IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 1,

JANUARY 2006 1

Covering Arrays for Efficient
Fault Characterization in Complex
Configuration Spaces

Cemal Yilmaz, Myra B. Cohen, Member, IEEE, and Adam A. Porter, Senior Member, IEEE

Abstract—Many modern software systems are designed to be highly configurable so they can run on and be optimized for a wide
variety of platforms and usage scenarios. Testing such systems is difficult because, in effect, you are testing a multitude of systems,
not just one. Moreover, bugs can and do appear in some configurations, but not in others. Our research focuses on a subset of these
bugs that are “option-related”—those that manifest with high probability only when specific configuration options take on specific
settings. Our goal is not only to detect these bugs, but also to automatically characterize the configuration subspaces (i.e., the options
and their settings) in which they manifest. To improve efficiency, our process tests only a sample of the configuration space, which we
obtain from mathematical objects called covering arrays. This paper compares two different kinds of covering arrays for this purpose
and assesses the effect of sampling strategy on fault characterization accuracy. Our results strongly suggest that sampling via
covering arrays allows us to characterize option-related failures nearly as well as if we had tested exhaustively, but at a much lower
cost. We also provide guidelines for using our approach in practice.

Index Terms—Software testing, distributed continuous quality assurance, fault characterization, covering arrays.

1 INTRODUCTION

MANY modern software systems must be customized to
specific runtime contexts and application require-
ments. To support such customization, these systems
provide numerous user-configurable options. For example,
some Web servers (e.g., Apache), object request brokers
(e.g., TAO), and databases (e.g., Oracle) have dozens, even
hundreds, of options. While this flexibility promotes
customization, it creates many potential system configura-
tions, each of which may need extensive quality assurance
(QA). We call this problem software configuration space
explosion. To address this issue, we have developed
Skoll [13]—a distributed continuous QA (DCQA) process
supported by automated tools that leverages the extensive
computing resources of worldwide user communities in
order to efficiently, incrementally, and opportunistically
improve software quality and to provide greater insight
into the behavior and performance of fielded systems.
One QA process implemented in Skoll determines which
specific options and option settings cause specific failures to
manifest. We call this process fault characterization. We do it
by testing different configurations and feeding the results to
a predictive model-building process [13]. The output
models describe the options and settings that best predict

o C. Yilmaz and A. Porter are with the Department of Computer Science,
University of Maryland, College Park, MD 20742.
E-mail: {cyilmaz, aporter}@cs.umd.edu.

o M. Cohen is with the Department of Computer Science and Engineering,
University of Nebraska-Lincoln, NE 68588-0115.
E-mail: myra@cse.unl.edu.

Manuscript received 12 July 2005; revised 17 Nov. 17 2005; accepted 2 Dec.
2005. Published online XX Xxx. 2006.

Recommended for acceptance by M. Harman.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0198-0705.

0098-5589/06/$20.00 © 2006 IEEE

failure. For example, for a Corba implementation, we
determined that when the executable ran on the Linux
operating system with Corba Messaging Support enabled
but with Asynchronous Message Invocation support dis-
abled, socket connections frequently timed out.

We gave this information to the system’s developers,
who then quickly pinpointed the failure’s cause. Further
analysis showed that this problem had in fact been observed
previously by several users, but that the developers simply
hadn’t been able to track down the problem. The fault
characterization, however, greatly narrowed down the
search space, making the developers’ job much easier.

While we were pleased with this outcome, the approach
requires us to test the entire configuration space. In the
example cited above, this means that nearly 19,000 times,
remote clients spent several hours downloading, configur-
ing and sometimes compiling the 2M+ LOC system and
then executing numerous tests. And this was only a small
subset of the system’s much larger configuration space.
Clearly, a more efficient process is needed.

In earlier work, we proposed and evaluated an
alternative strategy [19]. Our idea was to cut testing costs
by systematically sampling the configuration space,
testing only the selected configurations, and conducting
fault characterization on the resulting data. The sampling
approach we used is based on a mathematical object
called a covering array (described in more detail in
Section 2.1). Covering arrays induce a test schedule that
ensures that all t-way interactions between options are
observed at least once. Our evaluation showed that this
approach was nearly as accurate as that based on
exhaustive data, but was much less expensive. (It
provided a 50 to 99 percent reduction in the number of
configurations tested.) This paper extends that earlier
work in two ways. First, we replicate and expand the

Published by the IEEE Computer Society

2
TABLE 1
A Covering Array Example C'A(9;2,3,3)
Configuration No Option A Option B Option C
1 0 0 0
2 0 1 1
3 0 2 2
4 1 0 1
5 1 1 2
6 1 2 0
7 2 0 2
8 2 1 0
9 2 2 1

original study by including a second operating-system
environment. Second, we introduce and evaluate the use
of a new kind of covering array, called a variable-strength
covering array (described in Section 2.2), which provides
developers with finer control over covering array con-
struction. The remainder of this paper is organized as
follows: Section 2 briefly explains the mathematical tools
we use in this paper, Section 3 describes the fault
characterization process, Sections 4 and 5 describe the
studies we conducted, Section 6 provides practical advice
to users of this approach, Section 7 compares covering
arrays to random selection, Section 8 discusses related
work, and Section 9 presents concluding remarks and
possible directions for future work.

2 BACKGROUND

In this paper, we use a three-step process for
characterizing faults. First, we systematically sample a
system’s entire configuration space, using a mathematical
object called a covering array as opposed to testing the
entire configuration space as we did in earlier work [13].
Next, we test individual configurations at remote user
sites, which relay the results to a central server. Finally,
we classify the test results and provide the resulting
models to the system’s developers. Now, we provide
some background information on these three steps.

2.1 Covering Arrays

The software systems considered in this research have
options, which take their values from a set of valid settings.
Our goal is to identify and characterize failures that are
caused by specific combinations of option settings. There-
fore, it is important to maximize the “coverage” of option-
setting combinations. However, since we also want to
keep costs low, we must also minimize the number of
configurations tested. The set of configurations to be
tested is called the fest schedule. To do this, we compute a
combinatorial object called a covering array. A covering
array, CA(N;t, k,v), is an N x k array on v symbols with
the property that any N x ¢ subarray contains all ordered
t-sets of size v at least once [4]. The strength of the array is
denoted by t. For instance, given a covering array of
strength ¢ =2 we can arbitrarily select any two columns
from the covering array to form a new subarray. We are
guaranteed that any ordered pair from the v values will
be found in at least one row of this subarray. When using
the Skoll system, each of the configuration options is a
column of the covering array. Each option setting is
mapped to one of the v values for that column. This gives

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 1,

JANUARY 2006

TABLE 2
A Mixed-Level Covering Array Example: (12;2, 3%41)
Configuration No Option A Option B Option C
1 0 1 1
2 0 2 0
3 2 1 0
4 0 0 2
5 1 1 2
6 2 2 2
7 2 2 3
8 2 0 1
9 1 0 0
10 1 2 1
11 1 1 3
12 0 0 3

us a covering-array-derived test schedule, or CA test
schedule. A CA test schedule for a configuration space is a
set of N test configurations in which all ¢-way combina-
tions of option settings appear at least once.

Consider the following system with three ternary
options, A, B, and C, each with the possible settings 0, 1,
and 2. This system has 27 possible configurations. A
CA(9;2,3,3) for this system is shown in Table 1. As
promised, for any two columns, all possible pairs of option
settings can be found.

When software systems have options with varying
numbers of settings, we must use a mixed-level covering
array. An MCA(N;t, k, (vi,v2,...v;)), is an N X k array on
s symbols, where s=3" v. In this array, each
column i (1 < ¢ < k) contains elements from a set S; with
|S;| = v;. The rows of every N X t subarray cover all ¢-tuples
of values from the ¢ columns at least once. A shorthand
notation is used to describe a covering array by combining
v;s that are the same and representing this number as a
superscript. For example, if we have 4 v;s, each with three
values, this can be written as 3% In this manner,
an MCA(N;t, k,(vivg...v;)) can also be written as an
MCA(N;t, (s'sh?...sPr)), where k= Y7, p;.

Returning to the previous example, suppose option C
now has four possible settings instead of three. We can
create a mixed-level covering array using 12 configurations
(shown in Table 2). Here, all possible pairs of the four
settings for option C are combined with the three settings
for options A and B. The combinations of all three settings
from options A and B are all accounted for as well. This is
an MCA(12;2,3%41). In this paper, we will always use
mixed-level covering arrays, which we will refer to as
covering arrays for simplicity.

In general, we want our covering arrays to be as small as
possible. A variety of computational methods exist for
finding small covering arrays for a given set of parameters.
Simulated annealing is a standard combinatorial optimiza-
tion technique (see [7]) that has been shown to consistently
provide small covering arrays when ¢ = 2 or ¢t = 3. There-
fore, we chose to use this construction method. In our
implementation of the simulated annealing method, the cost
function is the number of uncovered ¢-sets remaining, i.e., a
covering array has a cost of 0. We begin with an unknown
N for a particular set of parameters, repeating the annealing
process many times, using a binary search strategy to find
the smallest IV that gives us a solution [7].

YILMAZ ET AL.: COVERING ARRAYS FOR EFFICIENT FAULT CHARACTERIZATION IN COMPLEX CONFIGURATION SPACES 3

TABLE 3
A VSCA Example: VSCA(10;2,3%23 CA(10;3,3,2))
Config. Option Option Option Option Option Option
No A B C D E F
1 2 2 1 1 0 1
2 0 2 2 0 0 1
3 2 1 2 0 1 0
4 1 0 2 1 1 1
5 0 2 0 1 1 0
6 0 1 1 1 1 1
7 0 0 1 0 1 1
8 2 0 0 0 0 0
9 1 1 0 0 0 1
10 1 2 1 1 0 0

2.2 Variable-Strength Covering Arrays

Covering arrays define a “fixed” t across all of the
k columns. In [6], [7] an aggregate object called a variable-
strength covering array is defined. A wvariable-strength
covering array is a covering array of strength ¢ with
subsets of columns of strength >t. It is denoted as a
VSCA(N;t, (v1,v2,..,v;),C). More formally, it is an N x k
mixed-level covering array of strength ¢ containing C, a
vector of covering arrays, each of strength > ¢ and defined
on a subset of the k columns.

This structure provides the ability to tune a test schedule
so that certain sets of options are tested more strongly (i.e.,
higher strength for certain option groups) while maintain-
ing t-way coverage across the whole system. This can be
useful when it is too expensive to increase coverage across
all options or when developers know that some option
groups are more likely to cause faults or cause more serious
faults. Conversely, sometimes, a variable-strength test
schedule can be created that is the same size as a
covering-array test schedule. This occurs when there is a
large imbalance in the numbers of option settings across the
system. We take advantage of this situation in some of the
studies in this paper. Suppose we have a system with three
ternary options (A, B, and C) and three binary options (D, E,
and F). Further, suppose that the binary options control
interrelated functionality and are therefore known to
interact. In this case, we might want to exhaustively test
the three binary options (which requires at least eight
configurations). We could use a three-way covering array
for the whole system, but this requires at least 27 config-
urations since the first three options, contain three settings
each. If, however, we are happy with a minimum of two-
way coverage overall, we can build the VSCA shown in
Table 3. These 10 configurations include all possible
combinations of options D, E, and F, while also covering
all possible two-way combinations between any of the six
options. It is a VSCA(10;2,3%23, CA(10;3,3,2)).

We construct variable-strength covering arrays using
simulated annealing [6]. The cost function here is the
missing t-sets added to the sum of the missing tuples for
all covering arrays in the vector C.

2.3 Skoll

To improve the quality of software systems with complex
configuration spaces, we are exploring (DCQA) processes
[13] that evaluate various software qualities, such as
portability, performance characteristics, and functional
correctness, “around-the-world, around-the-clock.” To

| pass| |Err#1| |ERR#)

Fig. 1. An example classification tree.

accomplish this, a general DCQA process is divided into
multiple subtasks, such as running regression tests on one
particular system configuration, evaluating system response
time under one of several input workloads, or measuring
usage errors for a system with one of several alternative
GUI designs. These subtasks are then intelligently and
continuously distributed to—and executed by—clients
across a grid of computing resources. The results of these
evaluations are returned to servers at central collection sites,
where they are fused together to guide subsequent itera-
tions of the DCQA processes contributed largely by end-
users and distributed development teams. To support this
effort we have developed Skoll, an infrastructure for
designing and executing DCQA processes. Its components
and services include languages for modeling system
configurations and their constraints, algorithms for sche-
duling and remotely executing tasks, and planning technol-
ogy that analyzes subtask results and adapts the DCQA
process in real time. See [13], [18], [19] for more details.

2.4 Classification Trees

We use classification tree analysis (CTA) to model failing
configuration subspaces [1]. CTA is a recursive partitioning
approach to build models that predict a configuration’s class
(e.g., passing or failing) based on the settings of the options
that define a configuration. This model is tree-structured
(see Fig. 1). Each node denotes an option, each edge
represents a possible option setting, and each leaf represents
a class or set of classes (if there are more than two classes).
Classification trees are constructed using data called the
training set. A training set consists of configurations, each
with the same set of options, but with potentially different
option settings together with known class information.

1. For each option, partition the training set based on
the settings of that option.
2. Evaluate the option based on how well it partitions
configurations of different classes.
Select the best option and make it the root of the tree.
Add one edge to the root for every option setting.
5. Repeat the process for each new edge. The process
stops when no further split is possible (or desirable).
To evaluate the model, we use it to predict the class of
previously unseen configurations (called the test set). For
each configuration, we begin with the option at the root
of the tree and follow the edge corresponding to the
option setting found in the new configuration. We
continue until a leaf is encountered. The leaf’s class label
is then the predicted class for the new configuration. By
comparing the predicted class to the actual class, we
estimate the accuracy of the model. In this research, we
analyze the classification trees to extract failure-inducing
option setting patterns, i.e., the set of options and their
settings that characterize failing configurations. We use
the Weka implementation of the J48 classification-tree

bl

4
TABLE 4
An Example Exhaustive Test Schedule
Config Result Config Result
ol 02 o3 ol 02 03
0 0 0 PASS 1 1 2 ERR #1
0 0 1 PASS I 2 0 ERR #1
0 0 2 ERR #3 I 2 I ERR #1
0 1 0 PASS 1 2 2 ERR #1
PASS |2 0 0 ERR#®
0 I 2 PASS 2 0 1 ERR #2
0 2 0 PASS 2 0 2 ERR #2
0 2 1 PASS 2 1 0 ERR #2
PASS 2 I I ERR #2
1 0 0 ERR #1 2 1 2 ERR #2
ERR #1 2 2 0 ERR #3
1 0 2 ERR #1 2 2 1 ERR #2
1 1 0 ERR #3 2 2 2 ERR #2
1 1 1 ERR #1

algorithm with the default confidence factor of 0.25 [17]
to build classification-tree models.

3 THE FAULT-CHARACTERIZATION PROCESS

Our goal is to give developers compact, accurate descrip-
tions of failing configuration subspaces. We’ve found that
such information can help developers quickly narrow down
the causes of failure [13]. This section details our fault-
characterization process and its evaluation.

Table 4 shows exhaustive testing of a system with three
ternary configuration options (o1, 02, and 03), each of which
has settings (0, 1, and 2). There are no interoption
constraints, so there are 27 valid configurations. In this
example, we observed four outcomes: test PASSed, test
failed with ERR #1, test failed with ERR #2, and test failed
with ERR #3.

Applying CTA to this data yields the classification tree
model shown in Fig. 1. This model tells us that configura-
tions with o1 == 1 fail with ERR #1 and those with ol == 2
fail with ERR #2.

3.1 Evaluating Fault Characterizations

In practice, classification trees may not be perfectly
accurate. Reasons for this might include: 1) The failure is
unrelated to the option settings. For example, in our earlier
example, ERR #3 occurs in configurations having all
settings of ol and 02 and two of the three settings of 03;
or 2) the model-building approach identifies spurious,
noncausal patterns.

This research focuses on option-related failures. There-
fore, we try to remove nonoption-related failures from our
analysis. Since we can’t do this automatically, we simply
ignored all failures that occurred in less than 3 percent of
the test runs. Our rationale was that deterministic failures
involving up to five binary options should manifest at least
this many times. The same is true of nondeterministic
failures involving fewer options but appearing with a
reasonable frequency (e.g., failures involving three options
with the failure manifesting 1/4 of the time).

To evaluate the classification-tree models, we used
standard metrics: precision (P) and recall (R). For a given
failure class F:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 1,

JANUARY 2006

recall =
of correctly predicted instances of E by the model
total # of instances of E

’

precision =
of correctly predicted instances of E by the model
total # of predicted instances of E by the model

Recall measures how well the model predicts configura-
tions that experience failure £. Precision measures how many
configurations are falsely identified as experiencing failure £.
In general, both measures are important. We want high recall
because otherwise the models may miss relevant character-
istics or add irrelevant ones. And we want high precision to
minimize wasting resources while investigating false alarms.

Since neither measure predominates our evaluation, we
combine the measures using the F metric [14]:

F = (b*+1)PRV¥*P + R.

Here, b controls the weight of importance to be given to
precision and recall: /'= P when b =0 and F = R when
b = oo. Throughout this paper, we compute F' with b=1,
which gives precision and recall equal importance.

3.2 Reducing the Test Schedule Size

While the model in Fig. 1 explains the observed failures
well, we had to exhaustively test the configuration space
to get it. Since this won't scale, we need a way to build
the models based on data taken from only a subset of the
entire configuration space. Interestingly, we could have
derived the same tree model using data from only 1/3 of
the configuration space (the configurations boxed in Table
4). These selected configurations, in fact, constitute a two-
way covering array of the configuration space. (This is
the same covering array depicted in Table 1). If similar
results occur in practice, fault characterization would be
much cheaper, without compromising accuracy. We
examine this conjecture in the following sections.

4 EXPERIMENTS

This section presents several studies of our CA-based fault-
characterization approach. Our goal is to compare the costs
and benefits of the modified approach to those of the
original approach which requires testing the entire config-
uration space. Our subject program for these studies is the
ACE+TAO system [15], [16]. ACE+TAO is a large, widely
deployed open-source middleware software toolkit. The
ACE+TAO source base contains over 2 million lines of
C++ source code. It is highly configurable with over
500 configuration options supporting a variety of program
families and standards.

In a previous study [13], we applied our original fault-
characterization process to a subset of the system’s entire
configuration space. That subset consisted of 10 compile-
time and six runtime options. Each compile-time option is
binary-valued and allows various features to be compiled
in or out of the system. In addition, there are
12 interoption constraints that restrict the total number
of compile-time configurations. The system’s runtime
options have differing numbers of settings—i.e., four

YILMAZ ET AL.: COVERING ARRAYS FOR EFFICIENT FAULT CHARACTERIZATION IN COMPLEX CONFIGURATION SPACES 5

TABLE 5
Size of Test Schedules for 2 <t <6

CA Strength (f) No. of Configurations (V)

2 116

3 348

4 1229-1236
5 3369 - 3372
6 9433-9453

options have three settings, one option has four, and one
option has two. Runtime options control runtime optimi-
zations, set system-level policies, and generally provide
fine-grained control over the runtime behavior of the
system.

All told, this subset of the system had over 53,000 valid
configurations. Note, however, that we uncovered numerous
compilation problems during testing. These static config-
urations were excluded from the model, which reduced the
configuration space to 18,792 valid configurations.

We tested each compilable, valid configuration on the Red
Hat Linux 2.4.9-3 platform and on Windows XP Professional
using 96 developer-supplied regression tests. Each test was
designed to emit an error message in the case of failure, and
we captured and recorded the results of each test. This
testing took over two machine years to run. In the rest of the
paper, we refer to this data set as the exhaustive results.

To evaluate using covering arrays, we created five
different t-way covering arrays for each value of ¢
ranging between 2 and 6. Specifically, we computed an
MCA(N;t,29'413%21) for each value of . Because of the
numerous compile-time errors we uncovered earlier, we
chose to group the 10 compile-time options into a single
29-valued option. That is, we mapped each of the valid
10-option strings to a single value setting. Thus, the
model has seven configuration options. The first corre-
sponds to the 29 successfully compiled static configura-
tions, and the rest correspond to the six runtime options.

We reran the regression tests for each of these t-way test
schedules on both platforms and used classification trees to
automatically characterize the test results. We then com-
pared the fault characterizations obtained from t-way
schedules to those obtained from exhaustive testing.

Table 5 gives the covering array size IV for each value of
t. When t < 3, all five arrays were the same size. For these,
we were able to construct covering arrays with the smallest
mathematically possible size. When ¢ > 4, the problem of
building a minimally-sized covering array becomes harder,
so we obtained a range of sizes.

In the remainder of this section, we present the results
of four studies, each examining a different aspect of the
CA-based fault-characterization process. The first study
examines how well CA test schedules reveal option-
related failures. The second study uses CA test schedules
and builds one characterization model for each test (pass
versus fail). The third study uses CA test schedules but
builds one characterization model for each observed
failure on each test (pass versus failure-1 versus failure-
2, etc.). Finally, the fourth study repeats the third, but
compares using the combination of several lower-strength
covering arrays to using one (more expensive to obtain)
higher-strength covering array.

Error Coverage for 2-way Covering Arrays

O # of unique errs missed
B # of unique errs caught

of unique errors seen

0 4 9 13 20 28 33 38 43 50 55 65 71

77 89 95

test

Fig. 2. The error coverage statistics for two-way covering arrays on
Linux.
4.1 Study 1: Revealing Option-Related Failures
with Covering Arrays

The first question we examine is whether testing only the
CA test schedule negatively affects fault detection. If it does,
then later fault characterization will surely suffer.

Fig. 2 plots error-coverage statistics for two-way cover-
ing arrays on the Linux platform. We show data only for
two-way covering arrays as they are the smallest. In this
figure, each bar represents one test case. Tests that never fail
are omitted. The height of a bar represents the number of
unique error messages observed with the exhaustive test
schedule. The lower part of a bar (darker color) shows the
average number of unique errors observed by the five two-
way schedules. For example, using the exhaustive schedule,
we observed eight unique error messages while running
test #35. Using the two-way schedules, however, we only
observe three of them on average. The Windows platform
shows similar results.

Fig. 3 provides another view of this data. Instead of the
number of unique error messages, it depicts the number of
configurations in which each test fails. The lower part of
each bar shows the average number of failing configura-
tions whose error messages are detected at least once by the
two-way schedules. The upper part indicates the average
number of failing configurations whose error messages are
not detected by the two-way schedules. As suggested by the
figure, failures not detected by the two-way schedules occur
with very low frequency. Alternatively, the CA schedules
are able to detect all faults that appear with reasonable
frequency. Since we are interested in characterizing option-
related failures, we aren’t overly concerned with rarely
occurring failures. This is because rarely occurring failures
are either 1) likely not related to option settings; if they were
they would appear more frequently, or 2) unlikely to be
accurately characterized even with exhaustive testing, e.g.,
a failure that occurs exactly once in 20,000 configurations
does not allow for statistical generalization.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 1,

Error Coverage for 2-way Covering Arrays

18792
|

B # of errs caught
O # of errs missed

15000
1

10000 12500
| |

7500
1

of configurations failed

5000

2500
|

0
L

0 4 9 13 20 28 33 38 43 50 55 65 71 77 89 95

test

(@)

JANUARY 2006

Error Coverage for 2-way Covering Arrays

f rrs cau
f rrs mis:

18792
|
(=Y}

= #
o #

15000
|

12500
|

10000
|

7500
|

of configurations failed

5000
|

2500
|

0
L

0 4 8 13 20 29 35 41 48 54 62 69 76 83 89 95

test

(b)

Fig. 3. Error coverage statistics for two-way covering arrays. (a) Linux. (b) Windows.

As mentioned in Section 3.1, we consider a failure to be
potentially option-related only if it appears in more than
3 percent of the original configuration space. This gives us
40 “potentially” option-related failures on the Linux plat-
form and 49 on the Windows platform. We will refer to
these as the option-related failures. We then check the
effectiveness of covering arrays in revealing option-related
failures. Each and every t-way schedule reveals all option-
related failures on both platforms.

4.2 Study 2: Covering Arrays with Per-Test-Case
Characterization

The previous study suggests that testing with CA schedules
reveals potentially option-related failures as well as
exhaustive testing does. Given this assurance, we now
compare fault characterization based on CA schedules to
that based on exhaustive testing.

4.2.1 Creating Classification-Tree Models

To address this question, we run all test cases on the
exhaustive schedule. For each test case, this results in a set
of passing configurations and f sets of failing configura-
tions, one for each unique observed failure. For each test
case, we then build one model that characterizes all f+ 1
possible outcomes. This provides an upper bound on

classification accuracy.
We then repeat the process using just the configurations

selected by the covering array. We then test the models on
the exhaustive data set. Finally, we examine how well the
models built using only a subset of the data compare to
those built using all of the data. We refer to the models
obtained from the covering arrays as reduced models and
those from the exhaustive schedule as exhaustive models.

4.2.2 Evaluation

Fig. 4 shows the F measures for the reduced models and for
the exhaustive models for the 89 option-related failures. The
vertical axis denotes the F measure, and the horizontal axis
denotes the test and error index. For example, the first tick
on the horizontal axis, which is 0-1, represents the first error
observed in test case 0.

The figure suggests that the F measures for the reduced
models are almost always near those of the exhaustive
models. That is, if the exhaustive models characterize the
failure well, then so do the reduced models. If they don’t,
then neither do the reduced models. This is true indepen-
dent of the strength of the covering array. For example, on
Linux, 78 percent of the models obtained from the two-way
schedules gave F measures within 0.1 of the exhaustive
models; 88 percent of them were within 0.2. The higher the
strength of the covering arrays, the closer the F measures
were. Another interesting observation is that the two-way
covering arrays achieve this performance while reducing
the number of configurations to be tested by 99.4 percent.
Using two-way schedules would therefore have saved
almost two years of machine time, without substantially
lowering the accuracy of the fault characterizations.

Our analysis also suggests that the higher the F measure,
the more similar the exhaustive and reduced models are in
terms of the model rules (specific options and settings
captured within the models). To do this analysis, we first
pair the exhaustive and reduced models for each test case.
We then divide the pairs of models into four categories
based on the strength of the F measures of the exhaustive
models: very high (F' = 1), high (0.8 < F' < 1), moderate
(0 < F <0.8), and low (F = 0).

For the very high F-measure group, the paired models
are exactly the same (except for the two-way models for
failures 80-262 and 93-361 on Windows). That is, the
exhaustive and reduced models contain the same rules to

YILMAZ ET AL.: COVERING ARRAYS FOR EFFICIENT FAULT CHARACTERIZATION IN COMPLEX CONFIGURATION SPACES 7

F-measures of the models for each test

LR

F-measure

A

— exhaustive
A 2-way
+ 3-way
X 4-way
5-way
v 6-way

- X =
FEEE TG0 R e T 0l U Il © T dny el T il

OIIv—IIIN(DII!“) IINIIIIVIDIIDIIIIIQ‘II(DIIIIIII
<0 N T DO OODN—NNNOM
o

m"iteq ldx—fallure |dxfnmmm O DRI 08

(a)
Fig. 4. Models for each test. (a) Linux. (b) Windows.

describe the failures. The two exceptions are failures that
manifested in relatively few configurations (i.e., the number
of failing configurations in the entire space is very near the 3
percent cutoff). Consequently, the two-way schedules
observe the failures in very few configurations (i.e., four
failing configurations on average), which negatively affects
the resulting fault-characterization models. The similarity
between paired models decreases steadily as we move
down to the high and moderate F-measure groups. In the
moderate F-measure group, the rules captured by the
reduced models (especially the two-way models) tend to
differ substantially from those captured by the exhaustive
models (See failures 52-18, 80-22, and 35-14 in Fig. 4a). In
these cases, we see that using higher-strength covering
arrays boosted performance. The low-F measure group
comprises models that fail to find any accurate pattern to
the failures. Since no accurate pattern is found, the reduced
and the exhaustive models may find different but equally
inaccurate patterns.

These results confirm and amplify our initial study [19].
They suggest that covering-array schedules can generate
data that is capable of accurately characterizing the options
and option settings in which option-related faults manifest.
Moreover, as we will show later, the concept of pattern
strength will help us predict when classification-tree
models are likely to be reliable and, therefore, likely to
help developers find an actual failure cause.

4.3 Study 3: Covering Arrays with Per-Test
Failure-Case Characterization

Building classification models with several classes can
lead to situations where there is too little data on which
to base class assignment and to situations where global
model-building choices lead to suboptimal models for
individual classes. In this study, we try to avoid this by
building one characterization model for each test-and-
failure combination.

F-measures of the models for each test

F-measure

— exhaustive

X+ D>
e
=2
&)
<

I
A A

T L 6 L e L P,) L 6 T) il

100 | Or————0O—O\\O
IO | 1 1= 10000 [v—— |v= | | |0 v v | | IS~ | | | |1 | 10O
IIv—lIN\II 10000 | 1= |10 I<IF 100 |<F L0 1O 10O | 16O | QX0 | 100X |

wn
SJex2 t?est idx>failur@ ié’x) oo TR

(b)

4.3.1 Creating Classification-Tree Models

Just as in Study 2, we run all test cases on every
configuration in the configuration space and record their
pass/failure information. For each test and failure f, we
create a training data set but record only two test outcomes:
failing with failure f and passing. We repeat the process
with the CA schedules and compare the results.

4.3.2 Evaluation

Fig. 5 shows the F measures for the models. At first glance,
they are indistinguishable from Study 2. One important
way in which they differ, however, is in the readability of
the resulting models. When we build one model for
multiple failures, as we did in Study 2, extraneous
information can creep into the patterns that describe the
different failures. Fig 6 illustrates this situation. Fig. 6a
shows the characterization for two failures that occurred
during the execution of test #3 on Linux (we’ve excluded
other errors to simplify the discussion). This model says
that ERR #2 occurs when CALLBACK==0 and that ERR #17
occurs when CALLBACK==1 and ORBCollocation==NO.
Although this seems like a reasonable classification, it is
slightly inaccurate.

ERR #2 occurs during the compilation of the test case.
Certain files within TAO implementing CORBA messaging
incorrectly assume that the CALLBACK option would
always be set to 1. Consequently, when CALLBACK==0,
certain definitions are unset.

ERR #17 occurs when the ORBCollocation optimization
is turned off. ACE+TAQO’s ORBCollocation option controls
the conditions under which the ORB should treat objects as
being collocated. Turning it off means that objects should
never be treated as being collocated. When objects are not
collocated, they call each other’s methods by sending
messages across the network. When they are collocated,

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 1,

F-measures of the models for each test and failure

D

F-measure

exhaustive
2-way
3-way
4-way
5-way
6-way

0.0 - £ 3 ® X £

FIrTr Tt T T T BT T T R T T

=N OOOLON N T NN AN WO T ON AN A 000000 00 DWW DN O NN
I~ | |~ | [0~ [~Nr—r — [Orrrr [+ | —r—r—r—ON—
Ol vl 1 1NOI IO— 1 1IN | | I<w0Ilwl |11 Istl 1ol |1 1111

- 0N MM O-rAONOTT U AN OONOODN—ANMNOM

) Y 5 . © NSRS
mﬁte‘é}%x—fallure |dxfm'mn 259 o

(@)

JANUARY 2006

F-measures of the models for each test and failure

o
-}
172}
©
Q
£
J A
0.4 %
+ — exhaustive
A s—way
- 3-wa
0.2 X 4—wa¥
5-way
A v 6-way
0.0 - Y = A A

[1T L ELUEEEET LLLT LI UL LT T T LT LT] IT | Tl
OO OO0 —————00\— | LOOO—CO\——O\N0KN | OO | Or————0O0—O\0\KO
= | M =1 103D Iy~ v | 1) [0 [I | | Isv—00— | | | ION— || 10D
L= INN 100 | = | 10 I 100 [<F 110 1O 10000UX0 | 10 |00 | 1o |
OO v OAN\M OO0 ST 1D ANOOOON X0

- @ st idxfailurd idx) Lol e N

(b)

Fig. 5. Models for each test and failure combination. (a) Linux. (b) Windows.

they can communicate directly, saving networking over-
head. The fact that these tests work when objects commu-
nicate directly but fail when they talk over the network
clearly suggests a problem related to message passing. In
fact, the source of the problem was a bug in the routines for
marshaling /unmarshaling object references.

Returning to Fig. 6a, we know that error #2 occurs
when CALLBACK==0 and that error #17 occurs when
ORBCollocation==NO. That is, the setting of CALLBACK
has no effect on the manifestation of error #17. The
appearance of the CALLBACK option in the pattern for
error #17 is an artifact of the modeling process when
there are multiple classes being modeled together. When
we remove this coupling and build a separate model for
each test-and-failure combination, this problem doesn’t
appear. In fact, the fault characterizations, shown in
Figs. 6b and 6c, exactly capture the failures” causes.

Using this per-test, per-failure characterization, we find
that as the strength of the covering arrays increases, fault
characterizations move closer to those obtained from the
exhaustive schedule. We illustrate this in Fig. 7.

Figs. 7a, 7b, and 7c show the fault characterizations
obtained from the exhaustive schedule, two-way covering
arrays, and three-way covering arrays, respectively, for
error #18, which occurred during the execution of test #3
on Linux.

CALLBACK=0:ERR #2
CALLBACK=1

| ORBCollocation=glb:PASS

| ORBCollocation=orb:PASS

| ORBCollocation=NO:ERR #17

(a) (b)

CALLBACK=0:ERR #2
CALLBACK=1:PASS

The exhaustive model correlates the failure with four
options and gives an F measure of 0.849. The two-way model
is able to link the failure to only one option. This results in an
F measure of 0.747. On the other hand, the three-way model
associates the failure with three options and resulted in a
better F measure, (0.795), than the two-way model.

4.4 Study 4: Combined Reduced Schedules

As shown in Table 5, the size of the CA test schedules
grows rapidly as t increases. The cost to create them does
as well (the cost is exponential in t). In this study, we
examine how combined lower-strength schedules com-
pare to single higher-strength covering arrays (e.g., three
two-way covering arrays versus one three-way covering
array).

Specifically, we combine schedules in such a way that
the size of the combined t-way schedules is close to the size
of a single (¢ + 1) schedule. We then compare the combined
schedules to the uncombined ones. This is interesting
because the cost of creating (¢ + 1)-way schedules can be
significantly higher than the cost of obtaining t-way
schedules. If ¢-way-combined and (¢4 1)-way schedules
have comparable performance measures, then using the
combined schedules can be cost-effective.

ORBCollocation=glb:PASS
ORBCollocation=orb:PASS
ORBCollocation=NO:ERR #17

Fig. 6. Fault characterizations for test #3, test #3 and error #2, and test #3 and error #17, respectively.

YILMAZ ET AL.: COVERING ARRAYS FOR EFFICIENT FAULT CHARACTERIZATION IN COMPLEX CONFIGURATION SPACES 9

POLLER=0

DIOP=0

INTERCEPTOR=0

| MUTEX=0:PASS

| MUTEX=1:ERR #18
INTERCEPTOR=1:ERR #18
DIOP=1
INTERCEPTOR=0:ERR #18
INTERCEPTOR=1

| MUTEX=0:ERR #18

| MUTEX=1:PASS
POLLER=1:PASS

(@) (b)

POLLER=0:ERR #18
POLLER=1:PASS |

POLLER=0

| MUTEX=0

| INTERCEPTOR=0:PASS

| | INTERCEPTOR=1:ERR #18
| MUTEX=1:ERR #18
POLLER=1:PASS

(©)

Fig. 7. Fault characterizations for error #18 obtained from the exhaustive schedule, two-way covering arrays, and three-way covering arrays,

respectively.

4.4.1 Creating Classification-Tree Models

We create combined ¢t-way schedules by merging randomly
selected uncombined t-way schedules. No duplicate test
configurations are allowed. We create five combined
schedules for ¢ from two to five. We don’t combine six-
way schedules because the average size of the six-way
schedules is almost half that of the exhaustive schedule. The
average sizes of the t-way-combined schedules are given in
Table 6. Classification models are built as in Study 3.

4.4.2 Evaluation

Fig. 8 plots the F measures for t-way and ¢-way-combined
schedules. t-way-combined schedules result in better fault
characterizations than the t-way ones but do not do quite as
well as the t + 1 ones. In particular, the combined schedules
boost the characterizations of faults when single lower-
strength schedules give low F measures (i.e., less than 0.5).

For example, consider the two-way, two-way-combined
(two-way-c), and three-way models for test #35, error #14
shown in Fig. 8a. The F measures for these models are 0.06,
0.39,and 0.42, respectively. The combined schedule gives an F
measure that is much closer to that of the three-way schedule.
On the other hand, when the F measures of single schedules
are already high (say, greater than 0.5), the combined
schedules don’t improve performance to a great degree.

One possible explanation for the closeness in results
between the ¢+1 and combined schedules is that the
combined schedules cover 82-89 percent of the ¢ + 1-tuples.
Thus, they provide many of the data points seen in the
t + 1 covering arrays, but at a lower construction cost.

5 FURTHER IMPROVING THE EFFICIENCY

Our current sampling strategy is based on computing a
t-way covering array that covers all {-way combinations of
option settings. This sampling strategy, by fixing t—the

TABLE 6
Size of Combined Schedules

Schedule Size
2-way-combined 344.20
3-way-combined 1357.60
4-way-combined 3450.60
5-way-combined ~ 8422.00

strength of the array—across the entire configuration space,
treats configuration spaces as flat spaces; each t-way
combination of option settings is considered equally likely
to cause failures. However, our experience shows that
configuration spaces are often composed of several sub-
spaces each with, potentially, a different level of risk of
causing failures. For example, in ACE+TAO, we see that
faults tend to be concentrated all in static options or all in
runtime options, not generally a mix of both. Testing
higher-level interactions in high-risk subspaces while
keeping a relatively low-level interaction coverage in the
overall space can improve the efficiency of the fault
characterization process. As discussed earlier, variable-
strength covering arrays (VSCA) provide a method for
doing just this (see Section 2.2).

We hypothesize that VSCAs can improve the efficiency
of the fault characterization process in two ways: 1) They
can reduce the cost of the process without compromising its
accuracy by only testing the required set of high-level
interactions, or 2) for the same cost, they can improve the
accuracy of the process by testing more interactions. We
evaluate this hypothesis in the rest of this section.

5.1 Creating Variable-Strength Covering Arrays

We have created several VSCAs for our configuration
model given in Section 4. Our strategy was to use higher-
strength coverage between only the runtime options. The
reason behind this strategy is two-fold. First, we observed
that a significant fraction of the failures we saw involved
runtime options. Therefore, testing higher-level interactions
between runtime options can improve the characterization
models for these faults without compromising the others.
Secondly, the overriding factor in the size of our covering
array is the single static option; in the covering-array model
we used, the 10 compile-time options were grouped into a
single option with 29 settings, whereas the runtime options
have at most 4 option settings. Leveraging this fact by
individually manipulating the configuration space of the
runtime options allows us to create VSCAs with two levels
of strength (i.e., the highest level of strength is assigned to
the runtime options) and with overall sizes very close to
that of our fixed-strength covering arrays. This provides a
way to reliably evaluate the performance boost due to
VSCAs by comparing them to similar-sized CAs.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 1,

F-measures of combined suites

— exhaustive
A 2-way
+ 2-way-c
X 3-way
3-way-c
4-way
4-way-c
5-way
¢ 5-way-c
e B6-way

F-measure

A

FIrTr Tt T T T BT T T R T T

=N OOOLON N T NN AN WO T ON AN A 000000 00 DWW DN O NN
I~ | |~ | [0~ [~Nr—r — [Orrrr [+ | —r—r—r—ON—
Ol vl 1 1NOI IO— 1 1IN | | I<w0Ilwl |11 Istl 1ol |1 1111

- 0N MM O-rAONOTT U AN OONOODN—ANMNOM

6oite‘é?‘ﬁ.‘ix—failure idxfm'mn CO-PREROY
(a)
Fig. 8. Models for combined schedules. (a) Linux. (b) Windows.

We created our VSCAs with the highest level of strength
that could be obtained for all of the runtime options, that
would create a VSCA very close to the size of one of our
covering arrays with fixed strength. The first two VSCAs
created have a base strength of 2. In the first one, a
VSCA(N;2,291413121, MCA(N;4,41312)), the six runtime
options have strength 4. The size of this VSCA is 116, which
is exactly the same as the fixed-strength covering array with
t =2. We call this array the “two-way-overall-four-way-
runtime” (abbreviated as the “2c4r” array). The second
VSCA created has t =5 for all of the runtime options
(VSCA(N;2,29'41342! MCA(N;5,413421)). This VSCA has
324 configurations, which is slightly less than the
three-way fixed-strength array (348 configurations). This
array is called the “two-way-overall-five-way-runtime”
array (abbreviated as “2c5r”). The third VSCA,
((VSCA(N;3,29'413121 MCA(N;5,4'3*2')), has a base
strength of t =3, while the six runtime options are of
strength ¢t = 5. This is called the “three-way-overall-five-
way-runtime,” (abbreviated “3c5r”). This array has 367-
368 configurations, which is comparable with the size of the
three-way arrays.

By creating two-way-overall-four-way-runtime, two-
way-overall-five-way-runtime, and three-way-overall-five-
way-runtime test schedules, we expect to improve the
efficiency of the process in characterizing faults that are
caused by interaction of four or more runtime options.

5.2 Evaluating Variable-Strength Covering Arrays

As in Section 4, we compute five different schedules for
each of two-way-overall-four-way-runtime, two-way-over-
all-five-way-runtime, and three-way-overall-five-way-
runtime arrays. We ran all test cases on every configuration
selected by these VSCAs and recorded their pass/failure
information. We created fault-characterization models for

JANUARY 2006

F-measures of combined suites

F-measure

— exhaustive
-wa

-way—c
—-way
-wal
-way-c
-way

-way—c
-way

0.2

<
OO D DWW

0.0 -~ 4 < A én
T T T T L T A L T T T LT 110

OO OO0 —————00\— | LOOO—CO\——O\N0KN | OO | Or————0O0—O\0\KO
= | M =1 103D Iy~ v | 1) [0 [I | | Isv—00— | | | ION— || 10D
L= INN 100 | = | 10 I 100 [<F 110 1O 10000UX0 | 10 |00 | 1o |
OO v OAN\M OO0 ST 1D ANOOOON X0

- @ st idxfailurd idx) Lol e N

(b)

each test and failure as described in Section 4.3 and then
compared the resulting models to those of fixed-strength
covering arrays where ¢ = 2,3, 4.

Table 7 compares the F measures of characterization
models obtained from VSCAs and CAs for some failures
caused by runtime option settings. In this table, we observe
that 1) the 2c4r schedules improve the fault characteriza-
tions over the same-sized two-way schedules, 2) the
2¢5r schedules, compared to the three-way schedules, result
in comparable—in most cases better—characterizations
while providing a 6 percent reduction in the number of
configurations to be tested, and 3) the fault-characterization
models obtained from 3c5r schedules are always better than
those of three-way schedules. These results are encouraging
but not conclusive. This is because there are very few cases
in which we can observe the performance improvement due
to VSCAs. The fixed-strength schedules, even the low-
strength ones (e.g., two-way and three-way schedules),
almost always result in perfect models (F=1) for faults
caused by interactions of runtime options. This may suggest
that there are a limited number of faults involving four or
more runtime options in our experimental data, which
would prevent us from evaluating VSCAs properly. To
investigate further, we run a clean-room experiment where
we seed faults, the frequencies of the failures, and the

TABLE 7
Comparing Fault-Characterization Models Obtained from
VSCAs and CAs Using F Measures

Failure oS 2-way 2c4r 2c¢5r 3-way 3cSr 4-way
2-17 Linux 0.78 0.81 0.83 0.81 0.83 0.81

80-22 Linux 034 051 0.65 0.61 0.65 0.67

4-18 Windows 0.69 0.79 0.83 0.84 0.85 0.88

YILMAZ ET AL.: COVERING ARRAYS FOR EFFICIENT FAULT CHARACTERIZATION IN COMPLEX CONFIGURATION SPACES 11

Comparing VSCAs and CAs at various frequency levels

Suite Sizes: 2c4r: 116 3-way: 348 4-way: 1229-1236
2-way: 116 2c5r: 324 3c5r: 367-368
L L MR L Fo S O
100% 80% 60% 40% 20%
1.0 1 ecee N

o

0 0 Woo

064 | o L. H

F-measure
2
o
- e --
(o —
o

0.4 -

- e -
T

e
5
Lo -- -l
Co e --
L

8
00 .* -
FINZHE ZEIBEHE ZEIBEZHE FENZHE FEBEAE
23838F FREI8: 238787 FRE:8% 883283
N @ < o @ < o Ll o o el < N «® <
suite

Fig. 9. Comparing VSCAs with CAs at various frequency levels.

options that are responsible for the manifestation of the
faults into the system.

5.3 Seeding Faults

To evaluate the performance boost due to the VSCAs, we
seed faults into the existing configuration space that are
caused by simultaneous interactions of four runtime options.

We randomly select four runtime options from our
configuration space (one option with two levels of setting
and three options with three levels of setting each). We then
seed a unique fault for each combination of these runtime
option settings. This gives us 54 unique four-way faults. For
each fault, we then create a separate test case, failing
deterministically only on configurations in which the right
combination of option settings is met. We repeat the same
processes to seed faults with various occurrence frequencies
(i.e., 80 percent, 60 percent, 40 percent, and 20 percent). At
an z percent occurrence frequency, failures manifest
themselves only at x percent of the configurations in which
the failing conditions are met. For each occurrence
frequency, we run all 54 hypothetical test cases on the
fixed-strength and variable-strength schedules, and record
their pass/failure information. We compute the fault-
characterization models using the Weka 1d3 algorithm [17]
for each test and failure and then compare the resulting
models.

Fig. 9, grouped by the occurrence frequency, shows the
distributions of the F measures from the fixed and variable-
strength schedules. We see that the VSCAs result in better
characterization models when compared with their fixed-
cost counterparts (sizewise), i.e., two-way versus 2c4r,
three-way versus 2cbr, and three-way versus 3c5r. The
differences were more pronounced at the 80 percent level.
For instance, at the 100 percent occurrence, the 2c4r

1. The 1d3 algorithm performs better than the J48 on small training-data
sets.

provides a better classification, but once a larger subset of
configurations are included, all of the characterization
models do equally well. At the 80 percent level, all of the
VSCAs show improvement over their CA counterparts. For
instance, the 2c¢5r improves over the three-way CA even
though the 2c5r contains slightly fewer configurations. The
performance differences gradually begin to diminish,
however, as the level of occurrence frequencies drop below
80 percent.

6 GUIDELINES FOR SOFTWARE PRACTITIONERS

We have evaluated our fault-characterization process by
comparing it to exhaustive testing. In practice, developers
will not have this information. Therefore, we provide
preliminary guidelines on how to use this approach in
practice. In particular, we examine how to interpret reduced
models, how to estimate whether the reduced models are
reliable, how to select the appropriate strength level for the
covering arrays, how to vary the strength across the
configuration spaces, and how to work with a set of models.

We begin by describing an analysis method that we
apply to our experimental results and then give guidelines
for fixed-strength covering arrays based on this analysis.
We then provide guidelines for variable-strength covering
arrays based on our experience.

Classification-tree models can be partially evaluated
without a traditional test set. Typically, this is done using
a k-fold stratified cross-validation strategy [17]. Assuming
that k==10, for example, the training data is randomly
divided into 10 parts. Within each part, the classes should
be represented in approximately the same proportions as in
the original data set. Next, for each of the 10 parts, a model
is built using the remaining nine-tenths of the data and
tested to see how well it predicts that part. Finally, the
10 error estimates are averaged to obtain an overall error
rate. A high error rate indicates that the models are highly
sensitive to the subset of the data with which they are
constructed. This suggests that the models may be “overfit”
and shouldn’t be trusted.

We perform stratified 10-fold cross-validation on our
reduced models from Study 3. We only present the analysis
results obtained from the Linux experiments. The results for
the Windows experiments are similar. We find that
whenever the reduced model’s cross-validation F measures
are 0, the failure is either very rare (not considered option-
related) or is an option-related failure for which even the
exhaustive model couldn’t find a fault characterization (i.e.,
F =0). These failures are, namely 28-4, 38-20, and 55-18.
This suggests that models with 0 F measures are unlikely to
signal option-related failures.

As a next step, we investigate the relation between the
cross-validation F measures and the F measures of the
exhaustive models. Figs. 10a and 10b depict scatter plots of
these two F measures for the two-way and the four-way
models, respectively. We show only two figures due to
space limitations. The trends of the other models are
similar. We see the two F measures are very similar (they
lie near the x=y line). The higher the strength of the arrays,
the closer the F measures are.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 1,

F-measures of the 2-way models

0.4 0.6 0.8 1.0
| 1 1

F-measure from exhaustive results

0.2

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

F-measure from cross-validation

(a)

Fig. 10. Scatter plots of F measure for two-way and three-way models.

This suggests that F measures from the cross-validation
of reduced models can help estimate the performance of the
models when they are applied to the exhaustive results.
Based on the findings above, we give the following
guidelines to users of fixed-strength covering arrays:

1. Use the F measures obtained from cross-validations
of reduced models to flag unreliable models.

2. Higher F values are more likely to signal accurate
fault characterizations. Investigate the models with
the highest F-measures first.

3. Consider using higher-strength covering arrays or
combined ones for the failures whose F values are
low (i.e., less then 0.5).

The users of the variable-strength covering arrays, in
addition to the guidelines above, need to know how to vary
t across the entire configuration space. As we described in
Section 2.2, VSCAs are desirable when it is too expensive to
use a higher ¢ for all options. Based on our experience, we
present the following guidelines:

1. Leverage a priori knowledge of the system under
test, if it is available. Information that leads to high-
risk subspaces is valuable, e.g., information
recommending that a subset of option combinations
is more likely to cause failures, or that recent
changes in the code base affect certain set of option
interactions, etc. Consider assigning higher-level
strengths to high-risk subspaces.

2. Leverage fixed-strength covering arrays to pinpoint
high-risk subspaces, if no or limited reliable a priori
information is available. Start with a fixed-strength
covering array and analyze the resulting fault-
characterization models to identify subsets of
options that are highly correlated with the manifes-
tation of failures. Consider assigning higher-level
strengths to these subsets.

JANUARY 2006

F-measures of the 4-way models

0.4 0.6 0.8 1.0
I |

F-measure from exhaustive results

0.2

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

F-measure from cross-validation

(b)

3. Leverage the fact that there may be some configura-
tion options that dictate the size of the covering
arrays. These options are the ones which have the
largest number of settings. For example, in our
experiments, the overriding option in the size of the
covering arrays was the one static option with
29 settings. Consider manipulating the configuration
space of nonoverriding options independently by
assigning higher strengths. Depending on the con-
figuration space, this strategy may provide higher
strength coverage at no or reasonable cost. (See
Section 5.1 for more details.)

7 COMPARISON WITH RANDOM SCHEDULES

In this section, we compare the effectiveness of t-way and
randomly selected schedules. For this, we create 100 random
schedules for each value of ¢t where the size of each random
schedule is the same as the corresponding ¢-way schedule.
Since the CAs and VSCAs we create in this research are
comparable in size, the results obtained from this section
are also applicable to VSCAs unless otherwise stated. Our
first concern is to see how well the random schedules reveal
failures. Fig. 11 contains box plots for the number of failures
observed by the random and ¢-way schedules conditioned
on t. In general, we see that the higher the value of ¢ (and,
thus, the larger its size), the greater the number of failures
observed. The t-way schedules tend to reveal slightly more
failures than the corresponding random schedules with less
variance.

Next, we evaluate the two approaches in terms of their
fault characterizations. For this, we randomly choose
15 schedules for each value of t and create the
classification-tree models for option-related failures. In
general, we observe that random and ¢-way schedules yield
comparable fault-characterization models.

YILMAZ ET AL.: COVERING ARRAYS FOR EFFICIENT FAULT CHARACTERIZATION IN COMPLEX CONFIGURATION SPACES 13

Number of unique errors seen by the random and the t-way covering arrays

5 way 6_way |

o
1 L)
o i o -3
s REd
< 4
b
2
g
@
o 2_way 3_way 4_way
g
5
K<}
£
80 1 r
60 - S] +
i _ 3.
g SANNS =
40 - = g K L
e -

T T T T T T
covering random covering random covering random
suite type

Fig. 11. Number of unique errors seen in random and ¢-way covering
arrays.

Random schedules, however, sometimes completely
miss option-related failures or result in unbalanced sam-
pling of the failing subspaces. In the first situation, the
models ignore the failure because it has not been observed
when running the random schedule. The second situation
occurs when some parts of the configuration space are
tested much more frequently than others. This causes
spurious options to be included in the models.

Fig. 12 illustrates this situation by contrasting the fault
characterizations for test #2, error #18 obtained from the
exhaustive schedule, a two-way schedule, and a random
schedule. The F measures for the models are 0.993, 0.774,
and 0.436, respectively. The exhaustive schedule gave the
model shown in Fig. 12a. Compare this to the two-way
schedule appearing in Fig. 12b. The latter is simpler and,
thus, incorrect in some cases because it doesn’t recognize
the importance of the MUTEX option. Still, it doesn’t
include any unrelated options that would distract a
developer trying to find the cause of the failure. The model
created from the random schedule (Fig. 12c), however,
includes a node for the ConnectionStrategy option right
under the node for the POLLER option. Our analysis shows
that this option is unrelated to the underlying failure. This

POLLER=0

| MUTEX=0

| | INTERCEPTOR=0:PASS
| INTERCEPTOR=1:ERR #18 POLLER=0
MUTEX=1 POLLER=1

|

|

| | INTERCEPTOR=0:ERR #18
| | INTERCEPTOR=1:PASS
POLLER=1:PASS

(a) (b)

:ERR #18
:PASS

happens because, with the random schedule, when
POLLER == 0, 86 percent of the configurations with
ConnectionStrategy == 1 fail with ERR #18. Thus, to the
model-building algorithm, ConnectionStrategy == 1
appears to be important in explaining the underlying
failure. In contrast, in the exhaustive and two-way
schedules, only 21 percent and 33 percent, respectively, of
the configurations with ConnectionStrategy == 1 fail. This
difference is simply due to an “unlucky” random selection
that produced an unbalanced sampling of the underlying
configuration space.

In summary, we observe that random and ¢-way
schedules give comparable fault characterizations on
average, but that the random schedules sometimes create
unreliable models. Moreover, in practice, the covering-array
approach automatically determines the size of the schedule,
whereas there is no way to predetermine the correct size of
a randomly selected schedule.

8 RELATED WORK

Covering arrays frequently have been used to reduce the
number of input combinations when testing a program [2],
[3], [5], [8], [9], [12]. Mandl [12] first used orthogonal arrays,
a special type of covering array in which all ¢-sets occur
exactly once, to test enumerated types in ADA compiler
software. This idea was extended by Brownlie et al. [2], who
developed the orthogonal-array testing system (OATS).
Their empirical results suggest that orthogonal arrays are
effective in fault detection and provide good code coverage.
Dalal et al. [8] argue that the testing of all pairwise
interactions in a software system finds a large percentage
of the existing faults. In further work, Burr and Young [3],
Dunietz et al. [9], and Kuhn and Reilly [10] provide more
empirical results to show that this type of test coverage is
effective. These studies focus on finding unknown faults in
already-tested systems and equate covering arrays with
code-coverage metrics [5], [9]. Our approach is different in
that we apply covering arrays to system-configuration
options and we assess their effectiveness in revealing
option-related failures and finding failure-inducing options.

A structure similar to the variable-strength covering
array is first suggested in [5] and termed “hierarchical test
suites,” but no empirical evaluation is provided. In [6], [7],
Cohen et al. present a discussion, providing scenarios
where variable-strength arrays might be useful. They
develop a model to define VSCAs and present a construc-
tion technique. However, they have not applied these in
practice. We do not know of any studies to date that

POLLER=0

| ConnectStrategy=0:PASS

| ConnectStrategy=1:ERR #18
| ConnectStrategy=2:PASS
POLLER=1:PASS

(©)

Fig. 12. Fault characterization for test #2, ERR #18 obtained from the exhaustive schedule, a two-way schedule, and a random schedule,

respectively.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 1,

provide empirical results comparing variable-strength
arrays with their fixed-level counterparts.

Other techniques have been used to isolate faults in code
for debugging [11], [20]. The bug isolation project uses code
instrumentation and statistical sampling to achieve fault
localization [11], while the delta debugging project isolates
minimal subsets of tests that cause faults through successive
elimination of the input space [20].

Our research is unique because it uses a two-dimensional
approach. First, we statically reduce the configuration space
that will be tested for cost efficiency (i.e., we decide which
configurations to test). After testing, we analyze the results
with a classification algorithm for effective fault character-
ization. Although delta debugging also decides which
subset to test, this is done dynamically; therefore, the cost
of testing is unknown at the start.

9 CONCLUSION

Fault characterization in configuration spaces can help
developers quickly pinpoint the causes of failures, hope-
fully leading to much quicker turn-around time for bug
fixes. Therefore, automated techniques, which can effec-
tively, quickly, and accurately perform fault characteriza-
tion, can save a great deal of time and money throughout
the industry. This is especially true where system
configuration spaces are large, the software changes
frequently, and resources are limited. To make the
process more efficient, we first recast the problem of
selecting test schedules (determining which configurations
to test) as a problem of calculating a fixed-strength, t-way
covering array over the system-configuration space. Using
this schedule, we ran tests and fed the results to a
classification-tree algorithm to localize the observed
faults. We then compared the fault characterizations
obtained from exhaustive testing to those obtained via
the covering array-derived schedule. In our initial
study [19], we examined the results obtained using only
one operating system (Linux). In this study, we replicated
the experiments on a second operating system
(Windows). Although the individual results for each
operating system were slightly different, we were able
to draw the same conclusions.

e We observed that building fault characterizations for
each observed fault rather than building a single one
for all observed faults led to more reliable models.

e We observed that even low-strength covering arrays,
which provided up to 99 percent reduction in the
number of configurations to be tested, often had
fault characterizations that were as reliable as those
created through exhaustive testing.

e Higher-strength covering arrays performed better
than lower-strength ones and yielded more precise
fault characterizations, but were more costly.

e We showed that we can improve the fault-character-
ization accuracy at a low construction cost by
combining lower-strength covering arrays rather
than increasing the covering- array strength.

We were also able to develop diagnostic tools to support
software practitioners who want to use fixed-strength

JANUARY 2006

covering arrays in fault characterizations. In particular, we
found that:

e Low F measures in the exhaustive models tended to
be associated with overfit models or nonoption-
related failures. These models are not likely to help
developers identify option-related failures.

e We found that the F measures taken from 10-fold
cross-validation were highly correlated and nearly
identical with those taken from exhaustive models.
This suggests that that cross-validation measures,
which can be taken without having already done
exhaustive testing, might be a useful surrogate for
the exhaustive model F measures.

To further improve the fault-characterization process, we
extended our work from [19] to test the effects of using a
different kind of covering array called a variable-strength
covering array as a sampling strategy. Variable-strength
covering arrays, unlike their fixed-strength counterparts,
allow us to test higher-level interactions only in subspaces
where they are needed (i.e., in high-risk subspaces), while
keeping a low level of coverage across the entire space. We
developed several models of variable-strength arrays to focus
testing on the runtime options. The sample sizes were close to
those of the fixed-strength arrays, allowing us to make
comparisons. To gain a better insight into the usefulness of
these arrays, we conducted a simulation that seeded four-
way interaction faults into our configuration space. We
observed that variable-strength arrays slightly improved the
efficiency of the fault-localization process in two ways:

e They reduced the cost of the process without

compromising its accuracy.

e For the same cost, they improved the accuracy of

the process.

We also provided users of variable-strength covering
arrays with guidelines on how to vary ¢ across the
configuration space.

All empirical studies suffer from threats to their internal
and external validity. For this work, we were primarily
concerned with threats to external validity since they limit
our ability to generalize the results of our experiment to
industrial practice. One potential threat is the representa-
tiveness of the ACE+TAO subject applications, which,
though large, are still just one suite of software systems.
A related issue is that we have focused on a relatively
simple and small subset of the entire configuration space of
ACE+TAO; the actual configuration space is much larger.
While these issues pose no theoretical problems, we need to
apply our approach to larger, more-realistic configuration
spaces in future work to understand how well it scales.

In continuing work, we are integrating covering-array
calculations directly into the Skoll system. At the same
time, the Skoll system is being integrated into the daily
build process of several large-scale, widely used systems
such as ACE+TAO. This will give us a chance to replicate
the experiments over much larger and more realistic
configuration spaces. We are also examining how to
better model the effect of interoption constraints on the
fault characterizations.

YILMAZ ET AL.: COVERING ARRAYS FOR EFFICIENT FAULT CHARACTERIZATION IN COMPLEX CONFIGURATION SPACES 15

As future work, we plan to make the current fault-
characterization process an iterative and adaptive process.
The idea is to start with a low-strength covering array,
analyze the results on the fly as they are returned to identify
hot spots in the configuration space, and then test higher-level
interactions only in these hot spots (e.g., via variable-strength
covering arrays) by sequentially adding new configurations
to the current testing schedule. Such a process can be
especially useful when we need faster feedback and when
we need adaptation based on resource availability.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their helpful comments. This material is based on work
supported by the US National Science Foundation under an
NSF EPSCoR First Award, by grant ITR CCR-0205265, and
by US Office of Naval Research grant N00014-05-1-0421.

REFERENCES

[1] L. Breiman, J. Freidman, R. Olshen, and C. Stone, Classification and
Regression Trees. Wadsworth, 1984.

[2] R. Brownlie, J. Prowse, and M.S. Phadke, “Robust Testing of
AT&T PMX/StarMAIL Using OATS,” AT&T Technical ., vol. 71,
no. 3, pp. 41-47, 1992.

[3] K. Burr and W. Young, “Combinatorial Test Techniques: Table-
Based Automation, Test Generation and Code Coverage,” Proc.
Int’l Conf. Software Testing, Analysis, and Review, 1998.

[4] M. Chateauneuf and D. Kreher, “On the State of Strength-Three
Covering Arrays,”]. Combinatorial Designs, vol. 10, no. 4, pp. 217-
238, 2002.

[5] D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C. Patton, “The
AETG System: An Approach to Testing Based on Combinatorial
Design,” IEEE Trans. Software Eng., vol. 23, no. 7, pp. 437-444, 1997.

[6] M.B. Cohen, C.J. Colbourn, J. Collofello, P.B. Gibbons, and W.B.
Mugridge, “Variable Strength Interaction Testing of Compo-
nents,” Proc. Int’l Computer Software and Applications Conf.
(COMPSAC), pp. 413-418, 2003.

[7] M.B. Cohen, C]J. Colbourn, P.B. Gibbons, and W.B. Mugridge,
“Constructing Test Suites for Interaction Testing,” Proc. Int’l Conf.
Software Eng. (ICSE), pp. 38-44 2003.

[8] S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M. Lott, G.C.
Patton, and B.M. Horowitz, “Model-Based Testing in Practice,”
Proc. Int’l Conf. Software Eng. (ICSE), pp. 285-294, 1999.

[9] LS. Dunietz, W.K. Ehrlich, B.D. Szablak, C.L. Mallows, and A.
Iannino, “Applying Design of Experiments to Software Testing,”
Proc. Int’l Conf. Software Eng. (ICSE), pp. 205-215, 1997.

[10] D. Kuhn and M. Reilly, “An Investigation of the Applicability of
Design of Experiments to Software Testing,” Proc. 27th Ann. NASA
Goddard/IEEE Software Eng. Workshop, pp. 91-95, 2002.

[11] B. Liblit, A. Aiken, Z. Zheng, and M. Jordan, “Bug Isolation via
Remote Program Sampling,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, pp. 141-154,
2003.

[12] R. Mandl, “Orthogonal Latin Squares: An Application of
Experiment Design to Compiler Testing,” Comm. ACM, vol. 28,
no. 10, pp. 1054-1058, 1985.

[13] A.Memon, A. Porter, C. Yilmaz, A. Nagarajan, D.C. Schmidt, and
B. Natarajan, “Skoll: Distributed Continuous Quality Assurance,”
Proc. Int’l Conf. Software Eng. (ICSE), pp. 459-468, 2004.

[14] C.V. Rijsbergen, Information Retrieval. London, UK: Butterworths,

[15] D. Schmidt, D. Levine, and S. Mungee, “The Design and
Performance of the TAO Real-Time Object Request Broker,”
Computer Comm., special issue on building quality of service into
distributed systems, vol. 21, no. 4, 1998.

[16] D.C. Schmidt and S.D. Huston, C++ Network Programming,
Volume 1: Mastering Complexity with ACE and Patterns. Boston:
Addison-Wesley, 2002.

[17] LH. Witten and E. Frank,, Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan Kaufmann,
1999.

[18] C. Yilmaz, A. Krishna, A. Memon, A. Porter, D. Schmidt, A.
Gokhale, and B. Natarajan, “Main Effects Screening: A Distributed
Continuous Quality Assurance Process for Monitoring
Performance Degradation in Evolving Software Systems,” Proc.
Int’l Conf. Software Eng. (ICSE), pp. 293-302, 2005.

[19] C. Yilmaz, M.B. Cohen, and A. Porter, “Covering Arrays for
Efficient Fault Characterization in Complex Configuration
Spaces,” Proc. Int’l Symp. Software Testing and Analysis (ISSTA),
pp. 45-54, 2004.

[20] A. Zeller and R. Hildebrandt, “Simplifying and Isolating Failure-
Inducing Input,” IEEE Trans. Software Eng., vol. 28, no. 2, pp. 183-
200, 2002.

Cemal Yilmaz received the BS and MS degrees
in computer engineering and information science
from Bilkent University, Ankara, Turkey, in 1997
and 1999, respectively. In 2002 and 2005, he
received the MS and PhD degrees in computer
science from the University of Maryland at
College Park. He is a postdoctoral researcher
at the IBM Thomas J. Watson Research Center,
Hawthorne, New York, where he works in the
field of software quality assurance. His research
interests include distributed, adaptive, and con-
tinuous quality assurance, applications of formal methods to software
testing, fault localization, software performance modeling, evaluation,
and optimization, and highly configurable software systems.

Myra B. Cohen received the BS degree from the School of Agriculture
and Life Sciences at Cornell University, the MS degree in computer
science from the Univesity of Vermont, and the
PhD degree in computer science from the
University of Auckland, New Zealand. She is
an assistant professor in the Department of
Computer Science and Engineering at the
University of Nebraska—Lincoln. She is a mem-
ber of the Laboratory for Empirically-Based
Software Quality Research and Development
(ESQuaReD). Her research interests include
software interaction testing, testing of configur-
able systems, metaheuristic search, and appli-
cations of combinatorial designs. She is a member of the IEEE.

Adam A. Porter received the BS degree summa cum laude in computer
science from the California State University at Dominguez Hills, Carson,
Calif., in 1986. In 1988 and 1991, he received his
MS and PhD degrees, respectively, from the
University of California at Irvine. Currently an
associate professor, he has been with the
department of Computer Science and the In-
stitute for Advanced Computer Studies at the
University of Maryland since 1991. He is a winner
of the National Science Foundation Faculty Early
Career Development Award and the Dean’s
Award for Teaching Excellence in the College
of Computer, Mathematics, and Physical
Sciences. His current research interests include empirical methods for
identifying and eliminating bottlenecks in industrial development
processes, experimental evaluation of fundamental software engineer-
ing hypotheses, and development of tools that demonstrably improve
the software development process. He is a senior member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

