
Coverage Criteria for GUI Testing

Atif M. Memon
∗

Dept. of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

atif@cs.pitt.edu

Mary Lou Soffa
†

Dept. of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

soffa@cs.pitt.edu

Martha E. Pollack
‡

Dept. of Electrical Engineering
and Computer Science,
University of Michigan
Ann Arbor, MI 48109

pollackm@eecs.umich.edu

ABSTRACT
The widespread recognition of the usefulness of graphical user
interfaces (GUIs) has established their importance as critical
components of today’s software. GUIs have characteristics
different from traditional software, and conventional testing
techniques do not directly apply to GUIs. This paper’s focus is
on coverage criteria for GUIs, important rules that provide
an objective measure of test quality. We present new coverage
criteria to help determine whether a GUI has been adequately
tested. These coverage criteria use events and event sequences
to specify a measure of test adequacy. Since the total number
of permutations of event sequences in any non-trivial GUI is
extremely large, the GUI’s hierarchical structure is exploited
to identify the important event sequences to be tested. A GUI
is decomposed into GUI components, each of which is used as
a basic unit of testing. A representation of a GUI component,
called an event-flow graph, identifies the interaction of events
within a component and, intra-component criteria are used
to evaluate the adequacy of tests on these events. The hier-
archical relationship among components is represented by an
integration tree, and inter-component coverage criteria are
used to evaluate the adequacy of test sequences that cross
components. Algorithms are given to construct event-flow
graphs and an integration tree for a given GUI, and to evalu-
ate the coverage of a given test suite with respect to the new
coverage criteria. A case study illustrates the usefulness of
the coverage report to guide further testing and an impor-
tant correlation between event-based coverage of a GUI and
statement coverage of it’s software’s underlying code.

∗
Partially supported by the Andrew Mellon Pre-doctoral Fellowship. Ef-

fective Aug 1, 2001: Department of Computer Science, University of Mary-
land. atif@cs.umd.edu
†
Partially supported by a grant from the National Science Foundation

(CCR 9808590 and EIA 9806525) to the University of Pittsburgh.
‡
Partially supported by the Air Force Office of Scientific Research

(F49620-01-1-0066) and Defense Advanced Research Projects Agency
(F30602-00-2-0621)

Keywords
GUI testing, GUI test coverage, Event-based coverage, Event-
flow graph, Integration tree, Component testing.

1. INTRODUCTION
The importance of graphical user interfaces (GUIs) as crit-
ical components of today’s software is increasing with the
recognition of their usefulness. The widespread use of GUIs
has led to the construction of more and more complex GUIs.
Although the use of GUIs continues to grow, GUI testing
has, until recently, remained a neglected research area. Be-
cause GUIs have characteristics different from conventional
software, techniques developed to test conventional software
cannot be directly applied to GUI testing. Recent advances
in GUI testing have focused on the development of test case
generators [8, 11, 12, 14, 18, 6] and test oracles [9] for GUIs.
However, development of coverage criteria for GUIs has not
been addressed.

Coverage criteria are sets of rules to help determine whether
a test suite has adequately tested a program and to guide
the testing process. The most well-known coverage crite-
ria are structural, and include statement coverage, branch
coverage, and path coverage, which require that every state-
ment, branch and path in the program’s code be executed
by the test suite respectively. However such criteria do not
address the adequacy of GUI test cases for a number of rea-
sons. First, GUIs are typically developed using instances of
precompiled elements stored in a library. The source code
of these elements may not always be available for coverage
evaluation. Second, the input to a GUI consists of a se-
quence of events. The number of possible permutations of
the events may lead to a large number of GUI states and for
adequate testing, a GUI event may need to be tested in a
large number of these states. Moreover, the event sequences
that must be tested on the GUI are conceptually at a much
higher level of abstraction than the code and hence cannot
be obtained from the code. For the same reason, the code
cannot be used to determine whether an adequate number
of these sequences has been tested on the GUI.

The above challenges suggest the need to develop coverage
criteria based on events in a GUI. The development of such
coverage criteria has certain requirements. First, since there
are a large number of possible permutations of GUI events,
the GUI must be decomposed into manageable parts. GUIs,
by their very nature, are hierarchical and this hierarchy may

be exploited to identify groups of GUI events that can be
tested in isolation. Hence, each group forms a unit of test-
ing. Such a decomposition allows coverage criteria to be
developed for events within a unit. Intuitively, a unit of
testing has a well-defined interface to the other parts of the
software. It may be invoked by other units when needed and
then terminated. For example, when performing code-based
testing, a unit of testing may be a basic block, procedure,
an object, or a class, consisting of statements, branches, etc.
Interactions among units must also be identified and cover-
age developed to determine the adequacy of tested interac-
tions. Second, it should be possible to satisfy the coverage
criterion by a finite-sized test suite. The finite applicability
[20] requirement holds if a coverage criterion can always be
satisfied by a finite-sized test suite. Finally, the test designer
should recognize whether a coverage criterion can be fully
satisfied [16, 17]. For example, it may not always be possible
to satisfy path coverage because of the presence of infeasible
paths, which are not executable because of the context of
some instructions. No test case can execute along an infea-
sible path, perhaps resulting in loss of coverage. Detecting
infeasible paths in general is a NP complete problem. Infea-
sibility can also occur in GUIs. Similar to infeasible paths
in code, static analysis of the GUI may not reveal infeasi-
ble sequences of events. For example, by performing static
analysis of the menu structure of MS Wordpad, one may
construct a test case with Paste as the first event. How-
ever, experience of using the software shows that such a test
case will not execute since Paste is highlighted only after a
Cut or Copy.1

In this paper, we define a new class of coverage criteria
called event-based coverage criteria to determine the ade-
quacy of tested event sequences, focusing on GUIs. The
key idea is to define the coverage of a test suite in terms
of GUI events and their interactions. Since the total num-
ber of permutations of event sequences in any non-trivial
GUI is extremely large, the GUI’s hierarchical structure is
exploited to identify the important event sequences to be
tested. The GUI is decomposed into GUI components,2

each of which is a unit of testing. Events within a com-
ponent do not interleave with events in other components
without explicit invocation or termination events. Because
of this well-defined behavior, a component may be tested
in isolation. Two kinds of coverage criteria are developed
from the decomposition – intra-component coverage criteria
for events within a component and inter-component cover-
age criteria for events among components. Intra-component
criteria include event, event-interaction, and length-n event-
sequence coverage. Inter-component criteria include invo-
cation, invocation-termination and length-n event-sequence
coverage. A GUI component is represented by a new struc-
ture called an event-flow graph that identifies events within
a component. The interactions among GUI components
are captured by a representation called the integration tree.
We present algorithms to automatically construct event-flow

1Note that Paste will be available if the ClipBoard is not
empty, perhaps because of an external software. External
software is ignored in this simplified example.
2GUI components should not be confused with GUI ele-
ments that are used as building blocks during GUI develop-
ment. We later provide a formal definition of a GUI com-
ponent.

graphs and the integration tree for a given GUI and to eval-
uate intra- and inter-component coverage for a given test
suite. We present a case study to demonstrate (1) the corre-
lation between event-based coverage of our version of Word-
Pad’s GUI and the statement coverage of its underlying code
for a test suite, and (2) the usefulness of the coverage report
to guide further testing.

The important contributions of the coverage method pre-
sented in this paper include:

1. A definition of a GUI component, a useful concept
for structured GUI testing, and the decomposition of
a GUI into a hierarchy of interacting components.

2. a representation of a GUI component called an event-
flow graph that captures the flow of events within a
component and a representation called the integra-
tion tree to identify interactions among components.

3. a class of coverage criteria for intra-component and
inter-component GUI testing and a technique to com-
pute the coverage of a given test suite.

4. a case study demonstrating the usefulness of event-
based coverage and a correlation between coverage in
terms of events and code.

In the next section we present a classification of GUI events
and use the classification to identify GUI components. In
Section 3 we present coverage criteria for event interactions
within a component and among components. Section 4
presents algorithms to construct event-flow graphs and an
integration tree for a given GUI and then evaluate intra- and
inter-component coverage of the GUI for a given test suite.
In Section 5, we present details of a case study conducted
on our version of the WordPad software. Section 6 presents
related work, and in Section 7 we conclude with a discussion
of ongoing and future work.

2. STRUCTURE OF A GUI
In this section, we first present the class of GUIs that our
coverage criteria target. We then describe the structure of
GUIs in terms of a hierarchy of components.

2.1 What is a GUI?
A GUI is composed of objects (buttons, menus, trash-can,
recycling-bin) using metaphors familiar in real life. The soft-
ware user interacts with the objects by performing events
that manipulate the GUI objects as one would real objects.
Events cause deterministic changes to the state of the soft-
ware that may be reflected by a change in the appearance
of one or more GUI objects. Moreover, GUIs, by their
very nature, are hierarchical. This hierarchy is reflected in
the grouping of events in windows, dialogs, and hierarchical
menus. For example, all the “options” in MS Internet Ex-
plorer can be set by interacting with events in one window
of the software’s GUI.

The important characteristics of GUIs include their graph-
ical orientation, event-driven input, hierarchical structure,
the objects they contain, and the properties (attributes) of
those objects. Formally, we define the class of GUIs of in-
terest as follows:

Definition: A Graphical User Interface (GUI) is a hierar-
chical, graphical front-end to a software that accepts

as input user-generated and system-generated events
from a fixed set of events and produces deterministic
graphical output. A GUI contains graphical objects
and each object has a fixed set of properties. At any
time during the execution of the GUI, these properties
have discrete values, the set of which constitutes the
state of the GUI. 2

The above definition specifies a class of GUIs that have
a fixed set of events with deterministic outcome that can
be performed on objects with discrete valued properties.
This definition would need to be extended for other GUI
classes such as web-user interfaces that have synchroniza-
tion/timing constraints among objects, movie players that
show a continuous stream of video rather than a sequence
of discrete frames, and non-deterministic GUIs in which it
is not possible to model the state of the software in its en-
tirety and hence the effect of an event cannot be predicted.
This paper develops coverage criteria for the class of GUIs
defined above.

2.2 GUI Components and Event Classification
Since today’s GUIs are large and contain a large number of
events, any scalable representation must decompose a GUI
into manageable parts. As mentioned earlier, GUIs are hi-
erarchical, and this hierarchy may be exploited to identify
groups of GUI events that can be tested in isolation. One
hierarchy of the GUI, and the one used in this paper, is ob-
tained by examining the structure of modal windows in the
GUI.

Definition: A modal window is a GUI window that once
invoked, monopolizes the GUI interaction, restricting
the focus of the user to a specific range of events within
the window, until the window is explicitly terminated.
2

The language selection window in MS Word is an example
of a modal window. When the user performs the event Set

Language, a window entitled Language opens and the user
spends time selecting the language, and finally explicitly ter-
minates the interaction by either performing OK or Cancel.

Other windows in the GUI are called modeless windows that
do not restrict the user’s focus; they merely expand the set
of GUI events available to the user. For example, in the
MS Word software, performing the event Replace opens a
modeless window entitled Replace.

At all times during interaction with the GUI, the user inter-
acts with events within a modal dialog. This modal dialog
consists of a modal window X and a set of modeless win-
dows that have been invoked, either directly or indirectly by
X. The modal dialog remains in place until X is explicitly
terminated. Intuitively, the events within the modal dialog
form a GUI component.

Definition: A GUI component C is an ordered pair (RF ,
UF), where RF represents a modal window in terms
of its events and UF is a set whose elements represent
modeless windows also in terms of their events. Each
element of UF is invoked either by an event in UF or
RF. 2

Component
Name

Menu
Open

System
Interaction

Restricted
Focus

Unrestricted
Focus Termination Sum

Main 7 27 19 2 1 56
FileOpen 0 8 0 0 2 10
FileSave 0 8 0 0 2 10
Print 0 9 1 0 2 12
Properties 0 11 0 0 2 13
PageSetup 0 8 1 0 2 11
FormatFont 0 7 0 0 2 9
Sum 7 78 21 2 13 121

Event Type

Table 1: Types of Events in Some Components of
MS WordPad.

An example of a GUI component is the FileOpenmodal win-
dow (and its associated modeless windows) found in most of
today’s software. The user interacts with events within this
component, selects a file and terminates the component by
performing the Open event (or sometimes the Cancel event).

Note that, by definition, events within a component do not
interleave with events in other components without the com-
ponents being explicitly invoked or terminated.

Since components are defined in terms of modal windows, a
classification of GUI events is used to identify components.
The classification of GUI events is as follows:

Restricted-focus events openmodal windows. For exam-
ple, Set Language, discussed earlier, is a restricted-
focus event.

Unrestricted-focus events open modeless windows. For
example, Replace in MS WordPad is an unrestricted-
focus event.

Termination events close modal windows; common ex-
amples include Ok and Cancel.

The GUI contains other types of events that do not open or
close windows but make other GUI events available. These
events are used to open menus that contain several events.

Menu-open events are used to open menus. They expand
the set of GUI events available to the user. Menu-
open events do not interact with the underlying soft-
ware. Note that the only difference between menu-
open events and unrestricted-focus events is that the
latter open windows that need to be explicitly ter-
minated. The most common example of menu-open
events are generated by buttons that open pull-down
menus. Common example include File and Edit.

Finally, the remaining events in the GUI are used to interact
with the underlying software.

System-interaction events interact with the underlying
software to perform some action; common examples
include the Copy event used for copying objects to the
clipboard.

Table 1 lists some of the components of WordPad. Each row
represents a component and each column shows the different

File
Edit

Help

Open Save

Cut Copy Paste

About Contents

To File, Edit
and Help

To File, Edit
and Help

Figure 1: An Event-flow Graph for a Part of MS
WordPad.

types of events available within each component. Main is
the component that is available when WordPad is invoked.
Other components’ names indicate their functionality. For
example, FileOpen is the component of WordPad used to
open files.

2.3 Event-flow Graphs
A GUI component may be represented as a flow graph. In-
tuitively, an event-flow graph represents all possible interac-
tions among the events in a component.

Definition: An event-flow graph for a GUI component C is
a 4-tuple <V, E, B, I> where:

1. V is a set of vertices representing all the events in
the component. Each v ∈V represents an event
in C.

2. E ⊆ V × V is a set of directed edges between
vertices. We say that event ei follows ej iff ej
may be performed immediately after ei. An edge
(vx, vy) ∈ E iff the event represented by vy fol-
lows the event represented by vx.

3. B ⊆ V is a set of vertices representing those
events of C that are available to the user when
the component is first invoked.

4. I ⊆ V is the set of restricted-focus events of the
component.

2

An example of an event-flow graph for a part of the Main3

component of MS WordPad is shown in Figure 1. At the top
are three vertices (File, Edit, and Help) that represent part
of the pull-down menu of MS WordPad. They are menu-
open events that are available when the Main component
is first invoked. Hence they form the set B. Once File
has been performed in WordPad, any of Edit, Help, Open,
and Save events may be performed. Hence there are edges
in the event-flow graph from File to each of these events.
Note that Open is shown with a dashed oval. We use this
representation for restricted-focus events, i.e., events that
invoke components. Similarly, About and Contents are also
restricted-focus events, i.e., for this component, I = {Open,
About, Contents}. All other events (Save, Cut, Copy, and
Paste) are system-interaction events. After any of these

3We assume that all GUIs have a Main component, i.e., the
component that is presented to the user when the GUI is
first invoked.

Main

FileNew FileOpen Print FormatFont

Properties

FileSave PageSetup ViewOptions

Figure 2: An Integration Tree for a Part of MS
WordPad.

is performed in MS WordPad, the user may perform File,
Edit, or Help, shown as edges in the event-flow graph.

2.4 Integration Tree
Once all the components of the GUI have been represented
as event-flow graphs, the remaining step is to identify their
interactions. Testing interactions among components is also
an area of research in object-oriented software testing [5] and
inter-procedural data-flow testing [4]. The identification of
interactions among objects and procedures is aided by struc-
tures such as function-decomposition trees and call-graphs
[4]. Similarly, we develop a structure to identify interac-
tions among components. We call this structure an inte-
gration tree because it shows how the GUI components are
integrated to form the GUI. Formally, an integration tree is
defined as follows:

Definition: An integration tree is a 3-tuple < N ,R,B >,
where N is the set of components in the GUI, R ∈ N
is a designated component called the Main component.
We say that a component Cx invokes component Cy
if Cx contains a restricted-focus event ex that invokes
Cy . B is the set of directed edges showing the invokes
relation between components, i.e., (Cx, Cy) ∈ B iff Cx
invokes Cy. 2

Figure 2 shows an example of an integration tree represent-
ing a part of the MS WordPad’s GUI. The nodes represent
the components of the MS WordPad GUI and the edges
represent the invokes relationship between the components.
Main is the top-level component that is available when Word-
Pad is invoked. Other components’ names indicate their
functionality. For example, FileOpen is the component of
WordPad used to open files. The tree in Figure 2 has an
edge from Main to FileOpen showing that Main contains an
event, namely Open (see Figure 1) that invokes FileOpen.

3. COVERAGE CRITERIA
Having created representations for GUI components and
events within components, we are ready to define the cover-
age criteria. We will first define coverage criteria for events
within a component, i.e., intra-component coverage criteria
and then for events among components, i.e., inter-component
criteria.

3.1 Intra-component Coverage
In this section, we define several coverage criteria for events
and their interactions within a component. We first formally
define an event sequence.

Definition: An event-sequence is< e1, e2, e3, ..., en > where
(ei, ei+1) ∈ E, 1 ≤ i ≤ n− 1. 2

All the new coverage criteria that we define next are based
on event-sequences.

3.1.1 Event Coverage
Intuitively, event coverage requires each event in the com-
ponent to be performed at least once. Such a requirement is
necessary to check whether each event executes as expected.

Definition: A set P of event-sequences satisfies the event
coverage criterion if and only if for all events v ∈ V,
there is at least one event-sequence p ∈ P such that
event v is in p. 2

3.1.2 Event-interaction Coverage
Another important aspect of GUI testing is to check the
interactions among all possible pairs of events in the com-
ponent. However, we want to restrict the checks to pairs of
events that may be performed in a sequence.

Definition: The event-interactions for an event e is the set
{ej|(e, ej) ∈E}. 2

In this criterion, we require that after an event e has been
performed, all events that can interact with e should be exe-
cuted at least once. Note that this requirement is equivalent
to requiring that each element in E be covered by at least
one test case.

Definition: A set P of event-sequences satisfies the event-
interaction coverage criterion if and only if for all ele-
ments (ei, ej) ∈ E, there is at least one event-sequence
p ∈ P such that p contains (ei, ej). 2

3.1.3 Length-n Event-sequence Coverage
In certain cases, the behavior of events may change when
performed in different contexts. In such cases event cover-
age and event-interaction coverage on their own are weak
requirements for sufficient testing. We now define a crite-
rion that captures the contextual impact. Intuitively, the
context for an event e is the sequence of events performed
before e. An event may be performed in an infinite number
of contexts. For finite applicability, we define a limit on the
length of the event-sequence. Hence, we define the length-n
event-sequence criterion.

Definition: A set P of event-sequences satisfies the length-
n event-sequence coverage criterion if and only if P
contains all event-sequences of length equal to n. 2

Note the similarity of this criterion to the length-n path cov-
erage criterion defined by Gourlay for conventional software
[2], which requires coverage of all subpaths in the program’s
flow-graph of length less than or equal to n. As the length
of the event-sequence increases, the number of possible con-
texts also increases.

3.2 Subsumption
A coverage criterion C∞ subsumes criterion C∈ if every test
suite that satisfies C∞ also satisfies C∈ [13]. Since event

Length-n Event-sequence
n > 2

Event-interaction

Event

Invocation

Inter-component
Length-n Event-sequence

n > 2

Invocation-termination

Figure 3: The Subsume Relation between Event-
based Coverage Criteria. (Inter-component Criteria
are shown in Reverse Color)

coverage and event-interaction coverage are special cases
of length-n event-sequence coverage, i.e., length 1 event-
sequence and length 2 event-sequence coverage respectively,
it follows that length-n event-sequence coverage subsumes
event and event-interaction coverage. Moreover, if a test
suite satisfies event-interaction coverage, it must also satisfy
event coverage. Hence, event-interaction subsumes event
coverage. The subsume relationship between the coverage
criteria is summarized in Figure 3. The nodes represent the
criteria whereas the edges represent the subsume relation.
Note that the figure also shows inter-component coverage
criteria (in reverse color). The relationships among these
criteria is presented in the next section.

3.3 Inter-component Criteria
The goal of inter-component coverage criteria is to ensure
that all interactions among components are tested. In GUIs,
the interactions take the form of invocation of components,
termination of components, and event-sequences that start
with an event in one component and end with an event in
another component.

3.3.1 Invocation Coverage
Intuitively, invocation coverage requires that each restricted-
focus event in the GUI be performed at least once. Such a
requirement is necessary to check whether each component
can be invoked.

Definition: A set P of event-sequences satisfies the invoca-
tion coverage criterion if and only if for all restricted-
focus events i ∈ I, where I is the set of all restricted-
focus events in the GUI, there is at least one event-
sequence p ∈ P such that event i is in p. 2

Note that event coverage subsumes invocation coverage (Fig-
ure 3) since it requires that all events be performed at least
once, including restricted-focus events.

3.3.2 Invocation-termination Coverage
It is important to check whether a component can be invoked
and terminated.

Definition: The invocation-termination set IT of a GUI
consists of all possible length 2 event sequences < ei, ej >,
where ei invokes component Cx and ej terminates com-
ponent Cx, for all components Cx ∈ N . 2

Intuitively, the invocation-termination coverage requires that
all length 2 event sequences consisting of a restricted-focus
event followed by one of the invoked component’s termina-
tion event be tested.

Definition: A set P of event-sequences satisfies the invocation-
termination coverage criterion if and only if for all i ∈
IT , there is at least one event-sequence p ∈ P such
that i is in p. 2

Satisfying the invocation-termination coverage criterion as-
sures that each component is invoked at least once and then
terminated immediately, if allowed by the GUI’s specifica-
tions. For example, in WordPad, the component FileOpen

is invoked by the event Open and terminated by either Open
or Cancel. Note that WordPad’s specifications do not allow
Open to terminate the component unless a file has been se-
lected. On the other hand, Cancel can always be used to
terminate the component.

3.3.3 Inter-component Length-n Event-sequence Cov-
erage

Finally, the inter-component length-n event-sequence cover-
age criterion requires testing all event-sequences that start
with an event in one component and end with an event in
another component. Note that such an event-sequence may
use events from a number of components. A criterion is
defined to cover all such interactions.

Definition: A set P of event-sequences satisfies the inter-
component length-n event-sequence coverage criterion
for components C1 and C2 if and only if P contains
all length-n event-sequences < e1, e2, e3, ..., en > such
that e1 ∈ V ertices(C1) and en ∈ V ertices(C2). Events
e2, e3, ..., en−1 may belong to C1 or C2 or any other
component Ci. 2

Note that the inter-component length-n event-sequence cov-
erage subsumes invocation-termination coverage (Figure 3)
since length-n event sequences also include length 2 sequences.

4. EVALUATING COVERAGE
Having formally presented intra- and inter-component cov-
erage criteria, we now present algorithms to evaluate the
coverage of a test suite using these criteria. In this section,
we present algorithms to evaluate the coverage of the GUI
for a given test suite. We show how to construct an event-
flow graph and use it to evaluate intra-component coverage.
Then we show how to construct an integration tree and use
it to evaluate inter-component coverage.

4.1 Construction of Event-flow Graphs
The construction of event-flow graphs is based on the struc-
ture of the GUI. The classification of events in the previous
section aids the automated construction of the event-flow
graphs, which we describe next.

For each v ∈ V, we define follow set(v) as the set of all
events vx such that vx follows v. Note that follow set(v)
is the set of outgoing edges in the event-flow graph. We
determine follow set(v) using the algorithm in Figure 4

ALGORITHM : GetFollows(
v: Vertex or Event){ 1

IF EventType(v) = menu-open 2

IF v ∈ B 3

return(MenuChoices(v) ∪ {v}) ∪ B) 4

ELSE 5

return(MenuChoices(v) ∪ {v}
∪ follow set(parent(v))); 6

IF EventType(v) = system-interaction 7

return(B); 8

IF EventType(v) = exit 9

return(B of Invoking component); 10

IF EventType(v) = unrestricted-focus 11

return(B ∪ B of Invoked component); 12

IF EventType(v) = restricted-focus 13

return(B of Invoked component); 14

}

Figure 4: Computing follow set(v) for a Vertex v.

for each vertex v. The recursive algorithm contains a switch
structure that assigns follow set(v) according to the type
of each event. If the type of the event v is a menu-open event
(line 2) and v ∈B (recall that B represents events that are
available when a component is invoked) then the user may
either perform v again, its sub-menu choices, or any event
in B (line 4). However, if v �∈ B then the user may either
perform all sub-menu choices of v, v itself, or all events in
follow set(parent(v)) (line 6). We define parent(v) as
any event that makes v available. If v is a system-interaction
event, then after performing v, the GUI reverts back to the
events inB (line 8). If v is an exit event, i.e., an event that
terminates a component, then follow set(v) consists of all
the top-level events of the invoking component (line 10).
If the event type of v is an unrestricted-focus event then
the available events are all top-level events of the invoked
component available as well as all events of the invoking
component (line 12). Lastly, if v is a restricted-focus event,
then only the events of the invoked component are available.

4.2 Evaluating Intra-component Coverage
Having constructed an event-flow graph, we are now ready
to evaluate the intra-component coverage of any given test
suite using the elements of this graph. Figure 5 shows a
dynamic programming algorithm to compute the percentage
of length-n event-sequences tested. The final result of the
algorithm is Matrix, where Matrixi,j is the percentage of
length-j event-sequences tested on component i.

The main algorithm is ComputePercentageTested. In this
algorithm, two matrices are computed (line 6,7). Counti,j
is the number of length-j event-sequences in component i
that have been covered by the test suiteT (line 6). Totali,j
is the total number of all possible length-j event-sequences in
component i (line 7). The subroutine ComputeCounts cal-
culates the elements in count matrix. For each test case in
T, ComputeCounts finds all possible event-sequences of dif-
ferent lengths (line 19..21). The subsequence < tk, . . . , tj >
is obtained from the test case. Note that since ComputeCounts
takes a union of the event sequences, there is no possibil-
ity of counting the same event sequence twice. The num-
ber of event-sequences of each length are counted in (lines

ALGORITHM : ComputePercentageTested(1

S: Set of Components; 2

T: Test Suite; 3

M: Maximum Event-sequence Length) 4

{ 5

count ←− ComputeCounts(T, S, M); 6

/* counti,j is the tested number
of length-j event-sequences in component i */
total ←− ComputeTotals(S, M); 7

/* totali,j is the total number
of length-j event-sequences in component i */
FOREACH i ∈ S DO 8

FOR j ←− 1 TO M DO 9

Matrixi,j ←− (counti,j/totali,j) × 100; 10

return(Matrix)} 11

SUBROUTINE : ComputeCounts(12

T: Test Suite; S: Set of Components; 13

M: Maximum Event-sequence Length) 14

{ 15

FOREACH i ∈ S DO 16

A ←− {}; /* Empty Set */ 17

FOREACH t ∈ T DO 18

FOR k ←− 1 TO |t| DO 19

FOR j ←− k TO |t| DO 20

A ←− A ∪ {< tk...tj >} 21

FOR j ←− 1 TO M DO 22

/* count number of sets of length j */
counti,j ←− NumberOfSetsOfLength(S, j); 23

return(count)} 24

SUBROUTINE : ComputeTotals(25

S: Set of Components; 26

M: Maximum Event-sequence Length) 27

{FOREACH j ∈ S DO 28

E ←− Edges(j); 29

V ←− Vertices(j); 30

FOREACH i ∈ V DO 31

freqi ←− 1; 32

total1,j ←− |V|; 33

FOREACH i ∈ V DO 34

newfreqi ←− 0; 35

FOR k ←− 2 TO M DO 36

FOREACH i ∈ V DO 37

x ←− follow set(i); 38

totalj,k ←− totalj,k + |x| × freqi; 39

FOREACH l ∈ x DO 40

newfreqj + +; 41

freq ←− newfreq; 42

FOREACH i ∈ V DO 43

newfreqi ←− 0; 44

return(total)} 45

Figure 5: Computing Percentage of Tested Length-n
Event-sequences of All Components.

22, 23). Intuitively, the ComputeTotals subroutine starts
with single-length event-sequences, i.e., individual events in
the GUI (lines 31..33). Using follow set (line 38), the
event-sequences are lengthened one event at each step. A
counter keeps track of the number of event-sequences cre-

ated (line 39). For every element in the follow set of
i, the frequency counter newfreq is incremented (lines
40..41), hence counting the total number of outgoing edges
in the event-flow graph.

The result of the algorithm is Matrix, the entries of which
can be interpreted as follows:

Event Coverage requires that individual events in the GUI
be exercised. These individual events correspond to
length 1 event-sequences in the GUI.Matrixj,1 , where
j ∈ S, represents the percentage of individual events
covered in each component.

Event-interaction Coverage requires that all the edges
of the event-flow graph be covered by at least one test
case. Each edge is effectively captured as a length 2
event-sequence. Matrixj,2 , where j ∈ S, represents
the percentage of branches covered in each component
j.

Length-n Event-sequence Coverage is available directly
fromMatrix. Each column i ofMatrix represents the
number of length-i event-sequences in the GUI.

4.3 Evaluating Inter-component Coverage
Once all the components in the GUI have been identified, the
integration tree is constructed by adding, for each restricted-
focus event ex, the element (Cx, Cy) to B where Cx is the
component that contains ex and Cy is the component that
it invokes. The integration tree is used in various ways to
identify interactions among components. For example, in
Figure 2 a subset of all possible pairs of components that in-
teract would be { (Main, FileNew), (Main, FileOpen), (Main,
Print), (Main, FormatFont), and (Print, Properties) }. To
identify sequences such as the ones from Main to Properties,
we traverse the integration tree in a bottom-up manner,
identifying interactions among Print and Properties. We
then merge Print and Properties to form a super-component
called PrintProperties, and check interactions among Main

and PrintProperties. This process continues until all com-
ponents have been merged into a single super-component.

Evaluating the inter-component coverage of a given test suite
requires computing the (1) invocation coverage, (2) invocation-
termination coverage, and (3) length-n event sequence cover-
age. The total number of length 1 event sequences required
to satisfy the invocation coverage criterion is equal to the
number of restricted-focus events available in the GUI. The
percentage of restricted-focus events actually covered by the
test cases is (x/I)×100, where x is the number of restricted-
focus events in the test cases, and I is the total number of
restricted-focus events available in the GUI. Similarly, the
total number of length 2 event sequences required to satisfy
the invocation-termination criterion is

∑
(Ii × Ti), where Ii

and Ti are the number of restricted-focus and termination
events that invoke and terminate component Ci respectively.
The percentage of invocation-termination pairs actually cov-
ered by the test cases is (x/

∑
(Ii×Ti))×100, where x is the

number of invocation-termination pairs in the test cases.

Computing the percentage of length-n event sequences is
slightly more complicated. The algorithm shown in Fig-
ure 6 computes the percentage of length-n event sequences
tested among GUI components. Intuitively, the algorithm

ALGORITHM : Integrate(1

T: Integration Tree) 2

{ 3

IF Leaf(T) 4

return(T); 5

newT ←− T; 6

FORALL c ∈ Children(T) DO 7

Integrate(c); 8

ComputeTotalInteractions(newT, c); 9

MatrixnewT+c ←− TestedEventSeqnewT+c/Total; 10
} 11

SUBROUTINE : ComputeTotalInteractions(12

C1: Component 1; 13

C2: Component 2) 14

{ 15

FOR i ←− 1 TO M DO 16

Totali ←− 0; 17

x ←− GetCallingEvent(C1, C2); 18

FOR i ←− 1 TO M DO 19

/* get freq table of C1 for event-seq of length i */ 20

F1 ←− GetFreqTable(C1, i); 21

/* Add all values in column x */ 22

p ←− addColumn(x, F1); 23

FOR j ←− 1 TO M DO 24

/* get freq table of C2 for event-seq of length j */ 25

F2 ←− GetFreqTable(C2, j); 26

q ←− 0; 27

FOREACH k ∈ B of C2 DO 28

q ←− q + addRow(k, F2); 29

Totali+j ←− Totali+j + p × q; 30

ComputeFreqMatrix(C1, C2); 31

return(Total); 32

}

Figure 6: Computing Percentage of Tested Length-n
Event-sequences of All Components.

obtains the number of event sequences that end at a certain
restricted-focus event. It then counts the number of event se-
quences that can be extended from these sequences into the
invoked component. The main algorithm called Integrate

is recursive and performs a bottom-up traversal of the inte-
gration tree T (line 2). Other than the recursive call (line
8), Integrate makes a call to ComputeTotalInteractions
that takes two components as parameters (lines 13,14).
It initializes the vector Total for all path lengths i (1 ≤ i
≤ M) (line 16,17). We assume that a matrix (freq) has
been stored for each component. The freq matrix is similar
to the freq vector already computed in the algorithm in Fig-
ure 5. freqi,j is the number of event-sequences that start
with event i and end with event j. After obtaining both
frequency matrices for both C1 and C2, for all path lengths
(lines 21,26), the new vector Total is obtained by adding
the frequency entries from F1 and F2 (lines 28..30). A
new frequency matrix is computed for the super-component
“C1C2” (line 31). This new frequency matrix will be uti-
lized by the same algorithm to integrate “C1C2” to other
components.

The results of the above algorithm are summarized in Ma-
trix. Matrixi,j is the percentage of length-j event-sequences

that have been tested in the super-component represented
by the label i.

5. CASE STUDY
We performed a case study on our version of WordPad to
determine the (1) total number of event sequences required
to test the GUI and hence enable a test designer to compute
the percentage of event sequences tested, (2) correlation be-
tween event-based coverage of the GUI and statement cov-
erage of the underlying code, and (3) time taken to evaluate
the coverage of a given test suite and usefulness of the cov-
erage report to guide further testing.

In the case study, we employed our own specifications and
implementation of the WordPad software. The software con-
sists of 36 modal windows, and 362 events (not counting
short-cuts). Our implementation of WordPad is similar to
Microsoft’s WordPad except for the Help menu, which we
did not model.

5.1 Computing Total Number of Event-sequences
for WordPad

In this case study, we wanted to determine the total number
of event sequences that our new criteria specify to test parts
of WordPad. We performed the following steps:

Identifying Components and Events: Individual Word-
Pad components and events within each component
were identified. Table 1 presented earlier shows some
of the components of WordPad that we used in our
case study.

Creating Event-flow Graphs: The next step was to con-
struct an event-flow graph for each component. In Fig-
ure 1 we showed a part of the event-flow graph of the
most important component, Main. Recall that each
node in the event-flow graph represents an event.

Computing Event-sequences: Once the event-flow graphs
were available, we computed the total number of pos-
sible event-sequences of different lengths in each com-
ponent by using the computeTotals subroutine in Fig-
ure 5. Note that these event-sequences may also in-
clude infeasible event-sequences. The total number of
event-sequences is shown in Table 2. The rows rep-
resent the components and the shaded rows represent
the inter-component interactions. The columns rep-
resent different event-sequence lengths. Recall that
an event-sequence of length 1 represents event cover-
age whereas an event-sequence of length 2 represents
event-interaction coverage. The columns 1’ and 2’ rep-
resent invocation and invocation-termination coverage
respectively.

The results of this case study show, not surprisingly, that
the total number of event sequences grows with increasing
length. Note that longer sequences subsume shorter se-
quences; e.g., if all event sequences of length 5 are tested,
then so are all sequences of length-i, where i ≤ 4. It is dif-
ficult to determine the maximum length of event sequences
needed to test a GUI. The large number of event sequences
show that it is impractical to test a GUI for all possible event
sequences. Rather, depending on the resources, a subset of
“important” event sequences should be identified, generated

Component Name 1’ 2’ 1 2 3 4 5 6
Main 56 791 14354 255720 4490626 78385288
FileOpen 10 80 640 5120 40960 327680
FileSave 10 80 640 5120 40960 327680
Print 12 108 972 8748 78732 708588
Properties 13 143 1573 17303 190333 2093663
PageSetup 11 88 704 5632 45056 360448
FormatFont 9 63 441 3087 21609 151263
Print+Properties 1 2 13 260 3913 52520 663013
Main+FileOpen 1 2 10 100 1180 17160 278760
Main+FileSave 1 2 10 100 1180 17160 278760
Main+PageSetup 1 2 11 110 1298 18876 306636
Main+FormatFont 1 2 9 81 909 13311 220509
Main+Print+Properties 12 145 1930 28987 466578

Event-sequence Length

Table 2: Total Number of Event-sequences for Se-
lected Components of WordPad. Shaded Rows
Show Number of Interactions Among Components.

and executed. Identifying such important sequences requires
that they be ordered by assigning a priority to each event
sequence. For example, event sequences that are performed
in the Main component may be given higher priority since
they may be used more frequently; all the users start in-
teracting with the GUI using the Main component. The
components that are deepest in the integration tree may be
used the least. This observation leads to a heuristic for or-
dering the testing of event sequences within components of
the GUI. The structure of the integration tree may be used
to assign priorities to components; Main will have the high-
est priority, decreasing for components at the second level,
with the deepest components having the lowest priority. A
large number of event sequences in the high priority compo-
nents may be tested first; the number will decrease for low
priority components.

5.2 Correlation Between Event-based Cover-
age and Statement Coverage

In this case study, we wanted to determine exactly which
percentage of the underlying code is executed when event-
sequences of increasing length are executed on the GUI. We
wanted to see how code coverage relates to event coverage.
We performed the following steps:

Code Instrumentation: We instrumented the underlying
code of WordPad to produce a statement trace, i.e., a
sequence of statements in the order in which they are
executed. Examining such a trace allowed us to deter-
mine which statements are executed by a test case.

Event-sequence Generation: We wanted to generate all
event-sequences up to a specific length. We modi-
fied ComputeTotals in Figure 5 to produce an event-
sequence generation algorithm that constructs event
sequences of increasing length. The dynamic program-
ming algorithm constructs all event sequences of length
1. It then uses follow set to extend each event se-
quence by one event, hence creating all length 2 event-
sequences. We generated all event-sequences up to
length 3. In all we obtained 21659 event-sequences.

Controlling GUI’s State: Bringing a software to a state
Si in which a test case Ti may be executed on it is
traditionally known as the controllability problem [1].
This problem also occurs in GUIs and for each test

0

20

40

60

80

100

120

0 1 2 3

Event-sequence Length

P
er

ce
n

ta
g

e
o

f
S

ta
te

m
en

ts
 E

xe
cu

te
d

Figure 7: The Correlation Between Event-based
Coverage and Statement Coverage of WordPad.

case, appropriate events may need to be performed
on the GUI to bring it to the state Si. We call this
sequence of events the prefix, Pi, of the test case. Al-
though generating the prefix in general may require the
development of expensive solutions, we used the fol-
lowing heuristic for this study: we executed each test
case in a fixed state S0 in which WordPad contains
text, part of the text was highlighted, the clipboard
contains a text object, and the file system contains two
text files. We traversed the event-flow graphs and the
integration tree to produce the prefix of each test case.
We do, however, note that using this heuristic may
render some of the event sequences non-executable be-
cause of infeasibility. We will later see that such se-
quences do exist but are of no consequence to the re-
sults of this study. We have modified WordPad so that
no statement trace is produced for Pi.

Test-case Execution: After all event-sequences up to length
3 were obtained, we executed them on the GUI us-
ing our automated test executor [10] and obtained all
the execution traces. The test case executor executed
without any intervention for 30 hours. We note that
4189 (or 19.3%) of the test cases could not be executed
because of infeasibility.

Analysis: In analyzing the traces for our study, we deter-
mined the new statements executed by event-sequences
of length 1, i.e., individual events. The graph in Fig-
ure 7 shows that almost 92% of the statements were
executed by just these individual events. As the length
of the event sequences increases, very few new state-
ments are executed (5%). Hence, a high statement
coverage of the underlying code may be obtained by
executing short event sequences.

The relationship between event sequences and code, ob-
tained from this case study, can be explained in terms of
the design of the WordPad GUI. Since the GUI is an event-
driven software, a method called an event handler is imple-
mented for each event. Executing an event caused the exe-
cution of its corresponding event handler. Code inspection
of the WordPad implementation revealed that there were
few or no branch statements in the code of the event han-
dler. Consequently, when an event was performed, most of
the statements in the event-handler were executed. Hence

high statement coverage was obtained by just performing
individual events. Whether other GUIs exhibit similar be-
havior requires a detailed analysis of a number of GUIs and
their underlying code.

The result shows that statement coverage of the underlying
code can be a misleading coverage criterion for GUI test-
ing. A test designer who relies on statement coverage of
the underlying code for GUI testing may test only short
event sequences. However, testing only short sequences is
not enough. Longer event sequences lead to different states
of the GUI and testing these sequences may help detect a
larger number of faults than testing short event sequences.
For example, in WordPad, the event Find Next (obtained
by clicking on the Edit menu) can only be executed after at
least 6 events have been performed; the shortest sequence
of events needed to execute Find Next is <Edit, Find,

TypeInText, FindNext2, OK, Edit, Find Next>, which has
7 events. If only short sequences (< 3) are executed on the
GUI, a bug in Find Next may not be detected. Extensive
studies of the fault-detection capabilities of executing short
and long event sequences for GUI testing are needed, and
are targeted for future work. Another possible extension
to this study is to determine the correlation between event-
based coverage and other code-based coverage, e.g., branch
coverage.

5.3 Evaluating the Coverage of a Test Suite
We also wanted to determine the time taken to evaluate the
coverage of a given test suite and how the resulting cover-
age report could guide further testing. We used our previ-
ously developed planning-based test case generation system
called Planning Assisted Tester for grapHical user interface
Systems(PATHS) to generate test cases [8]. We performed
the following steps:

Identifying Tasks: In PATHS, commonly used tasks were
identified. A task is an activity to be performed by
using the events in the GUI. In PATHS, the test de-
signer inputs tasks as pairs (I, G), where I is the ini-
tial GUI state before the task is performed and G is
the final GUI state after the task has been performed.
We carefully identified 72 different tasks, making sure
that each task exercised at least one unique feature of
WordPad. For example, in one task we modified the
font of text, in another we printed the document on
A4 size paper.

Generating Test Cases: Multiple test cases were gener-
ated using a plan generation system to achieve these
tasks. In this manner, we generated 500 test cases
(multiple cases for each task).

Coverage Evaluation: After the test cases were available,
we executed the algorithms of Figures 5 and 6. The al-
gorithms were implemented using Perl and Mathemat-
ica [19] and were executed on a Sun UltraSPARC work-
station (Sparc Ultra 4) running SunOS 5.5.1. Even
with the inefficiencies inherent in the Perl and Mathe-
matica implementation, we could process the 500 test
cases in 47 minutes (clock time). The results of apply-
ing the algorithms are summarized as coverage reports
in Tables 3 and 4. Table 3 shows the actual number
of event-sequences that the test cases covered. Table 4
presents the same data, but as a percentage of the total

Component Name 1’ 2’ 1 2 3 4 5 6
Main 49 321 1567 915 1231 1987
FileOpen 9 45 112 37 23 179
FileSave 9 33 132 65 193 67
Print 11 37 313 787 3085 1314
Properties 12 65 434 312 1848 1235
PageSetup 10 43 179 144 298 233
FormatFont 8 23 172 422 142 84
Print+Properties 1 0 6 133 320 2032 326
Main+FileOpen 1 0 4 11 120 223 453
Main+FileSave 1 0 2 13 102 217 769
Main+PageSetup 1 0 5 67 56 367 233
Main+FormatFont 1 0 3 23 47 129 227
Main+Print+Properties 6 56 123 189 423

Event-sequence Length

Table 3: The Number of Event-sequences for Se-
lected Components of WordPad Covered by the Test
Cases.

Component Name 1’ 2’ 1 2 3 4 5 6
Main 88 41 10.92 0.36 0.03 0.00
FileOpen 90 56 17.50 0.72 0.06 0.05
FileSave 90 41 20.63 1.27 0.47 0.02
Print 92 34 32.20 9.00 3.92 0.19
Properties 92 45 27.59 1.80 0.97 0.06
PageSetup 91 49 25.43 2.56 0.66 0.06
FormatFont 89 37 39.00 13.67 0.66 0.06
Print+Properties 100 0 46 51.15 8.18 3.87 0.05
Main+FileOpen 100 0 40 11.00 10.17 1.30 0.16
Main+FileSave 100 0 20 13.00 8.64 1.26 0.28
Main+PageSetup 100 0 45 60.91 4.31 1.94 0.08
Main+FormatFont 100 0 33 28.40 5.17 0.97 0.10
Main+Print+Properties 50 38.62 6.37 0.65 0.09

Event-sequence Length

Table 4: The Percentage of Total Event-sequences
for Selected Components of WordPad Covered by
the Test Cases.

number of event-sequences. Column 1 in Table 4 shows
close to 90% event coverage. The remaining 10% of the
events (such as Cancel) were never used by the plan-
ner since they did not contribute to a goal. Column
2 shows the event-interaction coverage and the test
cases achieved 40-55% coverage. Note that since all
the components were invoked at least once, 100% in-
vocation coverage (column 1’) was obtained. However,
none of the components were terminated immediately
after being invoked. Hence, no invocation-termination
coverage (column 2’) was obtained.

This result shows that the time taken to evaluate the cover-
age of a large test suite is reasonable. Looking at columns
4, 5, and 6 of Table 4, we note that only a small percent-
age of length 4, 5, and 6 event sequences were tested. The
test designer can evaluate the importance of testing these
longer sequences and perform additional testing. Also, the
two-dimensional structure of Table 4 helps target specific
components and component-interactions. For example, 60%
of of length 2 interactions among Main and PageSetup have
been tested whereas only 11% of the interactions among
Main and FileOpen have been tested. Depending on the rel-

ative importance of these components and their interactions,
the test designer can focus on testing these specific parts of
the GUI.

The coverage report produced from this case study shows
two important weaknesses of PATHS. First, PATHS did not
use events such as Cancel since they did not contribute to
the planning goal, resulting in loss of coverage as seen in col-
umn 1 of Table 4. Second, PATHS did not generate event
sequences that invoke a component and terminate it imme-
diately since such preemptive termination did not contribute
to the final goal. This behavior of the planning-based test-
case generator resulted in loss of coverage as seen in column
2’ of Table 4. Note that, in practice, GUI users can, and do
terminate components without interacting with other events
in the component. It is important to test the GUI for such
event sequences, perhaps by employing other testing tech-
niques. An important lesson demonstrated from this case
study is that it is necessary to combine several techniques
to test a GUI software, so that weaknesses of one technique
do not have too much impact on the overall testing results.
Rather, the combined strengths of several testing techniques
will result in better testing of the GUI software.

6. RELATED WORK
Very little research has been reported on developing cov-
erage criteria for GUIs. The main exception is the work
by Ostrand et al. who briefly indicate that a model-based
method may be useful for improving the coverage of a test
suite [12]. However, they have deferred a detailed study of
the coverage of the generated test cases using this type of
GUI model to future work.

There is a close relationship between test-case generation
techniques and the underlying coverage criteria used. Much
of the literature on GUI test case generation focuses on de-
scribing the algorithms used to generate the test cases [14,
18, 6]. Little or no discussion about the underlying cover-
age criteria is presented. In the next few paragraphs, we
present a discussion of some of the methods used to develop
test cases for GUIs and their underlying coverage criteria.
We also present a discussion of automated test case gen-
eration techniques that offer a unique perspective of GUI
coverage.

The most commonly available tools to aid the test designer
in the GUI testing process include record/playback tools
[15, 3]. These tools record the user events and GUI screens
during an interactive session. The recorded sessions are later
played back whenever it is necessary to generate the same
GUI events. Record/playback tools provide no functionality
to evaluate the coverage of a test suite. The primary reason
for no coverage support is that these tools lack a global
view of the GUI. The test cases are constructed individually
with a local perspective. Several attempts have been made
to provide more sophisticated tools for GUI testing. One
popular technique is programming the test case generator
[7]. The test designer develops programs to generate test
cases for a GUI. The use of loops, conditionals, and data
selection switches in the test case generation program gives
the test designer a broader view of the generated test cases’
coverage.

Several finite-state machine (FSM) models have also been
proposed to generate test cases [14]. Once an FSM is built,
coverage of a test suite is evaluated by the number of states
visited by the test case. This method of evaluating coverage
of a test suite needs to be studied further as an accurate
representation of the GUI’s navigation results in an infinite
number of states.

White et al. presents a new test case generation technique
for GUIs [18]. The test designer/expert manually identifies
a responsibility, i.e., a GUI activity. For each responsibility,
a machine model called the complete interaction sequence
(CIS) is identified manually. To reduce the size of the test
suite, the CIS is reduced using constructs/patterns in the
CIS. The example presented therein showed that testing
could be performed by using 8 test cases instead of 48. How-
ever, there is no discussion of why no loss of coverage will
occur during this reduction. Moreover, further loss of cov-
erage may occur in identifying responsibilities and creating
the CIS. The merit of the technique will perhaps be clearer
when interactions between the CIS are investigated.

7. CONCLUSION
In this paper, we present new coverage criteria for GUI test-
ing based on GUI events and their interactions. A unit of
testing called a GUI component is defined. We identify the
events within each component and represented them as an
event-flow graph. Three new coverage criteria for events
within a component are defined: event, event-interaction,
and length-n event-sequence coverage. We define an inte-
gration tree to identify events among components, and three
inter-component coverage criteria: invocation, invocation-
termination and inter-component length-n event-sequence
coverage.

In the future we plan to examine the effects of the GUI’s
structure on its testability. As GUIs become more struc-
tured, the integration tree becomes more complex and inter-
component testing becomes more important.

We also plan to explore the possibility of using the event-
based coverage criteria for software other than GUIs. We
foresee the use of these criteria for (1) object-oriented soft-
ware, which use messages/events for communication among
objects, (2) networking software, which use messages for
communication, and (3) the broader class of reactive soft-
ware, which responds to events.

8. REFERENCES
[1] D. Chays, S. Dan, P. G. Frankl, F. I. Vokolos, and

E. J. Weyuker. A framework for testing database
applications. In Proceedings of the 2000 International
Symposium on Software Testing and Analysis
(ISSTA), pages 147–157, 2000.

[2] J. S. Gourlay. A mathematical framework for the
investigation of testing. IEEE Transactions on
Software Engineering, 9(6):686–709, Nov. 1983.

[3] M. L. Hammontree, J. J. Hendrickson, and B. W.
Hensley. Integrated data capture and analysis tools for
research and testing an graphical user interfaces. In
Proceedings of the Conference on Human Factors in

Computing Systems, pages 431–432, New York, NY,
USA, May 1992. ACM Press.

[4] M. J. Harrold and M. L. Soffa. Interprocedual data
flow testing. In R. A. Kemmerer, editor, Proceedings
of the ACM SIGSOFT ’89 Third Symposium on
Testing, Analysis, and Verification (TAV3), pages
158–167, 1989.

[5] P. C. Jorgensen and C. Erickson. Object-oriented
integration testing. Communications of the ACM,
37(9):30–38, Sept. 1994.

[6] D. J. Kasik and H. G. George. Toward automatic
generation of novice user test scripts. In Proceedings of
the Conference on Human Factors in Computing
Systems : Common Ground, pages 244–251, New
York, 13–18 Apr. 1996. ACM Press.

[7] L. R. Kepple. The black art of GUI testing. Dr.
Dobb’s Journal of Software Tools, 19(2):40, Feb. 1994.

[8] A. M. Memon, M. E. Pollack, and M. L. Soffa. Using a
goal-driven approach to generate test cases for GUIs.
In Proceedings of the 21st International Conference
on Software Engineering, pages 257–266. ACM Press,
May 1999.

[9] A. M. Memon, M. E. Pollack, and M. L. Soffa.
Automated test oracles for GUIs. In D. S. Rosenblum,
editor, Proceedings of the ACM SIGSOFT 8th
International Symposium on the Foundations of
Software Engineering (FSE-00), pages 30–39, NY,
Nov. 8–10 2000. ACM Press.

[10] A. M. Memon, M. E. Pollack, and M. L. Soffa. A
planning-based approach to GUI testing. In
Proceedings of The 13th International
Software/Internet Quality Week, May 2000.

[11] A. M. Memon, M. E. Pollack, and M. L. Soffa.
Hierarchical GUI test case generation using
automated planning. IEEE Transactions on Software
Engineering, 27(2):144–155, Feb. 2001.

[12] T. Ostrand, A. Anodide, H. Foster, and T. Goradia. A
visual test development environment for GUI systems.
In Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis
(ISSTA-98), pages 82–92, New York, Mar.2–5 1998.
ACM Press.

[13] S. Rapps and E. J. Weyuker. Selecting software test
data using data flow information. IEEE Transactions
on Software Engineering, 11(4):367–375, Apr. 1985.

[14] R. K. Shehady and D. P. Siewiorek. A method to
automate user interface testing using variable finite
state machines. In Proceedings of The Twenty-Seventh
Annual International Symposium on Fault-Tolerant
Computing (FTCS’97), pages 80–88, Washington -
Brussels - Tokyo, June 1997. IEEE Press.

[15] L. The. Stress Tests For GUI Programs. Datamation,
38(18):37, Sept. 1992.

[16] E. J. Weyuker. The applicability of program schema
results to programs. International Journal of
Computer and Information Sciences, 8(5):387–403,
Oct. 1979.

[17] E. J. Weyuker. Translatability and decidability
questions for restricted classes of program schemas.
SIAM Journal on Computing, 8(4):587–598, 1979.

[18] L. White and H. Almezen. Generating test cases for
GUI responsibilities using complete interaction
sequences. In Proceedings of the International
Symposium on Software Reliability Engineering, pages
110–121, Oct. 8–11 2000.

[19] S. Wolfram. Mathematica: A System for Doing
Mathematics by Computer. Addison-Wesley, Reading,
Massachusetts, 1988.

[20] H. Zhu and P. Hall. Test data adequacy
measurements. Software Engineering Journal,
8(1):21–30, Jan. 1993.

