric systems that can
meet and adapt to more diverse, changing requirements/environments

2. Enable the affordable construction and composition of the large numbers of these
systems – each precisely tailored to specific domains – that society will demand

To accomplish these goals, we must overcome not only the technical challenges, but also the
educational and transitional challenges. We must eventually master and simplify the immense
complexity associated with these environments, as we integrate an ever-growing number of
hardware and software components together via middleware.

46

List of Participants

First Name
Last

Name
Affiliation

Rajeev Alur University of Pennsylvania

Don Batory University of Texas, Austin

Ira Baxter Semantic Designs

Barry Boehm University of Southern California

Richard Buchness Boeing

Betty Cheng Michigan State University

Karl Crary Carnegie-Mellon University

Joseph Cross Lockheed-Martin

Eric Dashofy University of California, Irvine

Gary Daugherty Rockwell Collins

Premkumar Devanbu University of California, Davis

Laura Dillon Michigan State University

Tzilla Elrad Illinois Institute of Technology

Kathi Fisler Worcester Polytechnic Institute

R. Gamble University of Tulsa

Susan Gerhart Embry-Riddle Aeronautical University

Susan Graham University of California, Berkeley

Cordell Green Kestrel Institute

Paul Hudak Yale University

Jim Hugunin Xerox PARC

Daniel Jackson MIT

Ralph Johnson University of Illinois, Urbana-Champagne

Philip Johnson University of Hawaii

Samuel Kamin University of Illinois, Urbana-Champagne

Gabor Karsai Vanderbilt University

Gregor Kiczales University of British Columbia/Xerox

Kane Kim University of California, Irvine

Mieczyslaw Kokar Northeastern University

Alkis Konstantellos European Commission, IST

Shriram Krishnamurthi Brown University

Robert Laddaga MIT

47

James Larus Microsoft

Insup Lee University of Pennsylvania

Karl Lieberherr Northeastern University

Joe Loyall BBN

Tommy McGuire University of Texas, Austin

Marija Mikic-Rakic University of Southern California

Michael Mislove Tulane University

Priya Narasimhan Carnegie-Mellon University

Bob Neches University of Southern California

Dewayne Perry University of Texas, Austin

Calton Pu Georgia Tech

William Pugh University of Maryland, College Park

Joy Reed Armstrong Atlantic State University

John Reekie University of California, Berkeley

Steven Reiss Brown University

Robert Riemenschneider SRI International

Martin Rinard MIT

Paul Robertson Dynamic Object Language Labs

David Sharp Boeing

Kang Shin University of Michigan

Massoud Sinai Boeing

Douglas Smith Kestrel Institute

Scott Smolka Reactive Systems, Inc.

David Stewart Embedded Research Solutions

Kurt Stirewalt Michigan State University

Brian Williams MIT

Government Invitees

Abdullah Aljabri NASA

Frank Anger NSF

Daniel Dvorak NASA

Helen Gigley NCO/ITRD

Helen Gill NSF

Thuc Hoang DOE

Sally Howe NCO/ITRD

Michael Masters U.S. Naval Surface Warfare Center

48

Kenny Meyer NASA

Vijay Raghavan DARPA

Steven Ray NIST

Spencer Rugaber NSF

Doug Schmidt DARPA

Frank Sledge NCO/ITRD

Program Committee

Benjamin Pierce University of Pennsylvania

Adam Porter University of Maryland, College Park

Rick Schantz BBN

Charles Simonyi Microsoft

Janos Sztipanovits Vanderbilt University

Don Winter Boeing

Volunteers

Aditya Agrawal Vanderbilt/ISIS

Mark Briski Vanderbilt/ISIS

Michele Codd Vanderbilt/ISIS

Brandon Eames Vanderbilt/ISIS

Jeff Gray Vanderbilt/ISIS

Jung-Min Kim University of Maryland

Lorene Morgan Vanderbilt/ISIS

Tal Pasternak Vanderbilt/ISIS

Jason Scott Vanderbilt/ISIS

Jonathan Sprinkle Vanderbilt/ISIS

Eric Wohlstad University of California, Davis

National Coordination Office for
Information Technology Research and Development

Suite II-405
4201 Wilson Blvd.
Arlington, VA 22230
(703) 292-4873

Email address: nco@itrd.gov

Web address: http://www.itrd.gov

