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Although graphical user interfaces (GUIs) constitute a large part of the software being developed
today and are typically created using rapid prototyping, there are no effective regression testing
techniques for GUIs. The needs of GUI regression testing differ from those of traditional software.
When the structure of a GUI is modified, test cases from the original GUI’s suite are either reusable
or unusable on the modified GUI. Because GUI test case generation is expensive, our goal is to
make the unusable test cases usable, thereby helping to retain the suite’s event coverage. The idea
of reusing these unusable (obsolete) test cases has not been explored before. This paper shows that
a large number of test cases become unusable for GUIs. It presents a new GUI regression testing
technique that first automatically determines the usable and unusable test cases from a test suite
after a GUI modification, then determines the unusable test cases that can be repaired so that
they can execute on the modified GUI, and finally uses repairing transformations to repair the
test cases. This regression testing technique along with four repairing transformations has been
implemented. An empirical study for four open-source applications demonstrates that (1) this
approach is effective in that many of the test cases can be repaired, and is practical in terms of its
time performance, (2) certain types of test cases are more prone to becoming unusable, and (3)
certain types of “dominator” events, when modified, make a large number of test cases unusable.

Categories and Subject Descriptors: D.2.5 [Testing and Debugging]: Regression Testing; K.6.3
[Software Management]: Software maintenance

General Terms: Verification, Reliability

Additional Key Words and Phrases: Graphical user interfaces, regression testing, test mainte-
nance, repairing test cases, test case management

1. INTRODUCTION

Graphical User Interfaces (GUIs) are pervasive in today’s software systems and
constitute as much as half of software code [Myers 1995; Memon 2001]. The cor-
rectness of a software system’s GUI is paramount in ensuring the correct operation
of the overall software system [Kepple 1994; Ostrand et al. 1998]. One way, and the
common way to gain confidence in a GUI’s correctness is through comprehensive
testing. GUI testing requires that test suites (containing test cases – sequences of
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GUI events that exercise GUI widgets) be developed and executed on the application
under test (AUT) [Walworth 1997; Kepple 1992; Memon 2002]. However, currently
available techniques for obtaining GUI test suites are resource intensive, requiring
significant human intervention. Even though several automated approaches have
been proposed [Shehady and Siewiorek 1997; Memon et al. 2001; Memon and Xie
2005; Memon et al. 2005; White and Almezen 2000; Kasik and George 1996], in
practice, GUI test suites are still being developed manually using capture/replay
tools [Hicinbothom and Zachary 1993]. Moreover, most GUIs are designed using
rapid prototyping [Myers 1995; Wittel, Jr. and Lewis 1991; Rosenberg 1993], in
which software is modified and tested on a continuous basis. The continuous modi-
fication of a GUI requires that most of the test cases in the suite be reusable across
versions, as it is expensive to develop a new suite for each version.

When a GUI is modified, the test cases in a test suite fall into one of two cate-
gories: usable and unusable. In the “usable” category, the test cases can be rerun
on the modified GUI. In the “unusable” category, the test cases cannot be rerun
to completion. For example, a test case may specify clicking on a button that may
have been deleted or moved. Similarly, test cases may also become unusable be-
cause of GUI layout changes such as the creation of a new menu hierarchy, moving
a widget from one menu to another, and moving a widget from one window to
another. The unusable test cases are identified only after they have been executed,
leading to severe waste of valuable resources.

An earlier report of this research presented a new regression testing technique
that helps to retain a test suite’s event coverage by reusing existing test cases
from the original GUI’s suite that have become unusable for the modified GUI by
automatically repairing them so that they can execute on the modified GUI [Memon
and Soffa 2003]. With this repairing technique, a tester can rerun test cases that
are usable for the modified GUI, as currently done, repair and rerun previously
unusable test cases, and create new test cases to ensure adequate event coverage for
the resulting suite. The repairing technique leverages existing GUI representations
developed for a GUI testing framework [Memon et al. 2001; Memon et al. 2000;
Memon 2001]. A model of the event structure of a GUI is created and used to
determine the modifications; it is then used to check whether each existing test is
usable on the modified GUI and if not, repair it if possible using one of several
user-defined repairing transformations.

This paper empirically assesses, via a study on multiple versions of four open-
source software subjects, the technique presented in the earlier work [Memon and
Soffa 2003]. The results of the study show that (1) a large number of test cases in
fact become unusable for modified GUI versions, (2) the repairing algorithms, with
four simple transformations, are able to repair more than half of these test cases,
(3) short test cases are less likely to become unusable, and (4) changes to certain
“dominator” events cause a large number of test cases to become unusable.

The repairing technique is general, in that it can be used on test suites that have
been developed using any method, e.g., capture/replay, state-machines [White and
Almezen 2000], event-flow graphs (EFGs) [Memon et al. 2005; Memon and Xie
2005], AI planning [Memon et al. 2001], and genetic algorithms [Kasik and George
1996]. Tools for automatic creation of the representations, and identification and
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repair of unusable test cases have been developed and made available on-line.1

More specifically, the contributions of this paper include:

(1) the first regression testing technique that helps to retain a suite’s event cov-
erage across software versions by automatically obtaining new test cases from
unusable test cases,

(2) a checker that determines if an existing test case is usable or unusable on a
modified GUI and, if unusable, determines if it can be repaired,

(3) an extensible repairer that employs user-defined transformations to repair pre-
viously unusable test cases,

(4) empirical assessment on 19 versions of real open-source applications that the
repairing technique is effective and practical,

(5) integration of the regression testing technique into a framework for GUI testing,

(6) identification of characteristics of GUI changes that lead to unusable test cases,
and

(7) identification of characteristics of GUI test cases that make them unusable.

It should be noted that a test case that has an associated test oracle (a mech-
anism that determines whether a test case passed or failed) may become unus-
able because the test oracle no longer encodes the correct expected behavior of
the modified software. Executing a test case with such a test oracle will produce
misleading results.“Repairing” or regenerating the test oracle is an important and
complex task; it is a subject for future work. The technique described in this pa-
per assumes the availability of “global” test oracles that are not associated with
individual test cases; rather they monitor the software during test-case execution,
checking for overall contract violations, e.g., software crashes/freezing. Several ear-
lier reports, including our own [Xie and Memon 2006; Yuan and Memon 2007] have
demonstrated the usefulness of such “global” test oracles obtained from assertions
(embedded in the code) that check the partial state of the program during the exe-
cution of a test suite [Rosenblum 1995; Voas 1997] or a list of programmer-specified
contracts that must not be violated at any time during its execution [Pacheco et al.
2007].
Structure of the Paper: The next section presents background and related
research. A motivating example and algorithms for checking and repairing test
cases are presented in Section 3. Section 4 describes the results of an empirical
study performed on four open-source applications. Section 5 concludes with a
discussion on ongoing and future work.

2. RELATED WORK

Although regression testing research has received a lot of attention [Binkley 1997;
Rosenblum and Weyuker 1997; Rothermel and Harrold 1997; 1998], there has been
very little reported research on GUI regression testing. The research presented in
this paper leverages several existing techniques, which are discussed next.
Regression Testing of Conventional Software: Several strategies for regres-
sion testing of conventional software have been proposed and used [Harrold et al.

1http://guitar.cs.umd.edu
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1993; Rosenblum and Rothermel 1997; Kung et al. 1996]. One regression testing
strategy proposes rerunning all test cases that still belong to the new version’s
input domain. Because this retest-all strategy is resource intensive, numerous ef-
forts have been made to reduce its cost. Selective retest techniques [Agrawal et al.
1993; Benedusi et al. 1988; Harrold and Soffa 1989] attempt to reduce the cost of
regression testing by testing only selected parts of the software. These techniques
have traditionally focused on two problems: (1) regression test selection problem,
i.e., selecting a subset of the existing test cases [Rothermel and Harrold 1997], and
(2) coverage identification problem, i.e., identifying portions of the software that
require additional testing [Rothermel and Harrold 1997]. Solutions to the regres-
sion test selection problem compare structural representations (e.g., control-flow
graphs [Rothermel and Harrold 1997], control-dependence graphs [Rothermel and
Harrold 1993]) of the original and modified software. Test cases that cause the
execution of different paths in these structures are likely to be selected for retest-
ing. Among selective retest strategies, the safe approaches require the selection of
every existing test case that exercises any program element that could be affected
by a given program change. On the other hand, minimization approaches attempt
to select the smallest set of test cases necessary to test affected program elements
at least once [Rothermel et al. 1998]. Other regression testing techniques include
analyzing changes to functions, types, variables, and macro definitions [Rosenblum
and Rothermel 1997], using def-use chains [Harrold et al. 1993], constructing pro-
cedure dependence graphs [Binkley 1997], and analyzing code and class hierarchy
for object-oriented programs [Kung et al. 1996].

There are no reported techniques to reuse test cases that no longer belong to
the modified program’s input domain. Several authors have recognized the need
for the identification (not reuse nor repair) of such test cases [Onoma et al. 1998;
Beizer 1990]. Onoma et al. [Onoma et al. 1998] point out that in practice, test
case revalidation, which aims to identify test cases that are no longer usable for
the modified software is done manually. Test case revalidation requires the tester
to examine the AUT’s specifications and existing test suite; a test case that is no
longer usable is discarded. These activities are manual and can be quite expensive.

GUI Regression Testing: White [White 1996] proposes a Latin square method
to reduce the size of a GUI regression test suite. The underlying assumption made
therein is that it is enough to check pair-wise interactions between menu-items of
the GUI. The technique requires that each menu item appears in at least one test
case. This strategy seems promising since it also employs GUI events. However,
the technique needs to be extended to GUI items other than menus. Moreover,
detailed studies need to be conducted to verify whether the pair-wise interactions
checking assumption is sufficient.

White et al. [White et al. 2003] have extended their work on complete interactions
sequences (CIS) to develop a new firewall [White et al. 2005] regression testing
approach for GUIs. A CIS is a state-machine model that partitions the GUI state
space into different machines based on user tasks [White and Almezen 2000]. The
test designer/expert manually identifies a responsibility, i.e., a user task that can
be performed with the GUI. For each responsibility, the test designer identifies a
machine model called the CIS. The CIS foundation is used to develop a new firewall
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method that selects only those GUI objects in a firewall that need be regression
tested.

Our own previous work studied the fault-detection effectiveness of GUI test cases
for rapidly evolving software [Memon et al. 2005; Memon and Xie 2005]. Some
shortcomings of modern smoke regression techniques, such as the inability to au-
tomatically retest GUIs are addressed. Various empirical results and solutions to
this problem are discussed. More specifically, the requirements for GUI smoke test-
ing are identified and a GUI smoke suite is formally defined as short sequences of
events satisfying the event-interaction adequacy criterion [Memon et al. 2001]. In
addition, the use of the Daily Automated Regression Tester (DART), which is an
automated regression testing process, is presented. Finally, the results of empirical
studies demonstrate the feasibility of the overall smoke testing process in terms of
execution time and storage space. Some other equally important results indicate
that smoke tests cannot cover certain parts of the code and that having compre-
hensive test oracles may balance off the lack of large smoke test suites [Xie and
Memon 2007].

GUI Regression Testing Practice: Capture/replay tools [Hammontree et al.
1992] are currently the most popular tools used in practice for GUI testing. Cap-
ture/replay tools operate in two modes: capture and replay. In the capture mode,
tools such as CAPBAK and TestWorks [Software Research, Inc., Capture-Replay
Tool 2003] record mouse coordinates of the user actions as test cases. In the re-
play mode, the recorded test cases are replayed automatically. The problem with
such tools is that, since they store mouse coordinates, test cases break even with
the slightest changes (e.g., relocation of a widget by a few pixels) to the GUI
layout. Tools such as Winrunner [WinRunner 2003], Abbot [Abbot 2003], and Ra-
tional Robot [RationalRobot 2003] overcome this problem by capturing GUI widgets
rather than mouse coordinates. Although replay is automated, significant effort is
involved in creating the test cases and detecting failures. When these test cases are
executed on the modified version of software, they may fail either due to (1) errors
in the AUT or (2) GUI modifications. Unless the latter type of failures (also called
false positives) are manually revalidated before re-testing, they need to be weeded
out manually after they have been executed. Both these activities are resource
intensive. Additional test cases are developed to replace the test cases that lead to
false positives and to test new functionality.

A popular alternative to capture/replay tools used for GUI regression testing
in practice is to use test harnesses that “bypass” the GUI and invoke methods of
the underlying code or “business logic” as if initiated by a GUI [Thatcher 1994].
Examples of some tools that may be used for such bypass testing include extensions
of JUnit such as JFCUnit, Abbot, Pounder, and Jemmy Module [JUnitResources
2005]. Test cases developed using this approach are more resilient to GUI layout
changes. However, this approach not only requires major changes to the software
architecture (e.g., keep the GUI software “light” and code all “important” decisions
in the business logic [Marick 2002]), it also does not perform testing of the end-user
software.

Although none of the above techniques address the problem of reusing unusable
test cases, several of them provide the necessary foundation for this work. For
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example, the idea of comparing structures (control-flow and program-flow graphs)
is leveraged here, i.e., EFGs of the original and modified GUIs are compared to
determine modifications. These modifications are used to identify unusable test
cases (obtained via capture/replay tools) and to repair them. The scope of this
research is restricted to test cases that are made unusable due to structural changes
in a GUI. If the semantics of an event change, then the test cases are considered to
be usable even though the GUI’s output may change.

3. THE OVERALL REGRESSION TESTING METHOD

This section presents an overview of the new regression testing technique. Be-
cause details (algorithms) have been presented in earlier work [Memon and Soffa
2003], and due to lack of space, the focus here is to present an overview needed to
understand the empirical study of Section 4.

3.1 A Motivating Example

We first start with examples of GUI modifications, and test cases that have become
unusable for the modified GUI. We then use these examples to present an intuitive
idea of how analysis of GUI changes can help to identify unusable test cases, and
how unusable test cases may be repaired to obtain new test cases.

(a) The Original GUI. (b) The Modified GUI.

Cut Copy

PrintPaste

Cut Copy

EditPaste

(c) The Original EFG. (d) The Modified EFG.

Fig. 1. A Regression Testing Example.

Figure 1(a) and (b) present a GUI and its modified version. The original GUI
consists of four events, Cut, Copy, Paste, and Print, all directly accessible when
the GUI is invoked. The modified GUI contains three of the four original events;
Print has been deleted and the remaining 3 events have been grouped into a pull-
down menu, which is opened by clicking on Edit. The semantics of individual
events and the underlying code have not changed. Figure 1(c) shows the EFG
of the GUI of Figure 1(a). In this research, the EFG model is used extensively
to automate regression testing. EFGs have been discussed in detail in previously
reported work [Memon et al. 2001; Memon and Xie 2005; Memon et al. 2005] – an
intuitive overview is given here.
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# Event Sequence Events Used Edges Covered

1 Copy; Print; Cut {Copy, Cut, Print} {(Copy, Print), (Print, Cut)}
2 Cut {Cut} {}
3 Cut; Paste {Cut, Paste} {(Cut, Paste)}
4 Copy; Cut; Paste {Cut, Copy, Paste} {(Copy, Cut), (Cut, Paste)}

Table I. Four Event Sequences for the Original GUI.

An EFG models all possible event sequences that may be executed on a GUI.
It is a directed graph that contains vertices (that represent events) and edges that
represent a relationship between events. An edge from vertex vx to vertex vy

means that the event represented by vy may be performed immediately after the
event represented by vx. This relationship is called follows. Note that a state
machine model that is equivalent to this graph can also be constructed – the state
would capture the possible events that can be executed on the GUI at any instant;
transitions cause state changes whenever the number and type of available events
change.

In Figure 1(c), the event Copy follows Cut, represented by a directed edge from
the vertex labeled Cut to Copy. In fact, the original GUI’s EFG is fully connected
with four vertices representing the four events. The modified GUI’s EFG is quite
different from that of the original GUI; it is no longer fully connected and Edit must
be performed before any other event can be performed. Each EFG is represented
by two sets: (1) a set of vertices V representing events in the GUI and (2) a set
E of ordered pairs (ex, ey), where {ex, ey} ⊆ V, representing the directed edges in
the EFG; (ex, ey) ∈ E iff ey follows ex.

The following sets of changes may be obtained, summarizing the differences be-
tween the EFGs of the original and modified software:

(1) events deleted = {Print}.

(2) efg edges deleted = { (Cut, Cut), (Copy, Copy), (Paste, Paste), (Print,
Print), (Cut, Copy), (Cut, Paste), (Cut, Print), (Copy, Cut), (Copy,
Paste), (Copy, Print), (Print, Cut), (Print, Copy), (Print, Paste),
(Paste, Cut), (Paste, Copy), (Paste, Print)}.

Four event sequences used to test the original GUI are shown in Table I. Column
1 shows the event sequence number, Column 2 shows the event sequence, Column
3 shows the events in the EFG used by the sequence (note that all the GUI events
are covered by this small suite), and Column 4 shows the edges of the EFG covered
by the test case. The following observations can be made by examining these test
cases and the sets computed above:

(1) Because Print was deleted from the GUI (events deleted), event sequence 1
is illegal for the modified GUI.

(2) Because (Cut, Paste) and (Copy, Cut) have been deleted from the GUI
(efg edges deleted), event sequences 3 and 4 are illegal for the modified GUI.

(3) Event sequence 2 is still legal since Cut is available in the modified GUI (starting
in an initial state in which Edit has been performed).

ACM Transactions on Computational Logic, Vol. V, No. N, September 2007.



8 · Atif M Memon

Looking at the original and modified GUIs, event sequences 3 and 4 may be
modified (by applying repairing transformations) to obtain legal event sequences.
For example, a repairing transformation may insert an event in the test case to
make it usable. One application of this repairing transformation to event sequence
3 yields <Cut; Edit; Paste> and two applications to event sequence 4 yields
<Copy; Edit; Cut; Edit; Paste>. These two repaired event sequences are legal
and may be used to test the modified GUI; both must be executed in a state of the
GUI in which the event Edit has been performed already. It is not obvious how
event sequence 1 may be repaired as it contains an event, namely Print, that is
no longer available in the modified GUI; this event sequence may be discarded as
non-repairable and not used for regression testing. This example shows that some
unusable test cases may not be repairable for a set of transformations. The test
designer may later develop a new transformation to repair this test case. After
repairing sequences 3 and 4, the test designer can choose from a total of three
event sequences and use them for regression testing. Note that this new test suite
also covers all the events in the modified GUI. As event sequence 2 has already
been executed on the original GUI, and if none of the events in this sequence have
been modified, the test designer may choose to not rerun it (unless something has
changed in the underlying code). In that case, the remaining two event sequences,
3 and 4, can be used for regression testing in addition to any new test cases.

3.2 Usable, Unusable, and Repairable GUI Test Cases

We now present an overview of a model of GUIs that was developed earlier for a GUI
testing framework [Memon et al. 2001; Memon et al. 2000; Memon 2001] and use it
to formally define unusable, usable, and repairable test cases. In our earlier work,
a GUI is modeled as a set of objects/widgets O = {o1, o2, . . . , om} (e.g., label,
form, button, text) and a set of properties P = {p1, p2, . . . , pl} of those objects
(e.g., font, caption). Each GUI will use certain types of objects with associated
properties; at any specific point in time, the state of the GUI can be described in
terms of the set P of all the properties of all the objects O that the GUI contains.
A set of states SI is called the valid initial state set for a particular GUI iff the GUI
may be in any state Si ∈ SI when it is first invoked. Of importance to testers are
sequences that are permitted by the structure of the GUI. A legal event sequence
of a GUI is e1; e2; e3; . . . ; en where ei+1 follows ei. An event sequence that is not
legal is called an illegal event sequence. For example, in MS Word, Cut (in the Edit
menu) cannot be performed immediately after Open (in the File menu), and thus
the event sequence <Open, Cut> is illegal (ignoring keyboard shortcuts). Finally,
a GUI test case T is a pair (S0, e1; e2; . . .; en), consisting of a state S0 ∈ SI , called
the initial state for T, and a legal event sequence e1; e2; . . . ; en.

If the initial state specified in the test case is no longer reachable in the modified
GUI and/or its event sequence has become illegal, then the test case is no longer
executable. GUI test case (S0, e1; e2; . . . ; en) is unusable if a modification of a GUI
causes the state S0 to not be reachable in the GUI or if the sequence e1; e2; . . . ; en

cannot execute to completion.
Unusable test cases cannot be executed on the GUI and are usually discarded.

An unusable test case is repairable if its initial state S0 is reachable and its event
sequence can be made legal, via repairing transformations, for the modified GUI.
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original test suite

usable test cases unusable test cases

not repairable

repaired
new 

test cases

regression test suite

discardselect

Selected usable 
test cases

repair

Fig. 2. The New Regression Testing Method.

Four examples of these transformations are discussed in Section 3.3.2.

3.3 Developing the Regression Tester

Our regression testing technique consists of two parts: a checker that categorizes a
test case as being usable or unusable; if unusable, it also determines if the test case
can be repaired. The second part is the repairer that repairs the unusable, repairable
test case. Although for ease of explanation, these two parts are treated individually,
they may be merged together in an implementation. The regression tester takes as
input the EFGs of both the original and modified GUI, the valid initial states SI

for the modified GUI, and test cases for the original GUI. The checker partitions
the original test suite into unusable and usable test cases. Importantly, it can
also determine whether or not an unusable test can be repaired. Of the unusable
test cases, the repaired test cases form a part of the regression test suite whereas
the non-repairable ones are discarded. This new GUI regression testing method is
summarized in Figure 2. New test cases, generated either to satisfy some coverage
requirements for the test suite or to test those parts of the GUI that were not tested
by the repaired test cases, are also a part of the regression test suite in addition to
selected usable test cases.

Because software modifications from one version to another can be complex, it is
impossible to develop an automated repairing technique for arbitrary modifications.
This research achieves automation for a small class of GUI changes. We assume
that events and windows: (1) have unique names (renaming can be carried out to
accomplish this) and (2) are not renamed across versions of the GUI unless they
are modified. For example, if an event File is not modified, then it is called File

in the modified GUI. In case some events or windows are renamed, then the test
designer is made aware of these changes by the GUI developer who must maintain a
log of all such changes. Using these assumptions, we can automatically identify and
classify GUI modifications as simple additions and deletions to the EFG. Similar
approaches of tracking additions/deletions on control flow graphs for software have
been used for incremental data-flow and code-optimizations [Pollock and Soffa 1992]
and incremental testing [Harrold et al. 1992].
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3.3.1 Approach for Checking Test Cases. The test-case checker’s primary func-
tion is to identify unusable test cases and of those, which can be repaired. If the
initial state S0 of a test case is not one of the valid initial states SI for the modified
software, then it cannot be repaired. If S0 ∈ SI , then the test-case checker deter-
mines whether the event sequence in the test case is reusable by first identifying
the modifications made to the GUI by comparing the EFGs of the original and
modified GUIs.

If EFGo and EFGm are the EFGs of an original and modified GUI respectively,
then the following sets of modifications are obtained by performing set subtraction.
The functions V ertices and Edges return the sets V (the set of vertices) and E

(the set of edges) for the EFG in question.

(1) The set of all vertices deleted from the original EFG:
vertices deleted ← V ertices(EFGo)− V ertices(EFGm);

(2) The set of edges deleted from the original EFG:
efg edges deleted ← Edges(EFGo)− Edges(EFGm);

GUI modifications are recorded in two bit vectors, EDGES-MODIFIED and
EVENTS-MODIFIED; each test case is associated with two bit vectors, EVENTS-
USED and EDGES-USED. Determining whether a test case is usable/unusable is
done by using very fast bitwise AND operations. Using this information, the test-
case checker identifies test cases that were made unusable by each modification.
For example, if an event e is deleted from the GUI, then all test cases that use
event e are unusable. One GUI modification may be reflected in more that one set
of modifications, and a test case may be marked as unusable several times because
of the same modification. Being marked as unusable several times has no effect on
the repairability of the test case. Once the unusable test cases have been identified,
they are repaired by the test case repairer, which is described next.

3.3.2 Approach for Repairing Test Cases. The test-case repairing approach is
based on user-defined transformations that delete or insert events into the test case
at appropriate points. These transformations leverage the fact that an illegal event
sequence uses at least one deleted event or edge. To develop the transformations
that will make a GUI event sequence legal, we borrow an error-recovery technique
from compiler technology; we skip events or try to insert a single new event until a
legal event sequence is obtained [Aho et al. 1986]. This sequence can be found by
skipping over events or by including events from the modified GUI.

If an event ei, at position i in an event sequence is deleted from the GUI, then
a transformation must remove ei from the event sequence. However, to obtain a
legal resulting event sequence, the transformation scans the event sequence from
left to right, starting at position i + 1, until it finds an event ej such that either:
(1) < ei−1; ej > is a legal event sequence for the modified GUI, or (2) there is
another event ex, from the set of all the events in the modified GUI, such that
< ei−1; ex; ej > is a legal event sequence for the modified GUI. Once such an ej

is found, then (for Transformation 1) the sub-sequence < ei; . . . ; ej−1 > is deleted
from the event sequence and (for Transformation 2) ex is inserted. Figure 3(a)
shows these two transformations. In Transformation 1, the repairer searches for
an event ej from ei+1 to en, such that ei−1 follows ej, and in Transformation
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e1 ei-1 ei ei+1 en

ex

follows

follows follows

Deleted
event

Transformation 1

Transformation 2

e1 ei-1 ei ej en

ex

follows

follows follows

Deleted
edge

Transformation 3

Transformation 4

ej+1

(a)

(b)

Fig. 3. Repairing an Event Sequence that Uses a (a) Deleted Event ei, and (b) Deleted Edge
(ei, ej).

2, it searches for an event ex, from the set of all the events in the modified GUI,
such that ei−1 follows ex and for some ej in the event sequence, ej follows ex.
In general, these transformations may be extended to finding a sequence of events
< ep; . . . ; eq > such that < ei−1; ep; . . . ; eq; ej > is a legal event sequence for the
modified GUI.

Similarly, Figure 3(b) shows the transformations for the deleted edge (ei, ej). In
these transformations, the event sequence is scanned from left to right, starting
with the event ej , the second element in the deleted edge. Transformation 3 tries
to find an event ea from the subsequence < ej ; . . . ; en > such that ea follows ei.
Transformation 4 tries to find an event ex, from the set of all the events in the
modified GUI, such that ex follows ei and ej follows ex.

Note that there may be more than one way to repair a test case; using all of
them may yield several test cases, resulting in increased test-execution cost. A test
designer may choose to limit the number of new test cases. In our implementation
of the repairer, each event sequence is checked for all instances of deleted events and
edges that made the event sequence illegal; when multiple ways are found, all of the
repairs are used to produce more test cases. In principle, this approach may result
in a large number of new test cases. In the worst case, if each of N transformations
are applicable in M different places in a single test case, this approach would yield
M ×N new test cases.
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Fig. 4. Regression Tester’s Components and their Interactions.

3.4 Tool Support

The regression tester has been implemented by us as a module in a test automation
software called GUI Testing frAmewoRk (GUITAR). Other modules of GUITAR
that are relevant to this study include a GUI ripper that automatically reverse
engineers the GUI to create an EFG, a capture/replay tool to generate test cases,
and an adequacy evaluator to evaluate the adequacy of test cases. Details of the
design of the GUI ripper have been presented in earlier reported work [Memon
et al. 2003]. Here, it is sufficient to understand that the GUI ripper employs a
process called “GUI ripping” to automatically “traverse” the GUI by opening all
its windows and extracting all the widgets, properties, and values. The output of
the process is an EFG; it is checked and fixed manually, and used for regression
testing. With the new regression testing module, the test designer first executes
the regression tester to identify reusable test cases, and to repair the repairable test
cases. The test designer then executes the adequacy evaluator to automatically
determine those parts of the GUI that are not covered by the available (reusable
and repaired) test cases, then uses the capture/replay tool to generate test cases to
cover the missing parts.

Figure 4 shows the checker and repairer of the regression tester and their inter-
actions. The figure also shows the interactions of these components with the test
case generator and the adequacy evaluator to help generate new test cases that test
parts of the GUI not tested by the available test cases [Memon et al. 2001; Memon
et al. 2001]. Together, the repaired, new, and selected usable test cases form the
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regression test suite.

4. EMPIRICAL STUDY

An earlier report of this research demonstrated, via a proof of concept study on
two versions of a subject application (Adobe’s Acrobat Reader versions 4.0 and
5.0), that the repairing approach is both practical and useful [Memon and Soffa
2003]. The study presented therein showed that of the 400 test cases generated for
Version 4.0, 74% had become unusable for Version 5.0; 71.3% of these test cases
were repaired in a matter of seconds.

This section extends the earlier work by presenting a detailed empirical study
with the goal of determining whether GUI test cases for several evolving, multi-
version, fielded GUI-based applications can benefit from the repairing technique.
More specifically, the study is designed to empirically answer the following ques-
tions:

—Q1: How many test cases remain usable when an application changes? Of the
unusable test cases, how many are repairable? How many do the four repairing
transformations repair? Which transformations are more successful at repairing
test cases?

—Q2: What are the characteristics of GUI test cases that make them unusable?
Are certain types of test cases more prone to becoming unusable?

—Q3: What types of GUI changes are more likely to make large numbers of test
cases unusable?

—Q4: Is a significant amount of test-development time saved by using the checker
and repairer?

To answer the above questions, an empirical study is conducted using four pop-
ular open-source GUI-based applications available at SourceForge.net. Several ver-
sions of each application are downloaded. Test cases are generated for the first
available version of each application. Given a test suite for version i (initially
i = 1) of each application, the number of test cases that become unusable for ver-
sion i + 1 is computed. The regression tester is deployed to obtain reusable and
repaired test cases. Each version’s test suite is enhanced by generating additional
test cases to cover new functionality and existing functionality no longer covered
by the unrepaired test cases, where coverage is evaluated in terms of GUI events.
This process is repeated for all downloaded versions and findings reported to an-
swer question Q1. Questions Q2 and Q3 are answered by characterizing unusable
test cases and GUI changes, and examining those characteristics that contribute to
test case unusability. The above study process, which utilizes both the automated
checker and repairer, is named Scenario 1; Question Q4 is addressed by creating
three additional scenarios (Scenario 2 = {with checker, without repairer}, Scenario
3 = {without checker, with repairer}, Scenario 4 = {without checker, without re-
pairer}) and determining the benefit, in terms of time, of using the checker and
repairer to develop the regression test suite.

The following four applications were selected for this study:
1. CrosswordSage,2 which is a tool for creating (and solving) professional

2http://sourceforge.net/projects/crosswordsage
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looking crosswords with powerful word suggestion capabilities. When downloaded,
it had an activity percentile of 98.21%. Versions 0.1, 0.2, 0.3.0, 0.3.1, 0.3.2, and
0.3.5 were downloaded for this study.

2. FreeMind,3 which is a mind-mapping4 software. It has an all time activity
of 99.72%. Versions 0.0.2, 0.1.0, 0.4, 0.7.1, 0.8.0RC5 and 0.8.0 were downloaded.

3. GanttProject,5 which is a project scheduling application featuring Gantt
charts, resource management, calendaring, import/export (MS Project, HTML,
PDF, spreadsheets). It has an all time activity of 98.12%. Versions 1.6, 1.9.11,
1.10.3, 1.11.1, and 2.0pre1 were downloaded.

4. JMSN,6 which is a pure Java Microsoft MSN Messenger clone, featuring
instant messaging, file send/receive, MSNlib (for developers), and chat logging. It
has an all time activity of 98.93%. Versions 0.9a, 0.9.2, 0.9.5, 0.9.7, 0.9.8b7, and
0.9.9b1 were downloaded.

These applications were selected because their code and GUI characteristics, and
development history made them interesting subjects for this study. In particu-
lar, CrosswordSage was selected due to the simple design of its first version’s GUI
(Version 0.1 has 1 window) and rapid code-churn rate; in just three months, it
has evolved to a 7-window GUI application with Help, Instructions, and About

menus, and associated windows. Due to these rapid changes, developers have added
as well as removed GUI features across versions. This style of evolution enables the
study of the effect of quick changes (particularly widget deletions that are less com-
mon in other applications) on GUI regression testing. FreeMind was selected due
to its complexity – its latest version has 32 windows and 1095 widgets. Regression
testing of this application will enable the study of the performance and scalability
of the regression testing techniques and algorithms.

GanttProject was selected since it has evolved steadily over a long period of time
(3 years on Sourceforge.net). The developers have been careful not to make many
changes to the GUI quickly. Version 1.6 was the first public release with English as
the default language. Version 1.9.11 focused on fixing bugs and improving usability.
More specifically, widgets were added for customization of fonts, the language menu
was removed, and windows were added to support export, opening, and saving of
files from/to the server. This version has 10 windows; the latest version (released
after almost 2 years) has only four new windows. However, the overall code-base
has more than doubled (to approximately 64 KLOC) in that period. These char-
acteristics of the application will enable the study of the effect of carefully planned
GUI modifications on regression testing. JMSN was selected due to its relatively
constant number of windows (5 in all versions except the latest, which has 6),
which will enable the study of the effect of intra-window modifications on regres-
sion testing. Finally, only Java Swing applications were selected because the tools
in GUITAR such as the GUI ripper work well with applications whose GUIs have
been implemented using Java Swing.

The detailed characteristics of the applications/versions are shown in Table II.

3http://sourceforge.net/projects/freemind
4http://en.wikipedia.org/wiki/Mind map
5http://sourceforge.net/projects/ganttproject
6http://sourceforge.net/projects/jmsn
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Files LOC Classes Methods Windows Widgets Vertices Edges Vertices Edges Vertices Edges
CrosswordSage

0.1 2 369 4 10 1 12 10 91 4 45 2 14
0.2 2 445 4 13 3 15 12 122 47 675 4 34

0.3.0 11 2025 20 124 4 73 55 763 1 5 1 5
0.3.1 11 2084 20 129 4 73 55 763 8 215 9 156
0.3.2 11 2248 22 144 3 68 54 822 35 807 4 190
0.3.5 19 3617 36 244 10 117 85 1439

Freemind
0.0.2 28 4445 76 302 4 110 82 1468 13 616 2 213
0.1.0 41 5801 105 394 4 118 93 1871 95 2383 1 323

0.4 66 13453 175 800 6 234 187 3931 221 9961 3 639
0.7.1 92 21983 258 1415 16 501 405 13253 400 38373 2 1557

0.8.0RC5 509 101981 1503 5285 32 1094 803 50069 5 2250 1 910
0.8.0 509 102225 1504 5295 32 1095 807 51409

GanttProject
1.6 16 4542 25 381 5 126 87 1153 95 2701 0 331

1.9.11 159 24143 269 1280 10 238 182 3523 21 568 1 415
1.10.3 233 31947 380 1751 12 268 202 3676 5 334 1 201
1.11.1 318 39138 526 2384 13 282 206 3809 19 941 0 561

2.0.pre1 454 64312 771 3852 14 311 225 4189
JMSN

0.9a 32 6411 46 332 5 69 54 961 6 278 2 190
0.9.2 33 6749 47 353 5 73 58 1049 3 199 1 152
0.9.5 45 9485 60 487 5 75 60 1096 4 378 1 319
0.9.7 46 9774 61 495 5 79 63 1155 13 579 1 218

0.9.8b7 49 10714 65 533 5 95 75 1516 7 488 0 309
0.9.9b2 50 11290 68 556 6 122 82 1695

Subject
Applications
& Versions

EFG Changes
Added DeletedCode Attributes GUI EFG 

Table II. Characteristics of Subject Applications

The columns grouped under Code Attributes in the table show that these ap-
plications have non-trivial sized code-bases. Column Files shows the number of
Java source code files, LOC shows the number of (non-comment) source lines, and
Classes and Methods show the number of classes and methods used to implement
the applications respectively. The numbers show that all four applications pro-
vide a good mix of small, moderate, and large application code sizes. The columns
grouped under GUI show that all the applications have multiple windows with many
widgets.

4.1 Study Procedure

The EFGs for all versions of the applications were obtained using the GUI ripper;
test cases (satisfying the event and event-interaction adequacy criteria [Memon
et al. 2001]) were obtained for the first version of each application, and, for each
subsequent version i > 1 of each application, the following steps were repeated:

—Step 1: Compute the number of usable test cases from the test suite of version
i− 1.

—Step 2: Of the unusable test cases, determine the number of repairable test cases
and repair them.

—Step 3: Generate additional test cases for version i to satisfy the event and
event-interaction adequacy criteria.

Details of the above steps are presented in subsequent paragraphs. Addressing
question Q4 involves the execution of additional steps, which will be presented in
Section 4.6.
Obtaining EFGs and Computing Changes: The GUI ripper was executed on
all versions of the applications to obtain EFGs. The columns grouped under EFG
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TCG
First

Version Checker

Computing
Unusable

Test-cases
w/o 

Checker Repairer Add-TCG
Supplemental 

Test cases
Manual Auto Manual Auto Manual Auto Auto Auto Manual Manual

hrs. sec. min. sec. min. ms. min. sec. hrs. hrs. 1 2 3 4
CrosswordSage

0.1 2.01 0.2 0.25
0.2 0.5 1.1 0.24 4 0 16.34 0.04 0.73 6.21 0.81 7.02 1.08 7.21

0.3.0 0.6 1.4 0.18 11 1 19.41 0.04 16.44 30.63 16.65 47.28 16.97 47.39
0.3.1 0.6 1.4 0.18 18 1 129.48 0.31 6.34 38.03 6.67 44.70 8.83 46.53
0.3.2 0.4 1.6 0.18 18 1 119.3 0.27 5.05 32.97 5.38 38.35 7.37 40.01
0.3.5 1.9 3.5 0.28 23 1 118.18 0.34

Freemind
0.0.2 56.01 0.8 2.1
0.1.0 0.9 1.8 0.31 29 2 415.75 0.59 29.96 52.63 30.48 83.11 37.41 89.52

0.4 1.5 2.1 0.62 47 4 537.41 0.51 104.93 182.69 105.74 288.43 114.70 296.58
0.7.1 4.2 4.5 1.35 99 13 856.4 1.14

0.8.0RC5 8.1 10.1 2.68 201 50 3165.11 4.01
0.8.0 9.1 12 2.69 268 51 12244.8 11.19

GanttProject
1.6 26.36 0.8 1.8

1.9.11 2.1 3.5 0.61 45 4 233.49 0.28 136.92 169.38 137.73 307.11 141.62 310.19
1.10.3 3.2 4.2 0.67 64 4 874.02 0.99 41.86 105.94 43.00 148.94 57.57 162.37
1.11.1 2.5 4.5 0.69 68 4 945.17 1.07 21.1 119.49 22.31 141.80 38.06 156.34

2.0.pre1 3.2 5.1 0.75 72 4 863.03 0.99
JMSN

0.9a 15.47 1 2.4
0.9.2 0.9 2.2 0.19 19 1 194.23 0.18 8.91 19.79 9.26 29.05 12.50 31.94
0.9.5 0.7 2.1 0.20 20 1 282.77 0.22 3.69 15.79 4.05 19.84 8.77 24.19
0.9.7 0.9 2.5 0.21 21 1 355.6 0.20 3.14 23.47 3.52 26.99 9.45 32.54

0.9.8b7 0.8 1.8 0.25 23 2 315.6 0.25 14.06 25.74 14.47 40.21 19.73 45.06
0.9.9b2 1.1 3.1 0.27 26 2 594.44 0.32

Scenario 1 x x x x x x x 1
Scenario 2 x x x x x x x 2
Scenario 3 x x x x x x x 3
Scenario 4 x x x 4

Subject
Applications
& Versions

GUI Ripper Event Matching Total Time
Scenarios

Table III. Summary of Computation Times.

of Table II show the characteristics of the EFGs. The number of vertices in the
EFG is strictly less than the number of widgets in the GUI because EFG vertices
represent only those widgets on which user events can be executed (e.g., text-labels
that have no associated event handlers are excluded). The results of this process
were verified manually. The time taken for the overall ripping and verification is
shown in column GUI Ripper of Table III. Once all the EFGs were available, the
GUI ripper used a number of heuristics to “match” the events of one version to the
next. As discussed in Section 3, the heuristics are based on the assumption that
widget names remain unchanged unless they have been modified. The GUI ripper
first matched windows between two subsequent versions; this matching was verified
manually; if it was found to be incorrect then it was fixed. The events within each
window were matched next. This matching was also verified and fixed manually.
Note that this matching step and manual work may be avoided by maintaining a
list of GUI changes during development.

The total time required for matching and verification is shown in column Event

Matching of Table III. Once the matching had been finalized, the sets of added/deleted
vertices and edges were computed. The sizes of these sets is shown in columns
grouped under EFG Changes in Table II. EFG changes made to a version are
shown in the row corresponding to that version.

Table II shows that GUI modifications lead to a large number of edge deletions.
Deletions of vertices are less common. The rapid changes to CrosswordSage caused
relatively more deletions of vertices than in other applications. Even if features
are not eliminated across versions, layout changes still cause a non-trivial number
of edge deletions. For example, even though zero vertices were deleted in Version
1.6 of GanttProject to obtain Version 1.9.11, 331 edges were deleted due to lay-
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(a) (b)

Fig. 5. An Example Layout Modification in GanttProject (a) Version 1.6 to (b) Version 1.9.11

out changes. One such modification is shown in Figure 5; the event New Task no
longer opens the New task window (Figure 5(a)); instead, it creates a new node
representing a task (Figure 5(b)). All edges from New Task to each event (cor-
responding to each widget) in the New task window are deleted. Some examples
of these edges shown in Figure 5(a) include (New Task, Ok), (New Task, Cancel),
and (New Task, Meeting point), where events Ok, Cancel, and Meeting point

correspond to widgets in the New task window.

Test-Case Generation: Test cases were generated for the first version of each
application using a capture/replay tool. Four testers were employed for this process
– each was assigned to one application. The testers were asked to spend 1-4 hours
to familiarize themselves with the assigned subject application. The test-case gen-
eration process was carried out in several steps. Testers were first assigned several
tasks, i.e., activities that they could complete using the application. The tasks were
chosen carefully so that they covered most of the functionality of the applications.
In all, 25, 400, 200, and 150 tasks were assigned for CrosswordSage, FreeMind,
GanttProject, and JMSN, respectively. The testers generated a sequence of events
to complete each task; the capture tool recorded the user interaction as a test case.
An initial test set was obtained in this way. The adequacy analyzer based on event
and event-interaction adequacy criteria developed in earlier reported work [Memon
et al. 2001] was then executed, which generated a report summarizing the parts of
the GUI missed by the test cases. The report was in the form of edges of the EFG
that were not covered by the initial test set. The testers were then asked to gener-
ate additional test cases to cover these edges without using tasks. They took 1, 9,
5, 4 day(s) on CrosswordSage, FreeMind, GanttProject, and JSMN respectively to
complete the entire process.

There are several points to note about the test case generation process. First,
to record each test case, the tester launched the application from scratch. Each
test case started with an event in the main window and ended with the Exit

event. Second, the process described earlier ensures that the test suite satisfies the
event and event-interaction adequacy criteria; these criteria require that each vertex
and edge in an EFG is covered by at least one test case in the suite. Satisfying
them guarantees that the effect of a change to any vertex/edge is observed during
regression testing. Note that these criteria provide an objective metric to quantify
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the “rules of thumb” already advocated by GUI testing experts,7 e.g., “For Each
Window in the Application [perform some action on widgets]” and “On every Screen
[perform some validation steps].” Our own earlier findings also support such rules
of thumb and, in fact, show that source-code coverage may be misleading for GUI
testing [Memon et al. 2001]. For conventional software, coverage is measured using
the amount and type of underlying code exercised. These measures do not work
well for GUI testing, because what matters is not only how much of the code is
tested, but in how many different possible states (reached by executing different
permutations of events) of the software each piece of code is tested. Third, as
discussed in Section 1, this work assumes the existence of “global test oracles”
common to all test cases, rather than ones associated with each individual test
case; hence, no test oracle was generated for these test cases. Finally, the test
suites for CrosswordSage, FreeMind, GanttProject, JMSN contained 51, 879, 497,
and 418 test cases respectively.

<?xml version="1.0" ?>
<Testsuite>

<Mode>MANUAL</Mode>
<Testcase>

<Menu>
<Window>FreeMind – MindMap Mode</Window>
<Nonterminal>Open_1_0_3</Nonterminal>

</Menu>
<Miscellaneousinfo>

<Time>08:56:57</Time>
</Miscellaneousinfo>
<Component>

<Window>Open</Window>
<Nonterminal>Cancel_25_1_1</Nonterminal>
<Eventtype>LEFTCLICK</Eventtype>

</Component>
<Miscellaneousinfo>

<Time>08:57:05</Time>
</Miscellaneousinfo>

....

2 4 6 8 10 12
Time Hmin.L

CrossWordSage 0.1

FreeMind 0.2.2

GanttProject 1.6

JMSN 0.9a

(a) (b)

Fig. 6. (a) Time-stamps in a Test Case and (b) Time Taken to Record Each Test Case.

The test cases recorded by GUITAR contain time-stamps for each event. Total
time is the sum of all the times spent per event in the test case. Figure 6(a) shows
a part of a test case generated for FreeMind; two events Open in the File menu,
followed by Cancel in the FileOpen window are shown. During capture, the clock-
time (enclosed within the <Time> tag) when each event was executed is also stored
in the test case. These time-stamps were used to obtain the total time required to
generate the test case. Figure 6 shows the time it took to generate the test cases
as distributions. The box-plots provide a concise display of each distribution. The
line inside each box marks the median value. The edges of the box mark the first
and third quartiles. The whiskers extend from the quartiles and cover 90% of the
distribution; outliers are shown as points beyond the whiskers. The plots show
that test-case generation time varied between applications; most test cases were
generated in 2-4 minutes. The total time spent generating test cases is shown in
column TCG First Version in Table III.
Step 1: Executing the Checker. The checker took as input the test suites
for version i (initially i = 1) of each application, and the set of modifications

7http://members.tripod.com/bazman and http://www.rspa.com/checklists/guitest.html.
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(additions/deletions of EFG vertices/edges) made to it to obtain version i+1. The
checker then computed the number of usable, unusable, and repairable test cases.
The total time taken by the checker is shown in column Checker in Table III.
Step 2: Executing the Repairer. Each repairable test case was then repaired
using the four transformations. The total time taken by the repairer is shown in
column Repairer in Table III.
Step 3: Generating Additional Test Cases. Because several test cases could
not be repaired, and each version added new features, the test suite for each ver-
sion needed to be updated to satisfy the test adequacy criteria. New tasks were
developed to test the newly added functionality. The testers were then asked to
generate new test cases to complete the tasks. The adequacy evaluator was then
executed to determine the adequacy of the repaired, reusable, and new test cases.
As before, the output of the adequacy evaluator was a set of edges of the EFG not
covered by the test cases. The testers then generated additional test cases to cover
all the missing edges. The total time taken to generate the additional test cases is
shown in column Add-TCG in Table III; the time distributions are summarized in
Figure 7. The new, repaired, and reusable test cases for version i were used as the
regression test suite for version i + 1.
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Fig. 7. Time Taken to Record Each Additional Test Case.

The only exception to the above test case generation process were Versions 0.7.1
and 0.8.0RC5 of FreeMind. The complexity of these versions require a prohibitively
large number of test cases. Instead of using a capture/replay tool to perform this
task, an automated model-based test case generator (also a part of GUITAR) was
used to obtain the test cases. Details of this test-case generator have been presented
in earlier reported work [Memon et al. 2005; Memon and Xie 2005]. The tool uses
graph traversal techniques to cover edges of the EFG.

4.2 Threats to Validity

As with any empirical study, this study raises several threats to validity. Results
should be interpreted with these threats in mind.

ACM Transactions on Computational Logic, Vol. V, No. N, September 2007.



20 · Atif M Memon

Threats to internal validity are problems with the study design that may alter
the cause-effect relationship being studied. The biggest threats to internal validity
are related to the way we create test cases and evaluate their coverage. We used
one technique to generate test cases – capture/replay tools; in one case we used
EFGs with an automated test-case generator. We used event and event-interaction
coverage as a measure of adequacy. Other techniques (e.g., using programming the
test cases manually) and/or using different test criteria (e.g., code coverage) may
produce different types of test cases, yielding different results.

Threats to construct validity arise whenever some measurement is used as a proxy
for the real value of interest. In this study, our measure of cost (in terms of wall
time) combines human effort and execution cost. A more accurate measure would
use domain-specific knowledge to assign appropriate “weights” to these cost com-
ponents.

Threats to external validity [Wohlin et al. 2000] are conditions that limit the
ability to generalize the results of our experiment to industrial practice. Our subject
applications, the experimenters used to generate test cases, and choice of GUI-tasks
are the biggest threats to external validity. First, we have used four applications,
downloaded from SourceForge as our subject applications. Although they have
different types of GUIs, this does not reflect the wide spectrum of possible GUIs
that are available today. Second, all our subject programs were developed in Java.
Although our abstraction of the GUI maintains uniformity between Java and non-
Java applications, the results may vary for non-Java applications. Third, our GUIs
are static, in that we do not have widgets that are created on-the-fly from back-
end data. We expect that our repairing algorithms need to be improved for such
“dynamic” GUIs. Finally, the timing for the manual parts of the approach (e.g.,
checking, fixing, test-case generation) is likely to be highly dependent on the specific
tester considered; given the small number of data points in the study, these numbers
could vary considerably.

4.3 Addressing Q1: Studying Test Case Unusability, Repairability, and Effectiveness

of the Four Transformations

The results (also the answers to question Q1) of the three steps of Section 4.1 are
summarized in Table IV. The columns grouped under Checker show the results
of Step 1, Repairer show the results of Step 2, and New Generated show the
results of Step 3. As the table shows, for most application versions (with the
exception of JMSN), more than half (in one case 86.3%) of the test cases became
unusable. This result was interesting as most of these subject applications did not
remove a large number of widgets across versions; only the deleted edges in the
EFGs caused a large number of test cases to become unusable. Due to unplanned
and rapid GUI design evolution of CrosswordSage, the percentage of unusable test
cases (69.3%–86.3%) was larger than for other applications. On the other hand,
planned changes and relatively fewer widget deletions in the GUIs of FreeMind and
GanttProject resulted in a smaller percentage of unusable test cases – 46.9%–66.6%.
In case of JMSN, more than half the test cases remained reusable. There was no
noticeable difference between the results obtained for the test cases generated using
the automated test-case generator (for Versions 0.7.0 and 0.8.0RC5 of FreeMind)
and the capture/replay tool.
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Repairable
# % # % % # % # % T1 T2 T3 T4

CrosswordSage
0.1 51
0.2 51 13 26 38 74 100 25 67 13 34 30 122 50.0 6.7 33.3 10.0 43 15 67

0.3.0 58 18 31 40 69 100 21 54 19 48 23 110 52.2 0.0 30.4 17.4 41 323 212
0.3.1 363 50 14 314 86 100 216 69 98 31 226 105 43.8 5.8 43.8 6.6 276 88 312
0.3.2 363 97 27 267 73 100 178 67 89 33 238 134 45.0 5.9 43.7 5.5 335 57 259
0.3.5 391 54 14 337 86 100 171 51 166 49 241 141 37.8 3.7 37.8 20.7 295

Freemind
0.0.2 879
0.1.0 879 293 33 586 67 100 316 54 270 46 328 104 51.8 1.8 43.0 3.4 621 270 498

0.4 891 385 43 506 57 100 389 77 117 23 427 110 52.9 5.9 28.8 12.4 812 1060 1212
0.7.1 1872 730 39 1142 61 100 582 51 560 49 698 120 36.0 1.9 34.0 28.2 1428 4883

0.8.0RC5 6311 2298 36 4013 64 100 2006 50 2007 50 2246 112 49.0 5.0 26.0 20.1 4544 19298
0.8.0 23842 12653 53 11189 47 100 7944 71 3245 29 10247 129 52.2 10.0 35.0 2.8 22900

GanttProject
1.6 497

1.9.11 497 214 43 283 57 100 155 55 128 45 181 117 43.6 5.5 26.0 24.9 395 1283 1609
1.10.3 1678 692 41 986 59 100 502 51 484 49 677 135 40.9 8.0 26.9 24.2 1369 382 1160
1.11.1 1750 680 39 1071 61 100 717 67 354 33 910 127 57.9 10.0 32.0 0.1 1590 224 1334

2.0.pre1 1814 828 46 986 54 100 502 51 484 49 597 119 48.9 4.9 33.8 12.4 1425
JMSN

0.9a 418
0.9.2 418 240 57 178 43 100 96 54 82 46 115 120 53.9 7.8 33.9 4.3 355 145 330
0.9.5 499 282 57 217 43 100 110 51 107 49 183 167 59.6 6.6 24.6 9.3 465 57 291
0.9.7 522 319 61 203 39 100 135 67 68 33 163 121 54.6 2.5 39.9 3.1 482 68 370

0.9.8b7 550 301 55 249 45 100 131 53 118 47 187 143 41.7 3.7 34.8 19.8 488 234 390
0.9.9b2 722 397 55 325 45 100 191 59 134 41 250 131 48.8 2.8 36.0 12.4 647

Repaired 
& Reusable

New
Generated

Regression Suite Generated
Manually

Scenario 2

Subject
Applications
& Versions

Checker
Reusable Unusable Transformations Applied

RepairerExisting
Test

Cases
Percentage

Increase
Repaired Not Repaired Number

Obtained

Table IV. Summary of Regression Tester’s Results

Because the initial state in all the test cases remained valid, all the test cases
were repairable. Of the unusable test cases, a large percentage (more than 50% in
most cases; in one case 77%) were repaired in a few seconds using the four simple
transformations. Because a test case may be repaired in multiple ways, an unusable
test case may yield multiple test cases. In one case, there was a 167% increase in
the size of the repaired suite. Not all four transformations were equally effective at
repairing test cases; the column Transformations Applied under Repairer shows
the percentage of transformations that yielded the repaired test cases; this column
shows that T1 and T3 were quite effective, followed by T4, and finally T2. For
improved visualization, the data is plotted in Figure 8 with the transformations
ordered, on the x-axis, as T1, T3, T4, and T2; the y-axis shows the percentage of
cases in which a transformation was applied.

An analysis of variance (ANOVA) test (with Alpha = 0.05) was conducted to
determine whether the differences in applicability between the transformations are
statistically significant. The null hypothesis was that the means of all transforma-
tion data sets are equal; the alternative hypothesis was that the means of the data
sets are different (not equal). The observed p-value was much less than 0.05 (it was
in fact 6.56 × 10−34); hence, the null hypothesis was rejected and the alternative
hypothesis was accepted. Given that the ANOVA test had determined that the
means were statistically different, the Tukey post hoc means comparison test was
subsequently used to compare all possible pairs of means; this test showed that the
differences between each transformation pair was also statistically significant.

Examining the unrepaired test cases demonstrated that there is considerable
room for improvement in terms of the set of repairing transformations. The four
currently used transformations completely ignore the hierarchical structure of the
GUI, except that implicitly encoded in the EFGs. New transformations that con-
sider this hierarchy and insert/delete event sub-sequences using “sub-trees” of the
GUI’s hierarchical structure would be particularly useful. For example, if two
windows Find (invoked using find; terminated using OKFind) and Replace (in-
voked using replace; terminated using OKReplace) are merged into one window
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Fig. 8. Transformation Type and Percentage Applied on Each Application Version.

Find/Replace (invoked using find/replace; terminated using OKfindreplace),
then a test case that contains a subsequence starting with the find event and
ending with the OKfindreplace may be repaired by viewing the Find window as
a “tree” rooted at find, and replacing the sub-sequence by the new appropriate
find/replace invoking and OKfindreplace termination events.

In summary, to answer question Q1, these results showed that the unusability
of GUI test cases is a serious problem; simple layout changes (not only removal of
features) is sufficient to make large numbers of test cases unusable. The regression
tester helped to identify unusable test cases within seconds and make them usable.
Even for the large GUI size of FreeMind, the entire process took a few seconds per
test case.

4.4 Addressing Q2: Studying the Impact of Test Case Characteristics on Its Unus-

ability

To answer question Q2, an informal examination of test case characteristics and
number of unusable test cases revealed that short test cases (i.e., those with fewer
events) were more likely to remain usable across versions. This section summarizes
the detailed analyses that ensued.

To study the impact of a test case’s length on its unusability, all the test suites
were partitioned into equivalence classes. A test case x is in equivalence class i if
and only if Length(x) = i, where Length() is a function that returns the number of
events in the test case. The result of this partitioning is shown as a set of column
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Fig. 9. Affect of Length on Test Case Unusability.

graphs in Figure 9. The x-axes show the equivalence class, represented by an integer
indicating the length of its constituent test cases. The y-axes show the sizes of the
equivalence classes; the total height of each column shows the total number of test
cases in the equivalence class. Each equivalence class is further partitioned into
unusable (shaded part of each column) and usable (unshaded part of the column)
test cases. For added clarity, the same data is presented in Figure 10 by computing
the percentage of usable test cases per column (unshaded part).

The data was further prepared to determine whether the effect of test-case length
on its unusability was statistically significant. In particular, test cases per appli-
cation version were partitioned into five buckets (A, B, C, D, and E). Bucket A
contained the shortest 20% of the test cases, Bucket B contained the next 20% by
length, and so on. Once all buckets for an application version had been filled, the
“average percentage usable” metric was computed for each bucket. This process
was repeated for each application version. The result is summarized in Figure 11.
This figure shows that long test cases are more likely to become unusable across
versions; a large percentage of short test cases remain usable. This result is di-
rectly related to the fact that because longer test cases cover a larger number of
EFG edges than short test cases, the probability that they contain an edge that
has been deleted is higher.

As was done earlier, an ANOVA test (with Alpha = 0.05) was conducted to
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Fig. 10. Percentage of Test Cases that Remained Usable (unshaded part).

determine whether the differences between the test case length partitions are sta-
tistically significant. The null hypothesis was that the means of all data sets are
equal; the alternative hypothesis was that the means of the data sets are not equal.
The observed p-value was 5.51 × 10−13, i.e., much less than 0.05; hence, the null
hypothesis was rejected and the alternative hypothesis was accepted. A subsequent
Tukey post hoc means comparison test showed that the differences between each
pair of partitions was also statistically significant. This analysis and the observed
data plots showed that long GUI test cases are more likely to become unusable,
answering question Q2,

4.5 Addressing Q3: Studying the Impact of GUI Changes on Test Case Unusabililty

The results shown thus far have demonstrated that widget removal and/or restruc-
turing (i.e., vertex and edge deletions in the EFG) cause a large number of test
cases to become unusable. An informal examination of the data showed that mod-
ifications to certain widgets impacted a large number of test cases than others. A
more formal treatment of this observation is summarized in this section.

To study the number of test cases that were impacted by specific edge dele-
tions (note that edge deletions capture both widget removal and restructuring),
the number of unusable test cases were plotted against deleted edges in Figure 12.
The x-axis of each plot represents deleted edges, each represented by a unique num-
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Fig. 11. Average Percentage of Usable Test Cases Partitioned by Length.

ber. The y-axis represents the number of impacted test cases. A point (x, y) on
this plot shows that y number of test cases were rendered unusable because of the
deletion of edge x. Note that because a test case may become unusable due to the
deletion of several edges, it is counted several times. For improved presentation,
the points are sorted in order of increasing y-axis values, and the y = 1 values are
not plotted; their number is summarized as a label “Singles =” on the plot.

All the plots in Figure 12 share a number of properties. First, a large number of
points lie close to the x-axis; indeed, the majority of them are singles, i.e., number of
impacted test cases is 1; the number decreases significantly with increasing distance
from the x-axis. This result shows that most edge deletions affect very few test cases.
Second, the sorting of the points in order of increasing y-axis values gives the visual
impression that the points lie in clusters in near horizontal “lines” with significant
gaps between adjacent lines. This result shows that some edge deletions impact a
very large number of test cases. For example, a single edge deletion rendered more
than 400 of the 508 test cases unusable in FreeMind-0.4. Similarly, a vast majority
of the 283 unusable test cases for GanttProject-1.9.11 became unusable due to just
four edge deletions.

The results of Figure 12 are best explained by examining the hierarchical struc-
ture of GUIs. More specifically, GUI widgets are arranged in a hierarchy of menus
and windows. One such hierarchy is shown in Figure 13. The bitmap is an an-
notated part of a screen-shot of the GUI ripper’s output. Figure 13 shows some
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Fig. 12. Impact of Deleted EFG Edges on the Number of Unusable Test Cases.
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Fig. 13. An Example GUI Windows Hierarchy.

of the windows and their hierarchical relationship of GanttProject-2.0pre1. The
main window (labeled A) is first available to a user when the software is launched;
it is said to be at window depth of 1. All other windows are available directly or
indirectly via the main window. Two other windows have been labeled as B and C
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respectively. Window B is at depth 2 and C is at depth 3.

All testers must interact with window A. Hence each test case must contain events
from this window. Changes made to this window have the potential to impact a
large number of test cases. As testers perform different tasks, they use events from
other windows; however, not all test cases will contain events from all windows.
For example, few test cases will use the events of window B. A change made to the
events on window B is less likely to affect many test cases. Finally, changes made
to window C are least likely to affect many test cases as very few test cases will
contain these events. Going back to Figure 12, the cluster of points with largest
y values correspond to edges that are contained in the depth 1 window, usually in
the pull-down menu. The second cluster corresponds to changes made at the depth
2 windows and second level menus, and so on. The above observations also explain
the relatively smaller percentage of unusable test cases for JMSN (less than 50%).
Very few events were modified in the main window of JMSN, causing a smaller
percentage of test cases to be affected.

The observation that the location of a modified event in the GUI hierarchy can
cause different numbers of test cases to become unusable may be used to quantify
GUI changes in terms of their potential to impact test cases. An event (such as
Edit in the pull-down menu) that must be executed by a user to reach other events
(such as Cut) may be called a dominator event (the term “dominator” has been
borrowed from compiler theory [Lengauer and Tarjan 1979]). Most pull-down menu
events that are used to open sub-menus and child windows are common examples
of dominator events. Each dominator event may be assigned a “dominator weight”
indicating the number of events that it “dominates.” Similarly, some events behave
as “post-dominators,” i.e., users must execute these “termination” events to exit
from certain dialogs and the application. Common examples include Ok, Cancel,
and Exit events.

To further study this concept, each deleted edge shown in Figure 12 was assigned
its dominator weight. The weight of each edge (x, y) was computed as the larger
of the number of events that x and y dominate. The Cancel termination event
was ignored in this analysis; for each OK type of termination event (each modal
dialog in our subject applications has two termination events – Cancel and OK),
its dominator weight was computed as the number of events that require OK to be
executed after their execution.

The dominator weight of each deleted edge was then plotted against the number
of test cases that become unusable for that edge. The results are summarized in
Figure 14; the x-axes show weights, the y-axes show the number of impacted test
cases. The points in these plots show that edges that have a large weight impact
a large number of test cases. The line in each plot is a linear least-squares fit to
the data. The R-square value (shown with each plot) is an indicator of how well
the linear model fits the data (e.g., an R-square value close to 1.0 indicates that we
have accounted for almost all of the variability with the variables specified in the
model). Figure 14 shows that most R-square values are well above 0.90.

In order to study whether the effect of event dominator weight on a test case’s
unusability was statistically significant, test cases (per application version) were
partitioned into two buckets (W1 and W2). Bucket W1 contained the average
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Fig. 14. “Dominator Weight” of Edges Deleted vs. Number of Unusable Test Cases

number of test cases that were made unusable by events of dominator weight w1,
where (MinDom ≤ w1 ≤ (MinDom+⌈MaxDom−MinDom

2
⌉)); Bucket W2 contained

the average number of test cases that were made unusable by events of dominator
weight w2 where (MinDom + ⌈MaxDom−MinDom

2
⌉) < w2 ≤ MaxDom); MinDom

is the smallest dominator weight and MaxDom is the largest. Intuitively W1
contained all “relatively small dominator weight” test cases and W2 contained
the “relatively large dominator weight” cases. This process was repeated for each
application version. The result is summarized in Figure 15. The plot shows that
GUI changes made to dominator and post-dominator events with large weights are
more likely to cause a large number of test cases to become unusable.

Because there are only two data sets, a paired-t test (with Alpha = 0.05) was
conducted to determine whether the differences between the event dominator par-
titions are statistically significant (the pairing in the test is because both data sets
were obtained from the same software subjects). The null hypothesis was that the
means of both data sets are equal; the alternative hypothesis was that the means
are not equal. The observed p-value was 0.012, i.e., less than 0.05; hence, the null
hypothesis was rejected and the alternative hypothesis was accepted. This analy-
sis, together with the observed data plots, leads to the conclusion that changes to
events with large dominator weights are more likely to cause a large number of test
cases to become unusable, answering question Q3.

ACM Transactions on Computational Logic, Vol. V, No. N, September 2007.



Automatically Repairing GUI Tests for Regression Testing · 29

W1 W2

0

1000

2000

3000

4000

5000

CrosswordSage

0.2
0.3.0
0.3.1
0.3.2
0.3.5

FreeMind

0.1.0
0.4
0.7.1
0.8.0RC5
0.8.0

GanttProject

1.9.11
1.10.3
1.11.1
2.0.pre1

JMSN

0.9.2
0.9.5
0.9.7
0.9.8b7
0.9.9b2

Dominator Weight Partitions

A
ve

ra
ge

 N
um

be
r 

U
nu

sa
bl

e

W1 W2

0

100

200

300

400

500

600

700

800

900

�
�

�
�

'

&

$

%
�

�
�

�
�

��

Zoomed

Fig. 15. Affect of Dominator Weight on Test Case Unusability

4.6 Addressing Q4: Studying the Effectiveness of the Checker and Repairer

Questions Q1 through Q3 were adequately answered by using data collected in the
three steps outlined in Section 4.1; these three steps comprise of Scenario 1. The
total time required for Scenario 1 is shown in Table III under column Total Time.
Question Q4, on the other hand, requires studying the advantage, in terms of time,
of using the checker and repairer, i.e., how much time would a tester, who does
not have access to these two tools, spend doing regression testing? In this section
supplemental test cases are obtained without using the repairer, and a new process
to detect unusable test cases without the checker is used. Scenario 2 excludes the
repairer; Scenario 3 excludes the checker; Scenario 4 excludes both the checker and
repairer.

Because Scenario 2 does not employ the repairer, no repaired test cases are avail-
able. In order to satisfy the event and event-interaction coverage criteria, supple-
mental test cases are generated by using the capture/replay tool. The number of
supplemental test cases is shown in the last column of Table IV. Note that as
discussed earlier, no test cases were obtained for Versions 0.7.1 and 0.8.0RC5 of
FreeMind. Column Supplemental Test Cases of Table III shows the total time
required to obtain the test cases. Figure 16 shows the time distributions by ver-
sions. The regression test suite obtained from Scenario 2 consists of all the test
cases obtained by the capture/replay tool. The last column of Table III shows the
total time needed for this scenario. The time is significantly more than that of
Scenario 1 because of the manual test-case generation.

Because Scenario 3 does not employ our EFG-based automated checker, the
checking of the unusability of each test case had to be done individually by actually
executing it on the corresponding application version. A new test-case monitor
was developed to check for “blocked” test cases; unusable test cases were blocked
because, at some point during their execution, the test-case replayer stopped due
to the unavailability of an event; the replayer performs an event as soon as it is
available for execution. The new monitor was designed to terminate a test case’s
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Fig. 16. Time Taken to Record Each Supplemental Test Case.

execution if an event was not available within a pre-specified time period. Previous
experience with GUI testing overhead has shown that 20-30 seconds are a typical
upper-bound for desktop GUI applications to respond to events and completely
re-render the GUI (most events take a few seconds) [Xie and Memon 2007]. Hence,
to be safe, the time-out period was set to 30 seconds. Reducing this time is certain
to improve the performance of the monitor. However, this reduction also yields
several false positives; before running this empirical study, several timeout limits
were tried; even at a 20 second timeout limit, several test cases were terminated
prematurely by the monitor and incorrectly marked as unusable; they would have
executed to completion successfully if they had been given sufficient time to repaint
all their widgets. With a 30 second limit, there were no false positives; the set of test
cases deemed unusable by the EFG-based automated checker and the set computed
by the new monitor was always identical, providing a good sanity check. The total
time taken for this execution is shown in column Computing Unusable Test Cases

w/o Checker; individual time distributions are shown by version in Figure 17. It
is easy to see that the time taken by the replayer is much more than that of our
checker. The last column of Table III shows the total time needed for this scenario.
The time is slightly more than that of Scenario 1.

Finally, as expected, Scenario 4, with no checker or repairer, is the most expen-
sive. The last 4 lines of Table III show the activities that were involved in each
scenario. Figure 18 summarizes the total time for each scenario on each version.

To answer question Q4, i.e., whether the checker and/or repairer helped to save
a statistically significant amount of regression test-development time, an ANOVA
test (with Alpha = 0.05) was conducted. The null hypothesis was that the means of
all scenario data sets are equal; the alternative hypothesis was that the means are
not equal. The observed p-value was 0.046; hence, the null hypothesis was rejected
and the alternative hypothesis was accepted. The Tukey post hoc means comparison
test showed that the differences between each scenario pair were also statistically
significant. This analysis lead to the conclusion that the checker and/or repairer
helped to save a statistically significant amount of regression test-development time,
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Fig. 17. Time Taken to Check Each Test Case Without Checker.

which, together with the data plots, answer question Q4.
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Fig. 18. Time Variation by Scenarios

5. CONCLUSIONS AND FUTURE WORK

This paper presented a new regression testing technique for GUIs that detects and
repairs unusable test cases in a test suite. Developing GUI test suites is very time
consuming and tedious; hence, the motivation for this work is to try to maintain
the suites rather than create new ones. A representation called an event-flow graph
was used to model the events of a GUI. This representation of the original and
modified GUIs was compared to detect unusable test cases in the suite and then
used to repair them. An empirical study showed for four widely-used open-source
applications that (1) the repairing technique is effective in that many of the test

ACM Transactions on Computational Logic, Vol. V, No. N, September 2007.



32 · Atif M Memon

cases can be repaired, and is practical in terms of its time performance, (2) certain
types of test cases are more prone to becoming unusable, and (3) certain types of
dominator events, when modified, make a large number of test cases unusable.

Short-term future work stems from the threats to validity of the presented em-
pirical study. Since GUITAR contains several techniques for test-case generation,
multiple types of test cases will be generated and the impact of GUI changes on
them will be studied. The goal is to derive a more comprehensive set of test case
characteristics that make them unusable. A related issue is to generate test cases
using different adequacy criteria [Memon et al. 2001] and study how they are im-
pacted by changes. The GUI ripper will be extended to handle GUIs other than
ones implemented in Java Swing, thereby allowing the study of a wider range of soft-
ware. This empirical study used only four simple transformations. The test cases
that were not repaired will be studied and new transformations will be developed
that make these test cases usable.

Medium-term future work involves studying the effect of GUI changes on test
oracle information (i.e., expected output). GUITAR already contains mechanisms
to regenerate the oracle information using GUI specifications, modeled as pre- and
post-conditions [Memon et al. 2000]; it may be cheaper to reuse some of the ex-
isting information. The fault-detection effectiveness of the repaired test cases will
also be studied. Finally, the repairing techniques currently pursue its objective
by performing an exhaustive sequence of possible transformations. This approach
will become expensive as the number and complexity of transformations increase.
Search mechanisms (e.g., genetic algorithms, AI Planning) may help to improve
the approach’s performance.

Long-term future work involves applying the repairing technique to non-GUI
based software. For example, one way to test object-oriented software is to gener-
ate sequences of methods as test cases; during their execution, contract violations
[Pacheco et al. 2007] may be checked. Moreover, although this research has been
presented using EFG, it is applicable to state-machine models. Indeed a state ma-
chine model that is equivalent to an EFG can be constructed – the state would
capture the possible events that can be executed on the GUI at any instant; transi-
tions cause state changes whenever the number and type of available events change.
Finally, this work will be extended to the general class of event-driven software.
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