
Using Transient/Persistent Errors to Develop Automated Test Oracles for
Event-driven Software

Atif Memon† and Qing Xie
Department of Computer Science (†and Institute for Advanced Computer Studies)

University of Maryland, College Park, Maryland 20742, USA
{atif,qing}@cs.umd.edu

Abstract
Today’s software-intensive systems contain an important

class of software, namely event-driven software (EDS). All
EDS take events as input, change their state, and (perhaps)
output an event sequence. EDS is typically implemented as
a collection of event-handlers designed to respond to indi-
vidual events. The nature of EDS creates new challenges
for test automation. In this paper, we focus on those rele-
vant to automated test oracles. A test oracle is a mechanism
that determines whether a software executed correctly for
a test case. A test case for an EDS consists of a sequence
of events. The test case is executed on the EDS, one event
at a time. Errors in the EDS may “appear” and later “dis-
appear” at several points (e.g., after an event is executed)
during test case execution. Because of the behavior of these
transient (those that disappear) and persistent (those that
don’t disappear) errors, EDS require complex and expen-
sive test oracles that compare the expected and actual out-
put multiple times during test case execution. We leverage
our previous work to study several applications and observe
the occurrence of persistent/transient errors. Our studies
show that in practice, a large number of errors in EDS are
transient and that there are specific classes of events that
lead to transient errors. We use the results of this study to
develop a new test oracle that compares the expected and
actual output at strategic points during test case execution.
We show that the oracle is effective at detecting errors and
efficient in terms of resource utilization.

1 Introduction
Motivation: Today’s large, complex software-intensive
systems contain an important class of software, namely
event-driven software (EDS). Several researchers have
modeled the event-driven nature of different type of soft-
ware including simulation software [5], component-based
software [34], web applications [38], graphical-user inter-
faces (GUI) [12], visualization software [19], network pro-

tocols [33], device drivers [16], database applications [18],
and embedded and middleware software [31]. What distin-
guishes an EDS from conventional software is the EDS’s
event-driven model. All EDS take user-generated and/or
system-generated events (e.g., simulation control events,
messages, mouse-clicks) as input, change their state, and
(perhaps) output an event sequence. EDS is typically im-
plemented as a collection of event-handlers designed to re-
spond to individual events. The nature of EDS creates new
challenges for quality assurance activities such as test au-
tomation.

Challenges: Testing EDS is complex because of several
factors; we focus on two relevant to test oracles. A test or-
acle is used to determine whether the application under test
(AUT) executed as expected [2]. The test oracle may either
be automated or manual; in both cases, the actual output is
compared to a presumably correct expected output. The first
challenge stems from the representation of an EDS’s test-
case [25]; a test case for an EDS consists of a sequence of
events. The test case is executed on the EDS, one event at a
time. Errors in the EDS may “appear” and later “disappear”
at several points (e.g., after an event is executed) during test
case execution, requiring the need for complex test oracles
that compare the expected and actual output multiple times
during test case execution. Second, it is difficult to deter-
mine how much expected output to use during testing [23].

Preliminary observations: In previous work, we devel-
oped several types of test oracles for GUIs and empiri-
cally showed their relative strengths, weaknesses, and costs
[23, 24]. Borrowing terminology from Richardson et al.
[30], we defined a test oracle to contain two parts: oracle
information that is used as the expected output and an ora-
cle procedure that compares the oracle information with the
actual output. We showed that the test oracle contributes
significantly to test effectiveness and cost. In [23] we cre-
ated different test oracles primarily by varying the oracle
information. We almost ignored the frequency of compar-
ison except at two extreme points during test case execu-

tion: (1) Oall – “check for equality of the oracle infor-
mation and actual output after each event” and (2) Olast –
“check for equality of oracle information and actual out-
put after the last event” of the test case. Since then, we have
developed algorithms to generate different types of long test
cases. We have found that a large number of test cases
detect transient errors (informally, these errors “disappear”
during test case execution). In order to detect such errors,
we invoke the oracle procedure after each event in the test
case, i.e., we use Oall. Not only is the comparison pro-
cess expensive, it also requires that we maintain the oracle
information after each event; for long test cases, this is sig-
nificantly large. Olast, although cheaper, would miss such
errors. What we need is a test oracle that is comparable to
Oall in terms of fault detection effectiveness and Olast in
terms of cost.
Approach: In this paper, we leverage our previous work
to study several applications and observe the occurrence of
persistent and transient errors.1 We then use the results of
our study to develop a new test oracle that is effective at
detecting errors and efficient in terms of resource utiliza-
tion. Our empirical studies show that (1) in practice, a large
number of errors in GUIs are transient, (2) there are specific
classes of GUI events that lead to transient errors, and (3)
we can create a new automated test oracle (Onew) that is
comparable to Oall in terms of fault-detection effectiveness
and Olast in terms of cost.
Contributions: The contributions of this paper include:

1. Model of persistent and transient errors for GUIs.
2. Empirical study showing characteristics of errors.
3. Relationship between GUI faults and errors.
4. New automated test oracle for GUIs.

Structure of the paper: In Section 2, we present a brief
overview of our previous work. In Section 3 we define the
terms persistent and transient errors. Our empirical studies
are described in Section 4. In Section 5 we briefly discuss
related work and finally conclude in Section 6 with a dis-
cussion of current and future research.

2 GUI Test Oracles Overview

A high-level overview of our GUI test oracle is shown
in Figure 1. The oracle information generator automati-
cally derives the oracle information (expected state) using
either a formal specification of the GUI as described in our
earlier work [24] or by using a “correct” version of the soft-
ware [36, 37] (as described in Section 4). Likewise, the ac-
tual state is obtained from an execution monitor. The ex-
ecution monitor may use any of the techniques described

1Note that the same (and similar) terms have been used by other re-
searchers [3,7,10,14,20,21,35]. Later, we formally define them for GUIs
in this paper.

Test Case

Oracle
Information
Generator

Oracle
Procedure

Oracle Information

Execution
Monitor

OracleOracleOracleOracle

Actual
State

Run-time
information from

executing GUI

Verdict

Figure 1. An Overview of the GUI Oracle.

in [24], such as screen scraping and/or querying to obtain
the actual state of the executing GUI. An oracle procedure
then automatically compares the two states and reports GUI
errors.

Intuitively, a GUI error is a mismatch between the actual
GUI state and oracle information. We now briefly2 describe
the representation of a GUI state.

We model a GUI as a set of widgets W =
{w1, w2, ..., wl} (e.g., buttons, panels, text fields) that con-
stitute the GUI, a set of properties P = {p1, p2..., pm} (e.g.,
background color, size, font) of these widgets, and a set of
values V = {v1, v2, . . . , vn} (e.g., red, bold, 16pt) asso-
ciated with the properties. Each GUI will contain certain
types of widgets with associated properties. At any point
during its execution, the GUI can be described in terms of
the specific widgets that it currently contains and the values
of their properties.

The set of widgets and their properties is used to create
a model of the state of the GUI.

Definition: The state of a GUI at a particular time t is the
set S of triples {(wi, pj , vk)}, where wi ∈ W , pj ∈ P ,
and vk ∈ V . 2

In earlier work [23], we used the state definition to de-
velop four types of oracle information in increasing level
of detail and cost: widget, active window, visible windows,
and all windows. The oracle procedure too had several in-
creasing levels of complexity and cost: “check for equality
of widget, active window, visible window, all windows after
each event” and “check all windows after the last event” of
the test case. Combining the oracle information and oracle
procedures gave us 11 different types of oracles. In this pa-
per, for lack of space we consider two of the 11 oracles; we
define oracles Oall and Olast as follows.

Definition: Test oracle Oall compares the set of all triples
2The reader is referred to [23, 24] for details.

for all widgets of all visible GUI windows with the
corresponding expected state after each event in the
test case. Note that visibility is a property of a win-
dow, which can be set, for example, by invoking the
SetVisible() method in Java. Windows that are
partially or fully hidden by other overlapping windows
are also considered to be visible as long as this prop-
erty is set. 2

Definition: Test oracle Olast compares the set of all triples
for all widgets of all visible GUI windows with the
corresponding expected state after the last event in the
test case. 2

In our empirical studies, we compare our new test ora-
cle to Oall and Olast. To help create the test oracle, we
study the relationship between classes of GUI events and
GUI errors. We now briefly describe the event classifica-
tion. At all times during interaction with the GUI, the user
interacts with events within a modal dialog. This modal
dialog consists of a modal window X and a set of mod-
eless windows that have been invoked, either directly or
indirectly by X . The modal dialog remains in place until
X is explicitly terminated. The first class of events, called
restricted-focus events open modal windows. For example,
Set Language in MS Word is a restricted-focus event.
The second class, called unrestricted-focus events open
modeless windows. For example, Replace in MS Word
is an unrestricted-focus event. Termination events close
modal windows; common examples include Ok and Can-
cel.

The GUI contains other types of events that do not open
or close windows but make other GUI events available.
These events, called menu-open events are used to open
menus. They expand the set of GUI events available to the
user. Menu-open events do not interact with the underlying
software. Note that the only difference between menu-open
events and unrestricted-focus events is that the latter open
windows that must be explicitly terminated. The most com-
mon example of menu-open events are generated by but-
tons that open pull-down menus. For example, in MS Word,
File and SendTo are menu-open events. Finally, system-
interaction events interact with the underlying software to
perform some action; common examples include the Copy
event used for copying objects to the clipboard.

The above classification will be used in the empirical
study to identify strategic points in the test case at which
comparison between expected and actual states would lead
to GUI error detection. We formally define GUI errors next.

3 GUI Errors

Intuitively, a GUI error is a mismatch between the actual
and expected states.

Definition: A GUI error occurs during execution of a test
case, if Ai 6= Si, for any event ei in the test case. Si

is the oracle information and Ai is the actual state ob-
tained after the execution of ei. 2

During test case execution, the mismatch may persist un-
til after the last event in the test case. Such errors are called
persistent and may be detected by Olast.

Definition: A persistent GUI error occurs during execu-
tion of a test case, if Ai 6= Si, for all events ei in a test
case of length n (j ≤ i ≤ n for some j). 2

On the other hand, many mismatches may not persist un-
til the last event in the test case, i.e., they disappear after the
execution of some event in the test case. Note that such
events would be missed by Olast but would be detected by
Oall.

Definition: A transient GUI error occurs during execution
of a test case, if Ai 6= Si, for an event ei in the test
case, where Si is the oracle information and Ai is the
actual state and Aj == Sj , for some i < j ≤ n. 2

Oall and Olast may be viewed as extreme points in a
spectrum of test oracles ordered by frequency of compari-
son. Although Oall is able to detect the maximum number
of errors, it performs expensive and redundant comparisons.
Olast, on the other hand, contains only one comparison,
causing it to miss transient errors. The key to designing
an efficient and effective test oracle is to compare the ex-
pected and actual states at strategic points during test case
execution. Our empirical study, described next, will help us
identify such strategic points.

4 Empirical Studies
In this section, we present details of empirical studies

that demonstrate the existence and characteristics of persis-
tent/transient errors in GUI programs3. We show that cer-
tain classes of GUI events contribute to transient errors, and
that we can use these classes to design effective automated
test oracles. We use oracles Oall and Olast as controls for
these studies. More specifically, we are interested in an-
swering the following questions:

1. In practice, do persistent/transient errors occur in
GUIs? What percentage of errors are transient?

2. Are there specific classes of GUI events that lead to
transient errors?

3. Can we build a new automated test oracle (Onew) that
is comparable to Oall in terms of fault-detection effec-
tiveness and Olast in terms of cost?

3All the tools, artifacts, and data, along with the study process diagram
are available for download at the authors’ web-site.

Subject Application Windows Widgets LOC Classes Methods Branches
TerpWord 11 132 4893 104 236 452

TerpSpreadSheet 9 165 12791 125 579 1521
TerpPaint 10 220 18376 219 644 1277
TOTAL 30 517 36060 448 1459 3250

Table 1. Our Subject Applications.

4.1 Study 1: Investigating Error Characteristics
To answer Questions 1 and 2, we perform the following

steps in this study:

1. Choose software subjects with GUI front-ends,
2. Generate test cases,
3. Generate oracle information,
4. Use fault seeding techniques to artificially seed faults

in the software subjects,
5. Execute all test cases on the software subjects. Dur-

ing execution, compare the actual GUI state to the or-
acle information. (Note that state is represented by all
the widgets in the visible windows of the GUI.) Mea-
sure the number of faults detected, and the position in
the test case when the fault was detected. Measure the
space required to store the oracle information and the
time required for each comparison.

Step 1, Subject Applications: The subject applications for
our studies are part of an open-source office suite developed
at the Department of Computer Science of the University of
Maryland by undergraduate students of the senior Software
Engineering course. It is called TerpOffice4 and consists
of six applications out of which we use three – TerpPaint
(an image editing/manipulation program) TerpSpreadSheet
(a spreadsheet application), and TerpWord (a small word-
processor), They have been implemented using Java. Ta-
ble 1 summarizes the characteristics of these applications.
The number of widgets listed in the table are the ones on
which user events can be executed (e.g., text-labels are not
included). Note that these applications are fairly large with
complex GUI front-ends.
Step 2, Test Cases: We generated GUI test cases of vary-
ing lengths using event-flow graphs (EFG) [23]. A detailed
discussion of this approach is beyond the scope of this pa-
per. Intuitively, the EFG models all possible GUI event se-
quences. Nodes in the EFG represent events. An edge from
node nx to ny is used to show that the event represented by
ny may be executed by a user immediately after the event
represented by nx. Test cases are generated by traversing
the EFG using various graph-walking algorithms and enu-
merating all the nodes encountered. We performed a ran-
dom walk of the EFG, which was designed to give uniform
coverage of all the events in the GUI. Figure 2 shows the

4www.cs.umd.edu/users/atif/TerpOffice

event distribution of all the test cases showing that we had
good event coverage. The figure shows multiple column
graphs on one axis. The columns are grouped by applica-
tion. The x-axis shows all the events in each application.
The y-axis shows the number of times a particular event was
executed by a test case. To allow visual comparison of the
total number of events in each application, we have used the
same fixed-width for each application. Since TerpPaint has
the maximum number of events, its column is filled com-
pletely. The other applications have missing areas. How-
ever, we noted that all the events in each application were
covered. We generated 819 test cases of varying lengths.
Figure 3 shows the length distribution of our test cases.

1

10

100

1000

TerpPaint TerpSpreadSheet TerpWord

Events in the Applications

N
um

be
r

of
 T

im
es

 th
e

E
ve

nt
s

E
xe

cu
te

d

Figure 2. Event Distribution.

0

4

8

12

16

20

1 6 11 16 21 26 31 36 41 46

Test Case Length

N
um

be
r

of
 T

es
t C

as
es

TerpPaint TerpSpreadSheet TerpWord

Figure 3. Test Case Length Distribution.

Step 3, Generating Oracle Information: We used an ap-
proach that we call execution extraction to obtain the or-
acle information. During this process, each test case was
executed on the correct version (with no seeded faults) of
the subject applications and the GUI state was extracted

and stored as oracle information. We employed platform-
specific technology such as Java API to obtain this informa-
tion.
Step 4, Fault Seeding: Fault seeding is a common tech-
nique to introduce known faults into programs. It has sev-
eral applications; in this paper, we use it to create mutants
of code. We create test cases and execute them on the mu-
tants. We then study the properties of the test cases that
were successful at killing the mutants. Care is taken so that
the artificially seeded faults are similar to faults that occur
in programs due to mistakes made by developers [15, 26].

We adopted an observation-based approach to seed GUI
faults, i.e., we observed “real” GUI faults in real applica-
tions. During the development of TerpOffice, a bug tracking
tool called Bugzilla5 was used by the developers to report
and track faults in TerpOffice version 1.0 while they were
working to extend its functionality and developing version
2.0. The reported faults are an excellent representative of
faults that are introduced by developers during implementa-
tion.

We created 200 faulty versions for each software. Only
one fault was introduced in each version. This model is use-
ful to avoid fault-interaction, which can be a thorny problem
in these types of studies and also simplifies the computation
of the number of faults detected; now we can simply count
the faulty versions that led to an error.

Since this is a controlled study, we were careful to de-
fine classes of faults for seeding. We now summarize the
these classes in one short statement and provide an example
of each in Table 2. Note that the row number in the table
corresponds to the numbering below.

1. Modify relational operator (>, <, >=, <=, ==, !=);
2. Invert the the condition statement;
3. Modify arithmetic operator (+, -, *, /, =, ++, –, +=, -=,

*=, /=);
4. Modify logical operator (&&, ||);
5. Set/return different boolean value (true, false);
6. Invoke different (syntactically similar) method;
7. Set/return different attributes;
8. Modify bit operator (&, |, ∧, &=, !=, ∧=);
9. Set/return different variable name;

10. Set/return different integer value;
11. Exchange two parameters in a method;
12. Set/return different string value.

Figure 4 shows the distribution of the 600 faults that were
seeded in the subject applications. The x-axis shows the
type/class of fault, as defined earlier, and the y-axis shows
the number of faults seeded. Note that while every effort
was made to seed faults of all types uniformly, some faults
were easier to seed than others because of the opportunities

5http://bugs.cs.umd.edu

in the code. For example, fault Type 1, i.e., modify rela-
tional operator was seeded 323 times because of the large
number of relational operators in the code.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12

Fault Type

N
um

be
r

of
 F

au
lts

 S
ee

de
d

Figure 4. Different Type of Faults Frequency
Distribution.

Step 5, Test Execution: We designed a test executor that
is capable of executing an entire test suite automatically on
the AUT. It performs all the events in each test case and
compares the actual output with the expected output. Events
are triggered on the AUT using the Java API doClick.

The execution included launching the application under
test, replaying GUI events from a test case on it and ana-
lyzing the resulting GUI states. The analysis consisted of
recording the actual GUI states of the faulty version and
determining the result of the test case execution. The test
cases executed on four machines (Pentium 4, 2.2GHz, each
with 256MB RAM) simultaneously for more than a week.
Although much of the execution was automated, we had to
restart some machines (and test scripts) because of prob-
lems with the JVM.

4.1.1 Threats to Validity
Threats to external validity are conditions that limit the abil-
ity to generalize the results of our studies to industrial prac-
tice. We have used four Java applications are our subject
programs. Although they have different types of GUIs, this
does not reflect a wide spectrum of possible GUIs that are
available today. Although our model of the GUI maintains
uniformity between Java and Win32 applications, the re-
sults may vary for Win32 applications.

Threats to internal validity are conditions that can affect
the dependent variables of the study without the researcher’s
knowledge. We have used an observation-based approach
for seeding faults in the GUI applications. This may have
affected the detection of faults by the test cases. Faults not
exercised by any test case will go undetected. We made an

Fault
Type

Original Code Mutated Code

1 if (this.row > y.row) if (this.row < y.row)
2 if (newValue) if (!newValue)
3 prev = index+1; prev = index-1;
4 if (done || border == null || if (done && border == null ||
5 if(contentArea.closeDocument(true)) if(contentArea.closeDocument(false))
6 int rowLimit = model.getRowCount() - 1; int rowLimit = model.getColumnCount() - 1;
7 int style = Font.ITALIC; int style = Font.BOLD;
8 style |= Font.BOLD; style &= Font.BOLD;
9 buttonPanel.add(okButton); buttonPanel.add(cancelButton);
10 int size = 12; int size = 15;
11 tmp = data.substring(0, i2); tmp = data.substring(i2,0);
12 if(findString.equals("")) { return; } if(findString.equals(" ")) { return; }

Table 2. Classes of Seeded Faults.

effort to make the faults as close as possible to naturally
occurring faults. Some of these faults might not manifest
themselves through the GUI.

Threats to construct validity arise when measurement in-
struments do not adequately capture the concepts they are
supposed to measure. For example, in this study one of our
measures of cost is time. Since GUI programs are often
multi-threaded, and interact with the windowing system’s
manager, our experience has shown that the execution time
varies from one run to another. One way to minimize the ef-
fect of such variations is to run the studies multiple number
of times and report average time.

The results of our studies, presented next, should be in-
terpreted keeping in mind the above threats to validity.

4.2 Study 1 Results

Number of Persistent/Transient Errors: We immediately
noticed the large number of transient errors found during
execution of our test cases. Figure 5 shows a column graph
with the total number of persistent/transient errors that our
test cases found. The x-axis shows two columns per appli-
cation. The two columns represent persistent and transient
errors. The y-axis shows the number of errors found.
Detailed View of Errors: We next wanted to see parts
of test cases that caused the expected and actual states
to mismatch. For compactness, we will use one graph
per application. Figure 6 shows the results for TerpPaint.
The x-axis shows the event number (i.e., its position in
the sequence) in the test case. The y-axis represents test
cases that successfully killed a mutant. For each test
case, we have a line, with 2 levels of shading. The dark
band shows the events after which the actual and ex-
pected states mismatched. The light band shows the event
number after which the actual and expected states matched:

Mismatch MatchMatch

0

500

1000

1500

2000

2500

3000

TerpPaint TerpSpreadSheet TerpWord

Subject Applications

N
um

be
r

of
 E

rr
or

s
D

et
ec

te
d

Persistent
Transient

Figure 5. Number of Errors.

If a test case killed more than one mutant, it is counted
more than once.

We have sorted the test cases to show the dark/light
bands clearly. We note that many test cases have small areas
of mismatch. In all cases where the test case ends in a light
band (i.e., a match) , the test oracle Olast would have failed
to report an error. Similar results are seen for TerpSpread-
Sheet and TerpWord in Figures 7 and 8 respectively.
Events that Reveal/Conceal Errors: Having observed that
long test cases, during execution, can transit frequently be-
tween matching and mismatching, we wanted to see if there
were certain classes of events that caused the transitions.
We mined our execution data to find events that led from
a match to a mismatch and vise versa. We summarize our
results in Figure 9. The figure shows a column graph with
event types on the x-axis. The y-axis shows the number of
times an event type led to a transition. As seen in the graph,
termination, restricted-focus, and system-interaction events
cause the maximum number of transitions. A test oracle
that compares the expected and actual states of the GUI at
these events is most likely to report transient errors.

0 10 20 30 40 50
1

101

201

301

401

501

601

701

801

901

1001

1101

Te
st

 C
as

e
N

um
be

r,
 M

ut
an

t

Event Number

Figure 6. Errors for TerpPaint.

0 10 20 30 40 50
1

101

201

301

401

501

601

701

801

901

1001

Te
st

 C
as

e
N

um
be

r,
 M

ut
an

t

Event Number

Figure 7. Errors for TerpSpreadSheet.

We manually examined the test case execution reports
and observed that object creation and destruction play an
important role in transient errors. Examples of such ob-
jects for GUIs include windows, menus, widgets, etc. A
restricted-focus event that opens a erroneous window will
cause an error to be detected by the test oracle. On the
other hand, a termination event that destroys a window will
close the erroneous window, resulting in a match between
expected and actual states.

4.3 Study 2: Creating and Studying Onew

We used the results of Study 1 to extend our research and
design a new oracle called Onew. We specifically wanted to
compare Onew with Olast and Oallin terms of error detec-
tion and cost. We simulated three testers, each equipped
with one of the oracles and a set of test cases that were ex-

0 10 20 30 40 50
1

501

1001

1501

2001

2501

3001

3501

4001

4501

5001

Te
st

 C
as

e
N

um
be

r,
 M

ut
an

t

Event Number

Figure 8. Errors for TerpWord.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

termination restricted-focus unrestricted-focus system-interaction menu-open

Event Type

N
um

be
r

of
 E

ve
nt

s

match to mismatch mismatch to match

Figure 9. Event Classes and Error Types.

ecuted on all mutants.6 A test case was terminated as soon
as it detected an error. The time and storage was measured.

Onew was created by modifying Olast. Oracle infor-
mation was generated for termination and restricted-focus
events. The oracle procedure was modified to compare the
expected and actual states at these points. We chose not
to use system-interaction events because our test cases con-
tain a large number of these events, i.e., had we compared
at system-interaction events, Onew would have degraded to
Oall in terms of cost because it would have required fre-
quent comparison.

4.4 Study 2 Results
Error detection: Figure 10 shows three colums for Onew ,
Oall, and Olast respectively for each application. The y-
axis shows the number of errors reported. As seen from the

6Note that, to reduce threats to validity, we performed Study 2 on two
applications that were not part of Study 1 – the results are not presented in
this paper due to lack of space.

graph, Onew is able to report almost as many errors as Oall.
Olast performed worst because it missed all the transient
errors.

0

1000

2000

3000

4000

5000

6000

TerpPaint TerpSpreadSheet TerpWord

Subject Applications

N
um

be
r

of
 E

rr
or

s
D

et
ec

te
d

New All Last

Figure 10. Error detection of Onew .

We also wanted to determine how Onew compared to
Oall and Olast with respect to storage space and time.
Space: Figure 11 shows three colums for Onew , Oall, and
Olast respectively for each application. The y-axis (log
scale) shows the space required in MB for all the test cases.
As seen from the graph, Onew requires significantly less
space than Oall and (as expected) more space than Olast.

0

100

200

300

400

500

600

TerpPaint TerpSpreadSheet TerpWord

Subject Applications

S
pa

ce
 (M

B
)

New All Last

Figure 11. Space Required for Onew.

Time: Figure 12 shows three colums for Onew , Oall, and
Olast respectively for each application. The y-axis shows
the time required in seconds for all the test cases. As seen
from the graph, Onew requires significantly less time than
Oall and more time than Olast.

The results of this study showed that Onew was almost
as effective as Oall in terms of error detection. However, it
was much cheaper to execute and store.

TerpPaint
0

300

600

900

1200

1500

Ti
m

e
(s

ec
)

TerpSpreadSheet
0

8

16

24

32

40

Subject Applications

New
All
Last

TerpWord
0

14

28

42

56

70

Figure 12. Time Required for Onew .

4.5 Faults and Errors

In a study such as ours, the artificially seeded faults play
an important role in determining its outcome. We wanted
to see if particular classes of seeded faults lead to persis-
tent/transient errors, i.e., whether we has inadvertently fa-
vored any error type. For all three applications, a column
graph in Figure 13 shows for our seeded fault types the to-
tal number of times each led to a persistent or transient er-
ror. The x-axis shows all fault classes. For each fault class
we have two columns, representing persistent and transient
faults respectively. The y-axis is the total number of times,
for all test cases, the fault manifested itself as an error.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12

Fault Type

N
um

be
r

of
 T

im
es

 E
rr

or
s

Fo
un

d

persistent
transient

Figure 13. Faults classes and Error Types.

We note that each fault type led to both persistent and
transient errors. Hence our seeded faults did not influence
the results of this study.

5 Related Work
Although there is no prior work that directly addresses

the research presented in this paper, several researchers and
practitioners have discussed concepts that are relevant to its
specific parts. We discuss the following broad categories:
persistent and transient errors, methods to specify oracles,
reference testing, and GUI oracles.
Persistent and transient errors: Very few researchers
have applied the concepts of persistent and transient er-
rors for software testing. Cheynet et al. present an auto-
mated approach to detect transient errors for safety-critical
software [7]. However, many researchers have used per-
sistent and transient errors (also called persistent and tran-
sient faults) for fault-tolerant software [3, 10, 35]. Schrey-
jak defined two types of faults for component-based soft-
ware [32] – persistent faults are those that are reproducible
in certain system states; transient faults occur occasionally
during execution [14]. Similarly, Laprie et al. [20, 21] pro-
posed fault classes according to their persistence. If the
faults are permanent, they are classified as persistent/solid;
otherwise if they are temporary, they are classified as tran-
sient/intermittent/soft/volatile.
Methods to specify oracles: Software systems rarely have
an automated oracle [9, 27, 29, 30]. In most cases, the ex-
pected behavior of the software is assumed to be provided
by the test designer. It can be specified in several ways:
(1) the form of a table of pairs (actual output, expected
output) [27], (2) as temporal constraints that specify con-
ditions that must not be violated during software execu-
tion [8, 9, 29, 30], and (3) as logical expressions to be sat-
isfied by the software [11]. This expected behavior is then
used by the verifier by either performing a table lookup [27],
FSM creation [9, 17], or boolean formula evaluation [11]
to determine the correctness of the actual output. In few
cases, formal specifications have also been used to specify
and generate test oracle information [1,4,13,28]. A runtime
assertion checker is used as the oracle procedure [6].
Reference testing: A popular alternative to manually spec-
ifying the expected output is to perform reference testing
[36, 37]. Actual outputs are recorded the first time the soft-
ware is executed. The recorded outputs are later used as ex-
pected output for regression testing. This is a popular tech-
nique used for regression testing of GUI-based software.
Capture/Replay tools such as those that are part of GUI-
TAR (http://guitar.cs.umd.edu) capture bitmap
images of GUI objects into a test script. These bitmaps are
then used as test oracles to compare against actual output
during regression test cases execution. However, the prob-
lem associated with such tools is even a slight change in the
GUI’s layout will make the bitmap/test oracle obsolete [25].
GUI oracles: Finally, our own earlier work described au-
tomated GUI test oracles for the PATHS (Planning Assisted
Tester for grapHical user interface Systems) system [22,24].

PATHS uses AI planning techniques to automate testing for
GUIs. The oracle described in PATHS uses a formal model
of a GUI to automatically derive the oracle information for
a given test case.

6 Conclusions
In this paper, we designed a new test oracle for GUI soft-

ware. We used the observation that GUI errors “appear” and
later “disappear” at several points (e.g., after an event is ex-
ecuted) during test case execution. We defined two types of
GUI errors – transient, those that disappear and persistent,
those that don’t disappear. We leveraged our previous work
to study several applications and observe the occurrence of
persistent/transient errors. Our studies showed that in prac-
tice, a large number of errors in GUIs are transient and that
there are specific classes of events that lead to transient er-
rors. We used this study to develop our new test oracle that
compares the expected and actual output at strategic points
during test case execution. We showed that the oracle is ef-
fective at detecting errors and efficient in terms of resource
utilization.

We are currently extending our approach to other EDS
and object-oriented programs in which objects are created
and destroyed during testing. We are also examining the
impact of different test oracles on false positives that are
reported during GUI testing.

References

[1] S. Antoy and R. G. Hamlet. Automatically checking an im-
plementation against its formal specification. Software Engi-
neering, 26(1):55–69, 2000.

[2] L. Baresi and M. Young. Test oracles. Technical Report CIS-
TR-01-02, University of Oregon, Dept. of Computer and In-
formation Science, Eugene, Oregon, U.S.A., August 2001.
http://www.cs.uoregon.edu/ michal/pubs/oracles.html.

[3] A. Bondavalli, S. Chiaradonna, and F. D. Giandomenico. Ef-
ficient fault tolerance: an approach to deal with transient
faults in multiprocessor architectures. In Proceedings of
1994 International Conference on Parllel and Distributed
Systemsm, pages 354–359. IEEE, 1994.

[4] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leav-
ens, K. R. M. Leino, and E. Poll. An overview of jml tools
and applications.

[5] A. Carloganu and J. Raguideau. Claire: An event-driven
simulation tool for test and validation of software programs.
In Proceedings of the 2002 International Conference on De-
pendable Systems and Networks, page 538. IEEE Computer
Society, 2002.

[6] Y. Cheon and G. T. Leavens. A simple and practical approach
to unit testing: The JML and JUnit way. Technical Report
01–12, 2001.

[7] P. Cheynet, B. Nicolescu, R. Velazco, M. rebaudengo, M. S.
Reorda, and M. Violante. Experimentally evaluating an au-
tomatic approach for generating safety-critical software with

respect to transient errors. IEEE Transactions on Nuclear
Science, 47(6):2231–2236, 2000.

[8] L. K. Dillon and Y. S. Ramakrishna. Generating oracles from
your favorite temporal logic specifications. In Proceedings
of the Fourth ACM SIGSOFT Symposium on the Foundations
of Software Engineering, volume 21 of ACM Software Engi-
neering Notes, pages 106–117, New York, Oct.16–18 1996.
ACM Press.

[9] L. K. Dillon and Q. Yu. Oracles for checking temporal prop-
erties of concurrent systems. In Proceedings of the ACM
SIGSOFT ’94 Symposium on the Foundations of Software
Engineering, pages 140–153, Dec. 1994.

[10] L. Dong, R. Melhem, D. Mossé, S. Ghosh, W. Heimerdinger,
and A. Larson. Implementation of a transient-fault-tolerance
scheme on DEOS - A technology transfer from an academic
system to an industrial system. In Proceedings of the Fifth
IEEE Real-Time Technology and Applications Symposium
(RTAS ’99), pages 56–67, Washington - Brussels - Tokyo,
June 1999. IEEE.

[11] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and
N. Zuanon. Lutess: a specification-driven testing envi-
ronment for synchronous software. In Proceedings of the
21st International Conference on Software Engineering,
pages 267–276. ACM Press, May 1999.

[12] M. B. Dwyer, V. Carr, and L. Hines. Model checking graph-
ical user interfaces using abstractions. In M. Jazayeri and
H. Schauer, editors, ESEC/FSE ’97, volume 1301 of Lecture
Notes in Computer Science, pages 244–261. Springer / ACM
Press, 1997.

[13] P. L. Gall and A. Arnould. Formal specifications and test:
Correctness and oracle. In COMPASS/ADT, pages 342–358,
1995.

[14] J. Gray and A. Reuter. Transaction Processing. Morgan
Kaufmann Publishers, San Mateo (CA), USA, 1993.

[15] M. J. Harrold, A. J. Offut, and K. Tewary. An approach to
fault modelling and fault seeding using the program depen-
dence graph. Journal of Systems and Software, 36(3):273–
296, Mar. 1997.

[16] G. J. Holzmann and M. H. Smith. A practical method for ver-
ifying event-driven software. In Proceedings of the 21st in-
ternational conference on Software engineering, pages 597–
607. IEEE Computer Society Press, 1999.

[17] L. J. Jagadeesan, A. Porter, C. Puchol, J. C. Ramming, and
L. G. Votta. Specification-based testing of reactive software:
Tools and experiments. In Proceedings of the 19th Inter-
national Conference on Software Engineering (ICSE ’97),
pages 525–537, Berlin - Heidelberg - New York, May 1997.
Springer.

[18] G. Kapfhammer and M. L. Soffa. A family of test adequacy
criteria for database-driven applications. In Proceedings of
the 9th European Software Engineering Conference (ESEC)
and 11th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE-11), Sept. 2003.

[19] D. Kranzlmuller, S. Grabner, and J. Volkert. Event graph vi-
sualization for debugging large applications. In Proceedings
of the SIGMETRICS symposium on Parallel and distributed
tools, pages 108–117. ACM Press, 1996.

[20] J.-C. Laprie. Dependable computing: Concepts, limits, chal-
lenges. In FTCS-25: 25th International Symposium on Fault
Tolerant Computing Special Issue, pages 42–57, Pasadena,
California, 1995. IEEE Computer Society Press.

[21] J.-C. Laprie, J. Arlat, C. Beounes, and K. Kanoun. Defi-
nition and analysis of hardware- and software-fault-tolerant
architectures. Computer, 23(7):39–51, July 1990.

[22] A. M. Memon. A Comprehensive Framework for Testing
Graphical User Interfaces. Ph.D. thesis, Department of
Computer Science, University of Pittsburgh, July 2001.

[23] A. M. Memon, I. Banerjee, and A. Nagarajan. What test ora-
cle should I use for effective GUI testing? In Proceedings of
the IEEE International Conference on Automated Software
Engineering. IEEE Computer Society, Oct.12–19 2003.

[24] A. M. Memon, M. E. Pollack, and M. L. Soffa. Automated
test oracles for GUIs. In Proceedings of the ACM SIGSOFT
8th International Symposium on the Foundations of Software
Engineering (FSE-8), pages 30–39, NY, Nov. 8–10 2000.

[25] A. M. Memon and M. L. Soffa. Regression testing of
GUIs. In Proceedings of the 9th European Software Engi-
neering Conference (ESEC) and 11th ACM SIGSOFT Inter-
national Symposium on the Foundations of Software Engi-
neering (FSE-11), Sept. 2003.

[26] A. J. Offutt and J. H. Hayes. A semantic model of program
faults. In International Symposium on Software Testing and
Analysis, pages 195–200, 1996.

[27] D. Peters and D. L. Parnas. Generating a test oracle from pro-
gram documentation. In T. Ostrand, editor, Proceedings of
the 1994 International Symposium on Software Testing and
Analysis (ISSTA), pages 58–65, 1994.

[28] D. K. Peters and D. L. Parnas. Using test oracles generated
from program documentation. IEEE Transactions on Soft-
ware Engineering, 24(3):161–173, 1998.

[29] D. J. Richardson. TAOS: Testing with analysis and oracle
support. In T. Ostrand, editor, Proceedings of the 1994 Inter-
national Symposium on Software Testing and Analysis (IS-
STA): August 17–19, 1994, Seattle, Washington, USA, ACM
Sigsoft, pages 138–153, New York, NY 10036, USA, 1994.
ACM Press.

[30] D. J. Richardson, S. Leif-Aha, and T. O. OMalley.
Specification-based Test Oracles for Reactive Systems. In
Proceedings of the 14th International Conference on Soft-
ware Engineering, pages 105–118, May 1992.

[31] D. C. Schmidt and F. Buschmann. Patterns, frameworks, and
middleware: their synergistic relationships. In Proceedings
of the 25th international conference on Software engineer-
ing, pages 694–704. IEEE Computer Society, 2003.

[32] S. Schreyjak. On the aspect of fault tolerance in component-
oriented systems. 1998.

[33] A. U. Shankar. Verified data transfer protocols with vari-
able flow control. ACM Trans. Comput. Syst., 7(3):281–316,
1989.

[34] C. Sliwa. Event-driven architecture poised for wide adop-
tion. COMPUTERWORLD, May 2003.

[35] J. Sosnowski. Transient fault tolerance in digital systems.
IEEE Micro, 14(1):24–35, Feb. 1994.

[36] J. Su and P. R. Ritter. Experience in testing the Motif inter-
face. IEEE Software, 8(2):26–33, Mar. 1991.

[37] P. Vogel. An integrated general purpose automated test en-
vironment. In T. Ostrand and E. Weyuker, editors, Proceed-
ings of the International Symposium on Software Testing and
Analysis, pages 61–69, New York, NY, USA, June 1993.
ACM Press.

[38] M. Welsh, D. Culler, and E. Brewer. Seda: an architecture
for well-conditioned, scalable internet services. In Proceed-
ings of the eighteenth ACM symposium on Operating systems
principles, pages 230–243. ACM Press, 2001.

