
Experimenting with software testbeds
for evaluating new technologies

Mikael Lindvall & Ioana Rus & Paolo Donzelli &
Atif Memon & Marvin Zelkowitz & Aysu Betin-Can &

Tevfik Bultan & Chris Ackermann & Bettina Anders &

Sima Asgari & Victor Basili & Lorin Hochstein &

Jörg Fellmann & Forrest Shull & Roseanne Tvedt &
Daniel Pech & Daniel Hirschbach

Springer Science + Business Media, LLC 2007
Editor: Bojan Cukic

Abstract The evolution of a new technology depends upon a good theoretical basis for
developing the technology, as well as upon its experimental validation. In order to provide for

Empir Software Eng
DOI 10.1007/s10664-006-9034-0

P. Donzelli :A. Memon :M. Zelkowitz : S. Asgari : V. Basili : D. Hirschbach
Computer Science Department, University of Maryland, College Park, MD 20742, USA
e-mail: p.donzelli@governo.it
e-mail: atif@cs.umd.edu
e-mail: mvz@cs.umd.edu
e-mail: sima@cs.umd.edu
e-mail: basili@cs.umd.edu
e-mail: DanielHirschbach@gmx.net

M. Lindvall (*) : I. Rus :A. Memon :M. Zelkowitz : C. Ackermann : B. Anders :V. Basili :
J. Fellmann : F. Shull : R. Tvedt : D. Pech
Fraunhofer Center for Experimental Software Engineering, College Park, MD, USA
e-mail: mlindvall@fc-md.umd.edu
e-mail: irus@computer.org
e-mail: cackermann@fc-md.umd.edu
e-mail: banders@fc-md.umd.edu
e-mail: joerg.fell@gmail.com
e-mail: fshull@fc-md.umd.edu
e-mail: rtvedt@panorange.com
e-mail: Daniel.Pech@iese.fraunhofer.de

T. Bultan
University of California at Santa Barbara, Santa Barbara, CA, USA
e-mail: bultan@ucsb.edu

A. Betin-Can
Informatics Institute, Middle East Technical University, Ankara, Turkey
e-mail: aysu@ii.metu.edu.tr

L. Hochstein
Department of Computer Science and Engineering, University of Nebraska-Lincoln, 256 Avery Hall,
Lincoln, NE 68588-0115
e-mail: lorinh@gmail.com

this experimentation, we have investigated the creation of a software testbed and the feasibility
of using the same testbed for experimentingwith a broad set of technologies. The testbed is a set
of programs, data, and supporting documentation that allows researchers to test their new
technology on a standard software platform. An important component of this testbed is the
Unified Model of Dependability (UMD), which was used to elicit dependability requirements
for the testbed software. With a collection of seeded faults and known issues of the target
system, we are able to determine if a new technology is adept at uncovering defects or
providing other aids proposed by its developers. In this paper, we present the Tactical
Separation Assisted Flight Environment (TSAFE) testbed environment for which we modeled
and evaluated dependability requirements and defined faults to be seeded for experimentation.
We describe two completed experiments that we conducted on the testbed. The first experiment
studies a technology that identifies architectural violations and evaluates its ability to detect the
violations. The second experiment studies model checking as part of design for verification.We
conclude by describing ongoing experimental work studying testing, using the same testbed.
Our conclusion is that even though these three experiments are very different in terms of the
studied technology, using and re-using the same testbed is beneficial and cost effective.

Keywords Empirical study . Technology evaluation . Software testbed

1 Introduction

The evolution of a new technology depends upon a good theoretical basis for developing
the technology as well as upon its experimental validation. In most sciences, there is an
established mechanism for performing experimentation with a set of tools well adapted for
that purpose (e.g., particle accelerators in physics; optical and radio telescopes for
astronomy; microscopes, and test tubes in chemistry). Software engineering has no such
established protocol for experimental validation. In order to rectify this limitation, we
investigated the creation of a software testbed that is useful for such experimentation with
software technologies (i.e., development and quality assurance tools, techniques and
methods). The testbed is a set of programs, data, and supporting documentation that will
allow researchers to test their new technologies on a standard software platform. With a
collection of seeded defects and known issues of the target system, we are able to determine
if a new technology is adept at uncovering defects or providing other aids proposed by its
developers. Creating standardized testbeds would allow more formal validations of many of
the technologies now proposed for improvement of software development practices.

This paper, which is an extension of a workshop paper (Asgari et al. 2004), discusses a
particular testbed. In order to test its usefulness, we had to apply it to a particular software
development problem, but from the perspective of different technologies and investigating
the feasibility of “reusing” the same testbed for different experiments. We focus in this
paper on technologies for achieving software dependability, but the concept is easily
extendable to any other attribute one wishes to address.

We investigated software dependability as part of the NASA’s High Dependability
Computing Program (HDCP), a cooperative research agreement between NASA and
various universities and research centers. The HDCP project investigated achieving high
dependability by introducing new technologies developed by the participating research
partners. Developing high dependability software requires (a) specifying the dependability
requirements of the software, (b) using technologies to build in high dependability as the
software is developed, and (c) using technologies to verify that the required level of

Empir Software Eng

dependability has been achieved. A standardized testbed would be an appropriate vehicle
for this verification. For our testbed, we chose a prototype air traffic control piece of
software, Tactical Separation Assisted Flight Environment (TSAFE) (Erzberger 2001;
Dennis 2003). We previously demonstrated that the TSAFE testbed could be used to study
technologies that detect similar dependability issues (Lindvall et al. 2005). In this paper, we
analyze whether that same testbed could be used in experiments studying very different
technologies that detect very different kinds of dependability issues.

The paper is organized as follows. In Section 2, the TSAFE testbed is introduced. In
Section 3, the Unified Model of Dependability and its application to the testbed is described.
UMD is a requirement engineering approach designed to elicit and model non-functional
dependability requirements for a system and was used to specify TSAFE’s dependability
requirements. Section 4 presents the development of the testbed from the TSAFE software.
As an illustration of using the testbed for evaluation of various dependability technologies’
contribution to building in high dependability, we then present an overview of two completed
experiments. Section 5 describes an experiment that studied the Software Architectural
Evaluation (SAE) method (Tvedt et al. 2002). The input to SAE is a set of rules that describes
desired properties of the software architecture. The output is a diagram that indicates
violations of the rules in terms of coupling between components, highlighting extra and
missing relations. This experiment was costly to set up since it included the development of
the initial testbed. Section 6 describes an experiment that studied the “Design for Verification
with Concurrency Controllers (DVCC)” technology. The goal of DVCC is to eliminate
synchronization errors in Java programs using model checking technologies in conjunction
with design patterns that facilitate automated verification (BetinCan et al. 2005). This
experiment turned out to be cost-effective since not much change of the testbed was required,
even though model checking is very different from architectural evaluation. Section 7
describes yet another study, which is still ongoing, using the same testbed. It studies testing
where test coverage criteria are used to drive the test-case generation process. After summary,
discussion, and future work, we provide information for getting access to the testbed.

2 TSAFE Overview

A key strategy for the HDCP initiative was to accelerate adoption of new software
engineering technologies by evaluating them on testbeds representative of NASA software.
One such testbed is TSAFE, a component of a proposed Automated Air Traffic Control
system. TSAFE was defined by Erzberger (Erzberger 2001) at NASA Ames Research
Center, implemented as a prototype by Dennis at MIT (Dennis 2003), and then
instrumented and packaged for experimentation by University of Maryland and Fraunhofer
Center Maryland as described in Section 4.

The US Air Traffic Control (ATC) system, consisting of a large network of people and
equipment that monitor and direct aircraft, is a critical infrastructure that manages more
than 30,000 commercial flights to move 2,000,000 passengers safely each day (Erzberger
2004). The main goal of the system is to keep a safe distance between the aircrafts while
achieving efficient air traffic movement in order to minimize delays. The proposed
Automated ATC (AATC) software system encompasses all the characteristics that make
establishing dependability a challenge, such as distributed computation, concurrency, safety
critical functionality, communication protocols, sensitive data and user interaction. Hence,
the AATC system raises a large set of implementation issues that propagate to many of its
system components.

Empir Software Eng

TSAFE is a software component of the future AATC designed to aid air traffic
controllers in detecting and resolving short-term conflicts between aircrafts. At present, air
traffic controllers maintain aircraft separation by surveying radar data for potential conflicts
and issuing clearances to pilots to alter their trajectories accordingly. Under the current
system, only part of the airspace capability is exploited. Exploiting the full airspace
capacity requires the new Automated Airspace Concept to be implemented, which means
that automated mechanisms play a primary role in maintaining aircraft separation. The role
of TSAFE is to act as a reliable independent safety net from inevitable imperfections in this
proposed system. Its aim is to detect conflicts between 2 and 7 min in the future and, in its
full implementation, to issue avoidance maneuvers accordingly.

TSAFE seemed like a perfect candidate for our testbed application since it contained
many of the implementation and behavioral issues present in many large systems, without
being overwhelmingly large in terms of lines of code, and its application in the air traffic
domain was relevant to NASA, the HDCP sponsor. The implementation of TSAFE, used
for our testbed, provides the air traffic controller with a graphical representation of the
conditions (aircraft position, planned route, forecasted synthesized route) and of the status
(conformance or not conformance with the planned route) of selected flights within a
defined geographical area (Fig. 1).

3 Modeling TSAFE Dependability

The International Federation for Information Processing defines dependability as the
trustworthiness of a computing system that allows reliance to be justifiably placed on the
services it delivers. “Reliance” is contextually subjective and depends on the particular
stakeholders’ needs. Different stakeholders will focus on different systems attributes, e.g.,
availability, ability to avoid catastrophic failures, and prevention of deliberate intrusions, as
well as on different levels of adherence to such attributes. In addition, the same attribute can
mean different things to different people, and it is common to find multiple definitions for
the same attribute (Boehm et al. 2003; Huynh et al. 2003; Laprie 1992; Randel 1998; Rus et
al. 2002). Dependability assumes a precise meaning only when applied to a specific
context: of system and particular stakeholders’ goals.

From this perspective, we have adopted a requirements engineering approach specially
devised to model dependability in context, i.e., the Unified Model of Dependability (UMD)
(Basili et al. 2004; Donzelli and Basili 2006). UMD is both stakeholder-oriented and issue-
centered providing a framework that defines a set of dimensions of interest to any
stakeholder (i.e., Fig. 2), into which the stakeholder defines issues of concern (e.g., Table 1).

Fig. 1 The TSAFE display
showing three planes flying over
Maryland

Empir Software Eng

It permits stakeholders to express their dependability requirements by specifying what they
consider the actual dependability issues (i.e., a failure of the system or hazard to users of the
system) and their scope (the affected system or specific service). For each issue,
stakeholders may also specify the tolerable manifestations (measure) and the desired
reaction (something to mitigate if the event occurs). In addition, whenever necessary,
stakeholders could also specify the external event which could trigger the issue. A
supporting tool (Fig. 4) helps stakeholders in this process.

For example, to help stakeholders identify failures that should not affect the system or a
service, UMD may suggest the different types of failures that could occur (e.g., response
time failures, accuracy failures). To allow for the specification of more precise require-
ments, UMD may introduce different levels of severity and impact on availability (e.g.,
stopping and non-stopping failures).

Similarly, stakeholders can select the measurement model most suitable to express the
tolerable manifestation of an issue (e.g., Mean Time Between Failure [MTBF]), and use
different reaction types. For example, stakeholders could express the reaction of the system
to a specific issue in terms of warning services (to make the user aware of the situation),
mitigation services (to reduce the impact of the failure on the user), alternative services (to
provide alternative means to perform the same activity), or desired recovery behavior (the
time and the actions necessary to recover from the failure). Finally, different event types can
be suggested to facilitate stakeholders in recognizing external situations that could harm the
system (e.g., attacks and adverse conditions).

UMD has been implemented as a web-based tool (Basili et al. 2004; Donzelli and Basili
2006) organized around two tables: the Table “Scope” (Fig. 3), which allows stakeholders

scope

- Type
 - Whole System
- Service

- Operational Profile
 - Distribution of transaction
 - Workload volumes

 - etc.

reaction

- Impact mitigation
 - warnings
 - alternative services

- mitigation services
- Recovery
 - recovery time / actions
- Occurrence reduction
 - guard services

- Type
 - Adverse Condition
- Attack
- etc.

event

measure

- Measurement Model
 - MTBF
 - Probability of Occurrence

- % cases
 - MAX cases in interval X
 - Ordinal scale

(rarely/sometimes/....)

cause

concern manifest

trigger

FAILURE
- Type
 - Accuracy
 - Response Time
 - etc.
- Availability impact
 - Stopping

- Non-Stopping
- Severity

- High
- Low

HAZARD
- Severity
 - People affected

 - Property only
 - etc.issue

Fig. 2 The dependability modeling framework

Empir Software Eng

to describe all the services of the system for which dependability could be of concern; and
the Table “Issue” (Fig. 4), which allows users to specify their dependability needs by
defining, for the whole system or a specific service (selected from the “Scope” table), the
potential issues (failures or hazards), their tolerable manifestations, the possible triggering
external events, and the desired reactions.

3.1 Applying UMD to Identify the Dependability Requirements for TSAFE

We used UMD to define the dependability requirements for TSAFE. A small group of
computer science researchers and students acted as stakeholders (specifically as air traffic
controllers), after being given a short introduction to TSAFE and its purposes, while one
person acted as an analyst (Donzelli and Basili 2006).

Table 1 UMD’s failure characterization applied to TSAFE

Failure characterization:
Failure types:
Functional correctness: system or service does not implement the functional requirements.
Throughput: average or peak number of items (aircraft, routes, etc.) per unit of time dealt with by the system
or service is less than expected.

Response time: response time of the system or the service greater than expected.
Peak load: max number of items handled by the system or the service is less than expected.
Accuracy: the accuracy (Lateral, Longitudinal, Vertical) of the computed aircraft position or projected
trajectory is less then expected.

Data freshness: the frequency of data updating is less than expected.
Failure impact:
Stopping: failure makes the system or service unfit for use.
Non-stopping: failure does not make the system or service unfit for use
Failure severity:
High severity: failure has a major impact on the utility of the system for the operator.
Low severity: failure has a minor impact on the utility of the system for the operator.
Hazard characterization:
Catastrophic: risk of total aircraft destruction.
Severe: risk of serious damage to the aircraft, serious emergency situation, and loss of human lives possible.
Major: risk of emergency situation, high stress on cockpit crew.
Event characterization:
Adverse condition: any unintentional event that could have some effect on the system.
Attack: any intentional action carried out against the system.
Measure characterization:
Measurement models:
Mean time between failures (MTBF)
Percentage of cases
Reaction characterization:
Services types:
Warning services: warn user about the situation.
Alternative services: provide alternative ways to perform same tasks.
Mitigation services: reduce issue impact on the user.
Guard services: reduce probability of occurrence of the issue.
Recovery behavior:
Mean time to recover (MTTR)
Max time to recover (MaxTTR)

Empir Software Eng

UMD was applied in two main steps, scope definition and requirements elicitation and
modeling.

Scope definition All stakeholders, working together and supported by the analyst, selected
from the functional requirements available for TSAFE the services for which they believed
dependability could be relevant. The identified services are described in the scope table
(Fig. 3).

Requirements elicitation and modeling Each stakeholder, supported by the analyst and
guided by the structure provided by the tool, filled as many tables as necessary to define
her/his dependability needs (Fig. 4). The characterizations of the UMD concepts of scope,
issue, event, measure, and reaction provided useful guidance to stakeholders. Each
stakeholder used the characterizations already available, or, whenever necessary, extended
it with his/her own definitions. The characterizations used for TSAFE are described in
Table 1. As an example of the requirements collected with UMD, we describe one of the
tables filled by the stakeholders. Figure 4 illustrates an example of an issue not related to an
external event. The stakeholder signals a potential failure for the service “display flight
synthesized route,” when the “Response time is greater than 500 ms.” This is a Response
Time, Non-Stopping, High Severity failure, given the high impact on the service’s utility for
the operator. For the stakeholder, this failure is also a “Major Hazard,” given that he/she

Fig. 4 UMD Tool—TSAFE issues not related to an external event

Fig. 3 “Scope” of the UMD
model for TSAFE, which is used
to identify relevant services for
the software under consideration

Empir Software Eng

thinks he/she could miss spotting a plane on a dangerous path. This could lead to an
emergency situation and possibly cause high stress on the cockpit crew, required to perform
sudden escape maneuvers by the very short-term conflict avoidance systems. The stake-
holder identifies this failure as a highly critical one, leading the analyst to suggest MTBF of
2*104 (between the values suggested for very high and mission critical availability in
Table 1). In order to be more confident in the system, the stakeholder introduces a warning
service that will advise in case computational time becomes greater than 500 ms, alerting
him when attention is needed. Finally, the stakeholder defines the recovery to be performed
within one hour. If this failure condition lasts more than 1 h, he would be unable to perform
his duties due to the need to maintain a higher than usual level of attention.

4 Building the Testbed Environment

This section discusses why and how the testbed was built.

4.1 Goals for the Testbed Environment

In order to implement the dependability requirements for TSAFE that were elicited with
support from UMD, there are several major categories of actions, such as detecting and
eliminating the faults that can lead to failures, or, if failures cannot be prevented, then
assuring proper recovery within desired time. The appropriate selection of technologies that
ensures or increases the dependability of the software for a specific project raises questions
such as: How effective are these technologies for TSAFE? How costly is it to apply them?
What is the most appropriate technology strategy for this context? The remainder of this
paper proposes and illustrates the use of a testbed to help answer such questions.

Previous research typically has provided the means to answer these questions for the
specific environment in which each technology is being evaluated (which however might
be different when technology is applied to other contexts), or to produce a broad cost
prediction based on a predetermined set of variables. However, methods for providing truly
general decision support, of the kind that can predict the likely effects of using a particular
technology in a wide swathe of development environments, have still not been produced.
This is partly due to some of the following factors:

& Empirical studies are expensive, resulting in relatively few studies being carried out.
Carrying out empirical work is complex and time consuming; this is especially true for
software engineering. Unlike manufacturing, we do not build the same product, over and
over, to meet a particular set of specifications. Software is developed and each product is
different from the last. So, software artifacts do not provide a large set of data points
permitting sufficient statistical power for confirming or rejecting hypotheses. Moreover,
human factors tend to increase the cost of experimentation (the most relevant subjects for
most studies come from the population of professional software developers, whose time
is almost always over-booked and highly expensive) making it more difficult to achieve
statistical significance.

& Empirical results are difficult to replicate. Empirical researchers have argued for some
time that empirical studies cannot be “one shot deals,” i.e., knowledge must be built up
through families of closely related experiments that allow factors to be carefully studied.
However, unless experimental results can be validated, somehow this strategy runs the
risk of including suspect or clearly invalid results in the overall data set, and thus

Empir Software Eng

abstracting faulty conclusions. In other fields, this risk is mitigated by researchers
performing “strict replications” of another’s work; that is, replications that conform as
closely as possible to the original study to allow the results to be checked. This is not
always feasible in software engineering where the most relevant studies (i.e., those in
industrial contexts) are not only human dependent but often are extremely expensive to
repeat and may rely on proprietary artifacts.

We have seen that developing reusable software testbeds have mitigated the above
difficulties, at least when those testbeds are representative of real software development
projects and have appropriate documentation. We have seen that having such testbeds
available can address the difficulties discussed above by:

& Reducing costs of experimentation. The cost of an experiment is greatly increased if the
preparation of multiple artifacts is necessary. Creating artifacts which are representative
of those used in real development projects is difficult and time consuming. Reusing
testbed artifacts representative of ones encountered in practice can thus reduce the time
and cost needed for experimentation.

& Facilitating comparison of technologies. Once data concerning the use of the testbeds
artifacts are available, they provide researchers with a “benchmark” against which
future studies can be compared. For example, researchers can obtain subjects with
similar experience to those who did the original development, then vary the
development practices that were applied to see if they result in fewer defects or more
reliability in the final product.

& Facilitating replication. The results of empirical studies involving testbeds need never
go without validation since the associated artifacts and development metrics are
publicly available.

4.2 Turning TSAFE into a Testbed

The TSAFE prototype, upon which we based the testbed, was initially developed at MIT
(Dennis 2003) and is a 20,000 lines of Java program that performs two primary functions:
conformance monitoring and trajectory synthesis.

As part of our effort to turn TSAFE into an experimental testbed, we added a number of
specific features, e.g., synthesized faults that can be seeded into the source code as well as a
feature that allows the experimenter to enable or disable a specific seeded fault. Another
feature was added that allows the experimenter to monitor seeded faults as they get
executed by generating system output and traces that can be captured and used to determine
the status of the TSAFE system under execution. We also added features to facilitate
experimentation with various artifacts of the testbed, synthesized faults that were seeded
into artifacts other than the source code (e.g., architectural documentation), and added
documentation and other artifacts in order to facilitate understanding the runtime behavior
of TSAFE. Some initial studies were conducted and documented to serve as examples for
other experimenters interested in using the testbed. The experience from these technology
experiments as well as feedback and lessons learned have been collected and are provided
together with the other artifacts as part of the testbed in order to maximize the usefulness as
well as to minimize the cost and effort of experimentation.

Currently, the following artifacts are available: a requirements specification, architecture
documentation, source code, an installation guide, and some recorded flight data that serve
as test input. A tool to create artificial test data is also available.

Empir Software Eng

Fault seeding We determined that, for experimentation, a set of faults needed to be
synthesized for injection in the source code. We identified three kinds of faults that
represent developer errors and thus constitute plausible fault classes: Technology-driven,
Dependability-driven, and History-driven.

& Technology-driven faults are derived from faults that a certain technology claims it will
detect. Thus such faults will be either within, on the border of, or just outside the scope
of the technology. These faults may or may not cause run-time failures in the system
under study and may or may not represent historical faults for that system. As the name
indicates, technology-driven faults are strongly related to the technology under study.
This fault class addresses the fact that different technologies detect different kind of
faults. Technologies that address the same kind of problem and therefore will find the
same kind of faults belong to the same technology family. Instead of trying to build a
testbed that serves all technologies and covers the complete fault space (which is an
almost impossible task) we made the decision to start with faults related to the claims of
the selected family of technology; technologies that detect violations of the
implementation of an architecture as compared to the planned architecture. Thus, we
defined a set of faults that are related to the architecture of the testbed relative to this
type of technology. For each of these faults, we identified the impact on the system’s
behavior and how the resulting system failure would be detected. For each of these
faults, we also documented what architectural rules they violated. Subsequently, we
added synthesized faults related to the technologies that were studied, for example, we
added concurrency problems that model checking might or might not find (described
below).

& Dependability-driven faults are faults that will cause run-time failures, if triggered.
These faults can be derived from dependability models or requirements of the system.
The faults may or may not be detectable by a particular technology, and may or may not
represent historical faults for a particular system. In order to synthesize dependability-
driven faults, we used UMD described in Section 3 and identified a set of potential
failures derived from the dependability model. For each of the possible failures, we
identified a set of plausible causing faults. Thus the link between failures and faults was
made explicit and it is well known how the system changes behavior when these faults
are triggered.

& History-driven faults are faults that have been detected in the past during testing or
usage of the testbed or similar systems. These faults may be collected from problem
reports, inspection meetings, testing reports, quality assessments etc. These faults may
or may not cause run-time failures, and they may or may not be detectable by a
particular technology. We did not have access to the original fault-history from the
implementation of TSAFE at MIT, but used other related fault-histories to determine the
plausibility of various suggested faults. We are collecting faults uncovered during
TSAFE-related experiments in order to create a fault history for future experimentation.

Focusing on technology-driven faults that were, to as large extent as possible, also
dependability-driven and history-driven (as described above), we created several different
fault sets. The faults were seeded into the source code of the testbed. There are several
reasons for dividing the faults into different sets. First, we deemed it unrealistic, based on
our experience from previous analyses, that a software system of the size of the TSAFE
source code (∼20,000 lines of Java) would contain all faults at once. Second, it was
impractical to seed all faults into one version, as the risk of faults overlapping each other

Empir Software Eng

was imminent and it would be difficult to analyze the results for such faults. Third, we
wanted to create several versions of the testbed in order to run several “replicated”
experiments on it. The results are different versions of the testbed seeded with different sets
of faults. The first version of the testbed without seeded faults is considered a baseline to
which we compare faulty versions of the testbed.

4.3 TSAFE Instrumentation

The testbed developers instrumented TSAFE as a testbed for designing and executing the
following dependability-related experimental activities:

& Define what dependability means for TSAFE, by applying the UMD model.
& According to this definition of dependability, identify potential failures and

corresponding faults in the code that could cause these failures.
& Identify test cases that would trigger these faults and cause failures.
& Seed the code with the identified faults.

For each experiment, the technology developers (or someone skilled in using the
technology) formulated their hypotheses in terms of faults that can be detected by their
technology (and possibly the impact on dependability) and estimated the costs associated
with applying the technology. They then:

& Applied the technology on the code containing seeded faults and recorded the detected
faults as well as the associated detection cost.

& Exercised test cases on the code containing the seeded faults and recorded the occurring
failures (as well as their frequency of occurrence).

The testbed developers received the results from the technology developers and:

& Analyzed these faults and failures and validated or refuted the technology hypotheses.
& Estimated the effect on dependability and the cost of applying the technology to the

TSAFE testbed.

In order to avoid experimental bias, the testbed developers and the technology developers
never discussed seeded faults and failures during the experiment. After the experiment had
been conducted, faults, failures, and results were discussed as part of final reporting.

The outcomes of these activities are:

& A method for defining dependability and for designing and performing experiments for
estimating the effect of a technology with respect to dependability and cost, for a given
system.

& An example for the application of this method.
& An instrumented testbed reusable for future experiments.

An elaborated description of this process is provided in (Lindvall et al. 2005), using the
experiment presented in Section 5 as an example.

5 Software Architecture Evaluation Method

Many of the technologies studied in HDCP deal with the architecture of a software system,
which is one of the major reasons we decided to start experimenting with this class of

Empir Software Eng

technologies. Maintainability is one of the dependability attributes (Laprie 1992) and
architecture evaluation assumes that if the implementation conforms to the planned
architecture, then the software is easier to maintain.

In short, the software architecture models the structure and interactions of a software
system. The basic building blocks of the structure of software architecture are components
and the interrelationships among them. In addition to structure, behavior is part of software
architecture. Constraints and rules describe how the architectural components communicate
with one another.

When viewed at the highest levels, a system’s architecture is referred to as the macro-
architecture of the software system. At lower levels of abstraction, it is referred to as micro-
architecture. Architectural styles and design patterns are similar to what Bhansali (Bhansali
and Nii 1992) describes as generic forms of software architecture. Often architectural styles
guide the structure and interactions of the system when describing the software architecture
of a system at the macro-architectural level. When describing the structure and/or
interactions of a system at a micro-architectural level, design patterns can be used.

Software architectural evaluations are investigations into a software’s structure and
behavior with the purpose of suggesting areas for improvement or understanding various
aspects of a system (e.g., maintainability, reliability, or security). In many cases, a software
architectural evaluation is performed before a system has been designed or implemented.
Often, this type of architectural evaluation is performed to compare alternatives or to
determine whether or not the architecture is complete or appropriate for the application and
its requirements. In other cases, a software architectural evaluation is performed after the
system has been implemented. Such post-implementation architectural evaluations are
typically performed to ensure that the actual implementation of a system matches the
planned architectural design (Tvedt et al. 2002). Some of the technologies in HDCP evaluate
architectures before implementation, some after. The technology discussed in this paper is of
the latter kind and is called Implementation-oriented software architectural evaluation
(Tvedt et al. 2002). Since this type of software architectural evaluation is performed after a
version of the software system exists, it can utilize data measured from the actual source
code and associated documentation. Implementation-oriented software architectural evalua-
tions can be used for similar goals to pre-implementation software architectural evaluations.
For example, the source code and associated documentation can be used to reconstruct the
actual software architecture in order to compare it to the planned or conceptual software
architecture. Recovering the actual architecture of an implemented system is used for risk
assessment and maintenance cost prediction as well. The analysis of the actual software
architecture can be used to evaluate whether the implemented software architecture fulfills
the planned software architecture and associated goals, rules and guidelines.

Violations of architectural guidelines affect the maintainability of the software, as
resulted from the analysis of Mozilla (Godfrey and Lee 2000). Software decay is not a new
problem. In 1969, Lehman found that “the main problem of large systems is unintentional
interaction between components, which require changes to the components for their
elimination” (Lehman and Belady 1985). The observations were formed into a collection of
“laws” stating, for example, that: “As a program is evolved, its complexity increases unless
work is done to maintain or reduce it” (Lehman 1996). Brooks drew the conclusion that all
systems will eventually require a complete redesign as a consequence of such degeneration
(Brooks 1995). A technology able to detect architectural violations increases maintainabil-
ity of the system and thus increases its dependability. For initial experimentation with
architectural technologies, we decided to use the Software Architectural Evaluation (SAE)

Empir Software Eng

method (Tvedt et al. 2002). SAE requires a set of rules that describe properties the
architecture should have. The output of the tool that supports SAE is a diagram that shows
relations among components in the code. The diagram indicates violations of the rules of
communication in terms of coupling between components, highlighting extra and missing
relations as compared to the planned architecture.

Setup of testbed The testbed developers first prepared a set of rules describing properties
the architecture of TSAFE should possess. Altogether, 42 rules were identified; of those, 29
were considered to be relevant to the SAE method. The other 13 rules were related to
TSAFE-specific use of design patterns and were considered to be outside of the immediate
scope of SAE.

Next, a version of the TSAFE code was prepared that included 13 rule violations. That
is, 13 instances of the code where the architecture as implemented by the code did not
conform to the planned architecture as defined by the testbed developers. Of these, seven
were considered relevant to SAE. The other six rules violated design patterns. These seven
expected rule violations were considered to map to four distinct faults in the code.

An example of an architectural rule is EC1, which states that the engine component must
not access any classes in any of the other components (client, feed, or main) but the data
component. Rule EC1 is violated, for example, by the seeded faults 7.1.1 and 11.1.1. Both
faults are structural faults that introduce couplings between components that are not
specified in the architecture thus violating rule EC1.

Fault 7.1.1 will not cause run-time failures and is seeded by introducing a Java import
statement of a component that is not used. Seeding this fault only required an addition of
one line of code in one class.

Fault 11.1.1 will cause run-time failures under certain circumstances. If triggered, the
fault will cause the run-time failure that the TSAFE display map will not be updated when
threshold parameters are changed. The TSAFE map should be updated at a certain
frequency during the software’s execution and changes to the thresholds should influence
the conformance status of a flight, but this fault will interfere with this update.

Originally, the class ParametersDialog contained the ActionListener that calls the
EngineParameters class to inform it about changed parameters. The fault was seeded by
altering the source code in the following way. The attribute holding the reference to the
EngineParameters object is moved from the TsafeClient class to the TsafeEngine class,
which resides in another component. The TsafeClient now uses the attribute of the
TsafeEngine class to access the methods of ParametersDialog. When the Parameters-
Dialog is created, it gets a new created object of the EngineParameters and not the one
that is used from the other classes. Thus, it informs the wrong object about changes, which
will cause a run-time failure. In order to seed this fault, nine changes (deletions, additions,
and changes of nine lines of code) to four different classes were applied. The static view
of the change that represents fault 11.1.1 is illustrated in Fig. 5 and was constructed
using the SAVE tool (Miodonski et al. 2004). SAE is expected to detect the new inter-
component connections between the TsafeEngine and the ParametersDialog and the
TSAFEClient, but not the deleted intra-component connection between the TsafeClient and
the ParametersDialog.

Measures To assess the effectiveness of the SAE technology, this study measured the
percentage of the seeded rule violations and the percentage of the seeded faults that were

Empir Software Eng

found by the subject (a senior person skilled in using the technology) conducting the SAE
task. This required a two-step process:

(1) The issues reported by the subject were checked against the list of seeded rule violations.
This required some subjectivity since the subject was not expected to independently
formulate the same wording as was used to describe the seeded violations; the testbed
developers had to assess whether the underlying issue described was the same as the item
on the seeded list. However, since every item on both the subject list and the seeded list
had to refer to a specific area of the architecture, the amount of subjectivity was reduced.

(2) The rule violations were mapped to specific faults, by which we mean specific
instances within the code that would affect system flexibility or maintainability that
were directly caused by the rule violations. This required a higher degree of
subjectivity since it required reasoning about likely problems on future development
increments of the system.

Along with the list of discrepancies found, the subject was required to report for each
discrepancy the following information:

1. Which rule was being violated?
2. What part of the architecture was being examined when the discrepancy was found?

This information was used to understand the process followed by the subject as well as
to help improve process conformance (relative to the process provided to the subject as part
of the experiment), since it was reasoned that making up plausible answers to those ques-
tions would require more effort from the subject than simply applying the SAE documented
process and reporting the results according to the provided form and instructions.

Results The results of the study were useful for the evolution of the SAE method:

& SAE found six of the seven expected (relative to the claims of the technology) seeded
rule violations.

& The six seeded rule violations found by SAE were considered to map to three out of the
four seeded faults. Fault 11.1.1 was among the detected seeded faults.

Fig. 5 Zooming in on the engine and client components highlighting added (+) and deleted (−) connections

Empir Software Eng

& The one seeded rule violation that was missed helped identify a bug in the tool that has
since been fixed. Thus, the bug in the tool caused one (fault 7.1.1) of the four seeded
faults to be missed.

& An additional three out of the six unexpected seeded rule violations were found, which
indicates that SAE can be useful even outside the set of narrowly targeted problems it
was designed to catch.

There were several instances where misstated rules caused some confusion as to what
exactly should be checked in the code. As a result, the language describing the rules was
improved.

Since the SAEmethod addresses faults related to maintainability and since a failure means
not being able to maintain the software in a specific amount of time, exercising the test cases
on the code containing the seeded faults would mean performing maintenance tasks on the
code and measure the time it takes to complete them. For this experiment, we simply assumed
that failure of the implementation to comply with the planned architecture would cause such
failures. To address the question in more depth, we designed a separate experiment, now
ongoing, to test the hypothesis that such architectural deviations do indeed create
maintenance problems. The maintainability experiment is carried out as part of a Software
Engineering class at the University of Maryland in which students, working in teams, are
adding features to two versions of TSAFE. One version adheres to all of the guidelines
required by the SAE method, but the other version does not. Our hypothesis is that the one
that adheres to these guidelines will be easier to enhance with extensions and be more
dependable than the other. We will report on this in the future, but that does not discount the
results from our current experiment, which show that we can easily and in a cost effective
manner apply the architectural evaluation method to a fairly complex piece of software.

The conclusion from applying SAE to TSAFE is that SAE detects most of the faults that
it claims to detect. These faults are related to the maintainability of the software and thus
when these faults are detected and removed, the assumption is that dependability increases.

Cost It took 331 h to prepare the experiment, which was dominated by the time it took to
develop the testbed. The cost involved in applying SAE was 4 h. Technologies such as SAE
can therefore be recommended as a cost effective way to address these kinds of
dependability issues. Although this experiment does not prove the reduction in cost due to
the use of testbeds, this shows clearly from a follow-up experiment studying a technology
similar to SAE that we previously reported on (Lindvall et al. 2005). That experiment did
not require any new faults to be seeded or any other alterations of the testbed or to the
experimental design. Applying that technology also took 4 h and produced similar results in
terms of detected defects and the cost of developing the testbed was eliminated.

The object of our next experiment was model checking, a technology from a different
family than architectural evaluation, and was included in this paper because we were
interested in analyzing the feasibility of using the same testbed for an experiment studying a
very different technology.

6 Model Checking

In this experiment, we evaluated the “Design for Verification with Concurrency Controllers
(DVCC)” technology using the TSAFE testbed (BetinCan et al. 2005). The goal of the DVCC

Empir Software Eng

technology is to eliminate synchronization errors in Java programs using model checking
techniques in conjunction with design patterns that facilitate automated verification. Model
checking techniques exhaustively explore all the states of a system looking for violations of
its properties. If a system does not satisfy the given property, the model checker generates a
counter-example behavior demonstrating the fault. Model checking has been applied to a
variety of problems related to software development such as verification of formal
requirements, concurrent programs, and system code. Model checking has also been
applied to security in analyzing formal models of security protocols and in verification of
security related properties in software applications. One of the biggest challenges in model
checking is scalability due to state space explosion. In order to apply model checking to
software, one needs to generate manageable models of the software artifacts that can be
analyzed by a model checker and to specify an environment characterizing possible inputs.
The model and environment generation problems typically require reverse engineering of
the code to discover models and constraints that are often known by the developers at
design time.

The DVCC technology promotes the use of verifiable design patterns that facilitate
model construction and environment generation to enable scalable verification. The basic
idea is to specify critical behaviors in controller classes, and to separate a controller’s
behavior from its environment using stateful interfaces that specify the interactions between
a controller and its environment. Using this approach, the model extraction problem reduces
to construction of compact models for controller behaviors, and environment generation
problem is resolved by using controller interfaces as the characterizations of their
environments.

In the concurrency controller design pattern, concurrency controller classes are used to
control the accesses to data objects that are shared among multiple threads. For example, a
concurrency controller class implementing a reader–writer lock can be used to control the
accesses to a shared data object. The methods of a concurrency controller class are written
as guarded commands that specify the behavior of the controller. The controller interface
specifies the order the methods of the controller and the shared data object should be called.
The controller interface is specified as a finite state machine. The concurrency controller
design pattern provides helper classes which support specification of guarded commands
and finite state machines.

The DVCC technology supports a modular verification approach, which separates the
verification of the concurrency controller behavior (behavior verification) from the
verification of the threads that use them (interface verification). For behavior verification,
we use a symbolic and infinite-state model-checking tool called Action Language Verifier
(ALV) (Bultan and Yavuz-Kahveci 2001), which enables verification of controllers with
parameterized constants, unbounded variables and arbitrary number of client threads. For
interface verification we use an explicit state model checking tool called Java Path Finder
(JPF) (Brat et al. 2000) which enables verification of arbitrary thread implementations
without any restrictions.

This experimental study evaluates the DVCC technology, addressing questions
regarding

1. The applicability of the DVCC technology to safety critical air traffic control software
(i.e., is it possible to reengineer the TSAFE software using the DVCC approach where
the synchronization statements are only used in the concurrency controller classes, and
in the rest of the code calls to the methods of the concurrency controller classes are
used to control the access to the shared data) and

Empir Software Eng

2. The effectiveness of the DVCC technology in finding concurrency errors in safety
critical air traffic control software (i.e., can the verification tools that are used for the
DVCC approach find behavior errors in the concurrency controller classes and
interface errors in the code that uses the concurrency controller classes?).

Setup of testbed Two teams conducted this experimental study: (1) The University of
California at Santa Barbara (UCSB) team, which consists of the developers of the DVCC
technology and (2) the Fraunhofer Center for Experimental Engineering, Maryland (FC-
MD) team, which consists of the developers of the TSAFE testbed.

Normally, in the DVCC approach, software developers use concurrency controllers
during software design and development. However, in order to apply the DVCC approach
to the existing TSAFE code, in this experimental study, we introduced the concurrency
controllers to the code as a reengineering activity.

The technology developers reengineered the TSAFE software as follows:

1. They identified all synchronization statement in the code and the shared objects they
protect.

2. They replaced the synchronization statements in the TSAFE code with calls to the
appropriate concurrency controller classes (also provided by the technology devel-
opers). In the reengineered TSAFE code all synchronization statements are in the
controller classes.

The testbed developers then used the reengineered TSAFE code to create modified
versions using seeded faults. Each modified version may contain no faults, one behavior
fault, or one interface fault. These faults are technology-driven faults because they are
based on the claims of the technology. The faults are related to concurrency issues and will
cause run-time problems of the TSAFE software. The testbed developers seeded behavior
faults by modifying the guarded commands in the controller classes. Interface faults were
seeded by changing the order of the calls to the controller classes or by removing the calls
to the controller classes.

The technology developers received each version of TSAFE without knowing which
types of faults were in which version (or if there was any fault in a version) and applied
DVCC to it. They used the ALV tool to detect behavior errors in the controllers. The
guarded commands from the controller classes were automatically translated to the input
language of the ALV by the DVCC support tools developed by the technology developers.
Behavior verification was achieved by checking each controller with respect to a set of
invariant properties that should be satisfied by the controller (these properties are not
automatically generated, they had to be written during the reengineering of TSAFE and
they correspond to the class invariants of the controller classes). If a property is violated,
the ALV tool generates a counter-example behavior demonstrating an execution sequence
for the controller, which results in the violation of the invariant.

The technology developers used the Java Path Finder (JPF) (Brat et al. 2000) tool to
detect interface errors. JPF is a tool that searches for assertion violations in Java code
exhaustively by investigating all possible input valuations and all possible thread
interleavings. However, JPF can only handle pure Java code, therefore, in order to use
JPF all part of the TSAFE software that use native code (such as user interface calls, RMI
calls, network communication) must be replaced with drivers and stubs. The technology
developers investigated the TSAFE software for native code and replaced the calls to
methods that involve native code with drivers and stubs. Then, the technology developers

Empir Software Eng

used these drivers and stubs and the JPF tool to detect interface errors. Note that the same
set of drivers and stubs are used for each version of TSAFE.

Measures For assessing the effectiveness of DVCC, we collected the number of faults
found by the behavior and interface verification and the number of faults missed by the
behavior and interface verification. For assessing the cost of applying DVCC, we collected
the effort involved in the experiment: the time and memory usage by the ALV tool were
recorded as well as the time and memory usage by the JPF tool.

Results There were a total of 14 controller faults and 26 interface faults in versions v1–40.
Verifying the controllers in versions v1–40 with ALV identified 12 faults. The two faults that
were not found by ALV were the faults in versions v5 and v13 which were spurious faults, i.
e., they are modifications in the controller classes which do not cause any failures in the
controller behavior. Among the 26 interface faults, interface verification using JPF identified
21 of them. Among the five faults that were not caught by JPF, two were spurious faults
(v22 and v33). The faults in versions v18, v19, and v20 were real faults which can cause
failures but were not found by JPF. These faults demonstrate that there is a limit to the depth
of the faults that can be identified using explicit state verification techniques without
running out of memory. One of the results of this study is that DVCC was able to distinguish
spurious faults from the real faults. That is, the verification process did not report any
violations (both interface violation and concurrency controller property violation) when the
seeded fault was spurious. The experimental study also resulted in a fault classification
specific to DVCC and helped identify new directions for improving the DVCC approach.

Cost The time to apply the DVCC each time was minimal since it was a matter of initially
setting up and repeatedly executing a set of scripts and collecting the output. The
experiment involved executing the scripts 40 times (one for each version of TSAFE)
requiring a total effort of 8 h. It took about 8 h to change the testbed architecture in order to
introduce some concurrency characteristics by turning TSAFE into a client-server
application, and it took another 8 h to introduce the concurrency controllers to the code.
This 16 h effort is small compared to the effort it would have taken to develop a testbed
from scratch.

In Table 2, the results from experiment one and two are summarized.

7 Software Testing (Ongoing Study)

We are expanding the testbed to allow for experiments using standardized execution-based
technologies, i.e., software testing. During software testing, the software’s behavior is
studied by executing test cases, which represent controlled input. The software’s execution
is checked against an expected behavior and the software’s specifications and test coverage
criteria are used to drive the test-case generation process.

We have multiple goals for experimenting with software testing on the testbed. First, we
want to define a process for future execution-based verification and validation technologies.
Since software testing is well-understood, we can focus on the process-definition issues
rather than the intricacies of the technology. In the future, we will apply the same process to
other, less understood execution-based technologies. Second, since software testing has
been widely studied, the results of experiments on testing will give us a baseline

Empir Software Eng

technology, which we can use to compare other technologies. Finally, with our results, we
can contribute to software testing research and its applicability to dependability.

A senior person skilled in testing is leading the development of a “test pool” (Memon et
al. 2005) for the TSAFE software. The test pool will consist of a large number of test cases
which can be used to generate many types of test suites, satisfying many coverage criteria.
Specifications of TSAFE are used to generate black-box test cases as well as code coverage
to develop white-box test cases. In order to design “fair” experiments, it is important that
the test pool be constructed in such a way so as not to make any one testing technique seem
superior. For example, consider an experiment that compares the fault-detection
effectiveness of branch-coverage and statement-coverage adequate suites. If the test pool
contained exactly one test case t that covers a particular branch b in the code and detects a
fault f, any branch-coverage adequate suite generated from the test pool will surely contain
t. Consequently, the fault f will always be detected by all branch-coverage adequate test
suites, giving an unfair advantage to branch-coverage. However, it may be possible to
create additional test cases that cover b but do not detect f. To circumvent the
abovementioned problem such test cases must be added to the test pool. In general, the
test pool must be designed very carefully. Consequently, the test pool (which currently
contains 121 test cases) has the following characteristics:

1. Each statement in the TSAFE application is covered by at least 30 test cases.
2. Each branch is covered by at least 30 test cases.
3. If the test case was developed using some requirements specification, we provide

traceability to the particular requirement that was being tested.

In addition, we describe the expected output (Memon et al. 2003). This is the TSAFE
output that we expected to see as a result of the execution of the test case. For example, for
a test case that should result in a blundering flight, the expected output was an encoded
form of “the flight XYZ should blunder.”

Table 2 Results from experiment 1 and 2

No. of seeded defects No. of detected seeded defects Cost

SAE Total of 13 seeded rule
violations. Of these, seven
were architectural
violations and six were
violations of design patterns

SAE detected six of the seven
seeded architectural violations,
thus one architectural violation
remained undetected.

A total of 331 h
including
developing the
initial testbed

SAE detected three out of the six seeded
design pattern violations. Since SAE
was not expected to detect any of
these violations, this is a positive finding.

A total of 4 h
to apply the
technology
in one session.

Model
checking

Total of 40 faults. Of these,
14 were controller faults
and 26 were interface faults

ALV identified 12 of the 14 seeded
controller faults. The two undetected
controller faults were spurious faults and
were not expected to be detected by ALV.

A total of 16 h
to reengineer
the testbed

JPF identified 21 of the 26 seeded the
interface faults. Two of the faults that
were not caught by JPF were spurious
faults and were not expected to be
detected by JPF. Three of the undetected
faults were real ones.

A total of 8 h to
set up and apply
the technology
40 times.

Empir Software Eng

As we use the test pool to conduct new experiments (e.g., compare test suites created
using equivalence-class partitioning and boundary-value analysis), we will need to augment
the test pool with additional test cases. We have executed all the test cases on the original
TSAFE application as well as its fault-seeded versions. Since the original TSAFE produces
a graphical output, we augmented it so that each graphics primitive was also written in text-
form to a file. Our test-case verifier examined this text file to determine the output of a test
case. For each test case execution, we have collected the following information:

1. Whether the TSAFE application passed/failed for the test case compared to the
expected result.

2. The path (in terms of statements and their ordering) that was executed by the test case.
3. Whether the fault-seeded versions passed/failed for the test case. If they failed, then we

record the difference between the original and fault-seeded output.

It is common practice to run all test cases in a test pool first. The pool then contains the
actual output observed (Memon et al. 2001). We have started to use the test pool to conduct
experiments on TSAFE. Since we executed all the test cases, we need not re-run them during
these experiments. We can simply simulate the process of test execution. That way, if we
want to create 200 branch-coverage test suites, each consisting of a number of test cases
from the pool, we will immediately know the fault-detection ability of the 200 suites, since
we know what each test case actually does. In addition, as part of this process we enhanced
TSAFE with a harness to automatically executing the test cases. The results from this
experiment will help us to compare testing’s impact on dependability relative to other
technologies.

The time to apply testing will be minimal since each run will be a matter of executing a
set of scripts that will run a test case. The result (pass or fail) will be automatically
recorded. There was no need to change the testbed architecture for this experiment since
testing is such a general technique. However, the creation of the test suite required much
effort, amounting to several weeks of work.

8 Summary, Discussion, and Future Work

Testbeds have proven to be an effective vehicle for testing new technologies. We previously
demonstrated that one testbed could be used to study several technologies that detect
similar dependability issues (Lindvall et al. 2005). In this paper, we studied whether one
testbed could be used in experiments studying different technologies that detect different
kinds of dependability issues. Our conclusion is that even though these three experiments
are very different in terms of the technology that was the subject for experimentation, it was
feasible to apply them to the same testbed. However, there are some limitations to the use of
testbeds. For example, the technologies studied in the experiments described in this paper
all assume that the Java programming language is used. Thus, it would probably not be
cost-efficient to reuse/rewrite the testbed for experiments on technologies that analyze
languages that are conceptually different from Java. Another limitation to the use of
testbeds, their development and maintenance, is the rapid evolution of technology in
general, which means that the testbed has to be constantly updated to serve the latest
emerging technologies. Service-Oriented Architectures is an example of a relatively new
technology that has not been extensively empirically studied yet and would benefit from
using a testbed. However, such a testbed would probably be very different from the testbed
we have discussed in this paper. In addition, we do not suggest a broad development of

Empir Software Eng

testbeds by each organization that whishes to conduct technology experiments. Our vision
is instead that a few independent organizations are funded to develop and maintain testbeds
as a service to technology developers allowing technologies to be studied outside of the
inventor’s laboratory before applying them to real situations. This will keep the cost of
experimentation down and will allow for coordination and experience sharing between all
stakeholders in an efficient manner.

Developing and maintaining several versions of the testbed is indeed a challenge. In
order to manage the asset that the TSAFE testbed constitutes, we are applying product line
modeling describing the available versions of artifacts and how they can be combined. The
source code versions are managed using CVS and the documentation is managed using a
document management system (Hyperwave). This management is, however, time-
consuming and there is always a risk that it will deteriorate since funding for such
activities are difficult to obtain.

Our future work is to enhance the testbed by synthesizing and seeding more faults that
would make the testbed more interesting for other families of technologies. We will also run
several additional experiments, analyze, and interpret the results in order to build a selection
of examples and baselines that can be reused by technology developers who want to design
and run their own experiments on the testbed. If necessary, we will then evolve the
experiment, the testbed and the technology under investigation. Based on these results and
the explicit links from faults to failures, we will be able to reason about the impact of
technologies on dependability.

Acknowledgements This work is sponsored by NSF grant CCF0438933, “Flexible High Quality Design for
Software” and by the NASA High Dependability Computing Program under cooperative agreement NCC-2-
1298. We thank our HDCP team members at the University of Southern California, especially Dr. Barry
Boehm for fruitful collaboration. We also thank the reviewers for insightful comments on the paper and Jen
Dix for proof-reading.

Access to the testbed Please contact Mikael Lindvall at mlindvall@fc-md.umd.edu for further information
on how to obtain access to the testbed and related artifacts. Several versions of the testbed exist and
determining exactly which one is the most appropriate depends on the purpose of the experiment.

References

Asgari S, Basili V, Costa P, Donzelli P, Hochstein L, Lindvall M, Rus I, Shull I, Tvedt R, Zelkowitz M
(2004) Empirical-based estimation of the effect on software dependability of a technique for architecture
conformance verification, ICSE/DSN 2004 twin workshop on architecting dependable systems (WADS
2004), Edinburgh, Scotland

Basili V, Donzelli P, Asgari S (2004) A unified model of dependability: capturing dependability in context.
IEEE Softw 21(6):19–25

Bhansali S, Nii HP (1992) Software design by reusing architectures. Proceedings of the Seventh Knowledge-
Based Software Engineering Conference, McLean, Virginia, USA, pp 100–109

BetinCan A, Bultan T, Lindvall M, Lux B, Topp S (2005) Application of design for verification with
concurrency controllers to air traffic control software. In: Proceedings of 20th IEEE/ACM international
conference on automated software engineering, pp 14–23

Boehm B, Huang L, Jain A, Madachy R (2003) The nature of information system dependability—a
stakeholder/value approach. USC Technical Report

Brat G, Havelund K, Park S, Visser W (2000) Java PathFinder—a second generation of a Java model
checker. In: Proceedings of the workshop on advances in verification, July 2000, Chicago, USA

Brooks FP (1995) The mythical man-month. Addison Wesley, Reading, MA
Bultan T, Yavuz-Kahveci T (2001) Action language verifier. In: Proc. 16th IEEE international conference on

automated software engineering, San Diego, USA, 382–386

Empir Software Eng

mailto:mlindvall@fc-md.umd.edu

Dennis G (2003) TSAFE: building a trusted computing base for air traffic control software. Masters Thesis,
Computer Science Dept., Massachusetts Inst. Technology

Donzelli P, Basili V (2006) A practical framework for eliciting andmodeling system dependability requirements:
experience from the NASA high dependability computing project. J Syst Softw 79(1):107–119

Erzberger H (2001) The automated airspace concept. In: 4th USA/Europe air traffic management R&D
seminar, Santa Fe, New-Mexico, USA

Erzberger H (2004) Transforming the NAS: the next generation air traffic control system. In: 24th
International Congress of the Aeronautical Sciences, Yokohama, Japan

Godfrey MW, Lee EHS (2000) Secrets from the Monster: extracting Mozilla’s software architecture. In: Proc
2nd symp. constructing software engineering tools (CoSET00), Limerick, Ireland, June. ACM Press,
New York

Huynh D, Zelkowitz MV, Basili VR, Rus I (2003) Modeling dependability for a diverse set of stakeholders
(Fast abstracts), Distributed Systems and Networks, San Francisco, CA, June, B6–B7

International Federation for Information Processing (IFIP WG-10.4) http://www.dependability.org
Laprie J-C (1992) Dependability: basic concepts and terminology, dependable computing and fault tolerance.

Springer-Verlag, Vienna, Austria
Lehman MM (1996) Laws of software evolution revisited. In: European Workshop Software Process

Technology, Nancy, France, October 1996. Springer, Berlin Heidelberg New York, pp 108–124
Lehman MM, Belady LA (1985) Program evolution: processes of software change. Harcourt Brace

Jovanovich, London
Lindvall M, Rus I, Shull F, Zelkowitz MV, Donzelli P, Memon A, Basili VR, Costa P, Tvedt RT, Hochstein

L, Asgari S, Ackermann C, Pech D (2005) An evolutionary testbed for software technology evaluation.
NASA Journal of Innovations in Systems and Software Engineering 1:3–11

Memon A, Soffa M, Pollack ME (2001) Coverage criteria for GUI testing. 8th European software
engineering conference (ESEC) and 9th ACM SIGSOFT international symposium on the foundations of
software engineering (FSE-9). Vienna University of Technology, Austria, pp 256–267

Memon A, Banerjee I, Nagarajan A (2003) What test oracle should I use for effective GUI testing? In: IEEE
international conference on automated software engineering (ASE’03), Montreal, Canada, pp 164–173

Memon A, Nagarajan A, Xie Q (2005) Automating regression testing for evolving GUI software. Journal of
Software Maintenance and Evolution: Research and Practice 17:27–64

Miodonski P, Forster T, Knodel J, Lindvall M, Muthig D (2004) Evaluation of software architechtures with
eclipse, Institute for Empirical Software Engineering (IESE)-Report 107.04/E, Kaiserslautern, Germany

Randel B (1998) Dependability, a unifying concept. In: Proceedings of computer security, dependability and
assurance: from needs to solutions, Williamsburg, VA. IEEE, Computer Society Press, Los Alamitos,
CA, pp 16–25

Rus I, Basili V, Zelkowitz M, Boehm B (2002) Empirical evaluation techniques and methods used for
achieving and assessing high dependability. Workshop on dependability benchmarking, The interna-
tional conference of dependable systems & networks , June, Washington , DC, pp F19–F20

Tvedt RT, R Costa P, Lindvall M (2002) Does the code match the design? A process for architecture
evaluation. In: IEEE, Proceedings of the international conference on software maintenance. Montreal,
Canada, pp 393–401

Empir Software Eng

http://www.dependability.org

Dr. Mikael Lindvall is a senior scientist and the director of the software architecture and embedded systems
division at Fraunhofer Center for Experimental Software Engineering in Maryland. He is interested in best
practices and methodologies for software engineering in general and specializes on software architecture
evaluation and software evolution. He received his PhD in computer science from Linköpings University,
Sweden in 1997. Lindvall’s PhD work focused on evolution of object-oriented systems and was based on a
commercial development project at Ericsson Radio in Sweden.

Dr. Ioana Rus is currently a staff engineer at the Software Center for Excellence of Honeywell Aerospace,
focusing on software measurement and process specification and modeling. Before that, she was a scientist at
the Fraunhofer Center, MD where she served as technical lead for the safety and security area. Dr. Rus has
extensive experience in research, teaching, and software development. She has been chair and program
committee member for various conferences, and guest editor and reviewer for journals and magazines. Her
more recent interests are in the areas of software dependability, software process modeling and simulation,
knowledge management and empirical software engineering.

Dr. Paolo Donzelli is a director of the Research and ICT division of the Department for Innovation and
Technology of the Office of the Prime Minister in Italy and Visiting Senior Research Scientist with the
Computer Science Department at the University of Maryland. His research interests include software process
improvement, requirements engineering, and dependability modeling and validation. He received a Laurea
Degree in Electronic Engineering from the University of Naples, Italy, a MSc from the University of
Cranfield, UK, and a Ph.D. from the University of Rome TorVergata, Italy.

Empir Software Eng

Atif M. Memon is an Assistant Professor at the Department of Computer Science, University of Maryland.
He received his BS, MS, and Ph.D. in Computer Science in 1991, 1995, and 2001, respectively. He was
awarded a Gold Medal in BS. He was awarded Fellowships from the Andrew Mellon Foundation for his Ph.D.
research. He received the NSF CAREER award in 2005. His research interests include program testing,
software engineering, artificial intelligence, plan generation, reverse engineering, and program structures. He
currently serves on the Editorial Board of the Software Testing, Verification, and Reliability Journal. He is a
member of the ACM and the IEEE Computer Society.

Marvin Zelkowitz is a professor of Computer Science at the University of Maryland and Chief Scientist at
the Fraunhofer Center, Maryland. He has a BS in Mathematics from Rensselaer Polytechnic Institute, an MS
and PhD in Computer Science from Cornell University and is a Fellow of the IEEE. He was one of the
directors of the NASA Software Engineering Laboratory (1976-2002) and has studied software development
for 35 years. His research interests include empirical software engineering and technology transfer with
current interests in computer security and the software engineering of high performance computers.

Aysu Betin-Can received her bachelor_s degree in Computer Engineering from the Middle East Technical
University (METU), Ankara, Turkey in 1999 and her Ph.D. degree in Computer Science from the University
of California at Santa Barbara in 2005. She joined the Middle East Technical University in 2006. Her
research interests are design for verification, reliable concurrent software development, interface-based
modular verification and specification, web services, and software engineering.

Empir Software Eng

Tevfik Bultan is an Associate Professor and the Vice Chair of the Department of Computer Science at the
University of California, Santa Barbara. His current research interests include service oriented computing,
concurrency, software verification, model checking, static analysis, and software engineering. Tevfik Bultan
received his B.S. in Electrical and Electronics Engineering in 1989 from the Middle East Technical
University, and his M.S. in Computer Engineering and Information Science in 1992 from the Bilkent
University, both in Ankara, Turkey. He received his Ph.D. in Computer Science in 1998 from the University
of Maryland, College Park. He joined the Department of Computer Science at the University of California,
Santa Barbara in 1998. Tevfik Bultan received a NATO Science Fellowship from the Scientific and Technical
Research Council of Turkey (TUBITAK) in 1993, a Regents_ Junior Faculty Fellowship from the University
of California, Santa Barbara in 1999, and a Faculty Early Career Development (CAREER) Award from the
National Science Foundation in 2000.

Christopher Ackermann is a scientist at the Fraunhofer Center for Experimental Software Engineering,
Maryland and is pursuing a Ph.D. in Computer Science at the University of Maryland, College Park. He
received his Bachelor’s Degree from the University for Applied Sciences Mannheim, Germany in 2006. He
has been active in the fields of software design, software verification and change impact analysis. His current
research interests include empirical software engineering, software design, software architectural analysis and
software behavioral analysis.

Bettina Anders graduated in September 2006 from the University of Applied Sciences in Mannheim. Her
diploma thesis was entitled BProcess and system integration in software validation^ and was conducted at SAP St.
Leon-Rot. After having graduated, she continued her studies to achieve a master degree in software engineering.
During her studies, she worked in different companies such as KSB Frankenthal, Fraunhofer Center Maryland,
Fraunhofer IESE Kaiserslautern and SAP St. Leon-Rot, where she is currently employed as a working student.

Empir Software Eng

Sima Asgari is a research associate in the Computer Science Department at University of Maryland, College Park.
Her research interests include the combination of theoretical and empirical software engineering, social and cognitive
factors in software development and software dependability. She received her PhD andMS in computer science from
Tokyo Institute of Technology and a BS in computer engineering from Sharif University of Technology.

Victor Basili is Professor of Computer Science at the University of Maryland. He holds a Ph.D. in Computer
Science from the University of Texas and honorary degrees from the Universities of Sannio (Italy) and
Kaiserslautern (Germany). He is a recipient of the 2000 ACM SIGSOFT Outstanding Research Award and
2003 IEEE Computer Society 2003 Harlan Mills Award. He is an IEEE and ACM Fellow.

Lorin Hochstein received a PhD in Computer Science from the University of Maryland, an M.S. in
Electrical Engineering from Boston University, and a B.Eng. in Computer Engineering from McGill
University. He is currently an Assistant Professor in the Department of Computer Science and Engineering at
the University of Nebraska at Lincoln. He is a member of the Laboratory for Empirically-based Software
Quality Research and Development (ESQuaReD). His research interests include combining quantitative and
qualitative methods in software engineering research, software measurement, software architecture, and
software engineering for high-performance computing. He is a member of the IEEE and ACM.

Empir Software Eng

Jörg Fellmann is a Computer Science student at the University of Applied Sciences Mannheim. He is
currently in his final year and working on his graduation thesis in the area of bipedal locomotion of
humanoid robots. During his studies, he worked at Fraunhofer Center in Maryland.

Dr. Forrest Shull is a senior scientist and division director at the Fraunhofer Center for Experimental
Software Engineering in Maryland (FC-MD). He is a project manager for applied research and
technology transfer projects, with clients that have included Fujitsu, Motorola, NASA, and the U.S.
Department of Defense. He has also been a lead researcher on grants from the National Science
Foundation, DARPA, and NASA_s Office of Safety and Mission Assurance. He specializes in research
and consulting projects that focus on tailoring software inspection approaches to support effective defect
removal.

Roseanne Tesoriero Tvedt is the President of Pan Orange, Inc., a software consulting company. She
received her Masters and Ph.D. degrees in Computer Science from the University of Maryland. Her research
interests include software architecture evaluation, agile methods, knowledge management and computer
science education.

Empir Software Eng

Daniel Pech is a student at the University of Applied Science Mannheim where he is currently doing his
masters of science degree in software engineering. In 2006, he received the degree as a Dipl. Inform. (FH).
During his study, he worked for the Senecon GmbH, where he was involved in developing a real-time
auction for warehouses. In 2004, he completed an internship at the Fraunhofer Center, Maryland. The focus
of the internship was the development of a testbed within the context of the High Dependability Computing
Project (HDCP). Since 2005, he is working at the Fraunhofer IESE at the department for product line
engineering.

Mr. Hirschbach received in 2005 the degree as a Dipl. Inform. (FH) in Computer Science at the University
of Applied Science Mannheim. He wrote his final thesis within the area of virtualization about virtualization
technologies at Sun Microsystems. During a semester abroad, Mr. Hirschbach conducted research at the
Department of Computer Science of the University of Maryland within the area of requirements engineering.
Currently, he is working as a developer at the SAP AG Walldorf in Germany. He is also completing his
masters in Software Engineering at the University of Applied Science Mannheim.

Empir Software Eng

	Experimenting with software testbeds for evaluating new technologies
	Abstract
	Introduction
	TSAFE Overview
	Modeling TSAFE Dependability
	Applying UMD to Identify the Dependability Requirements for TSAFE

	Building the Testbed Environment
	Goals for the Testbed Environment
	Turning TSAFE into a Testbed
	TSAFE Instrumentation

	Software Architecture Evaluation Method
	Model Checking
	Software Testing (Ongoing Study)
	Summary, Discussion, and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /Gautami
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kartika
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /Latha
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Mangal-Regular
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MVBoli
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Raavi
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SpsFont4Medium
 /SPSFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Sylfaen
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Tunga-Regular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /Vrinda
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

