
Information and Software Technology 55 (2013) 445–458
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Testing component compatibility in evolving configurations

Ilchul Yoon b,⇑, Alan Sussman a, Atif Memon a, Adam Porter a

a Department of Computer Science, University of Maryland, College Park, MD 20742, USA
b Department of Computer Science, State University of New York, Incheon, Republic of Korea

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 8 October 2012

Keywords:
Incremental testing
Software component
Compatibility
0950-5849/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.infsof.2012.09.010

⇑ Corresponding author. Tel.: +82 32 626 1213.
E-mail addresses: icyoon@sunykorea.ac.kr (I. Yoon),

atif@cs.umd.edu (A. Memon), aporter@cs.umd.edu (A.
Software components are increasingly assembled from other components. Each component may further
depend on others, and each may have multiple active versions. The total number of configurations—com-
binations of components and their versions—in use can be very large. Moreover, components are con-
stantly being enhanced and new versions are being released. Component developers, therefore, spend
considerable time and effort doing compatibility testing—determining whether their components can
be built correctly for all deployed configurations–both for existing active component versions and new
releases. In previous work we developed Rachet, a distributed, cache-aware mechanism to support
large-scale compatibility testing of component-based software with a fixed set of component versions.

In this paper, we observe that it is too expensive to perform compatibility testing from scratch each
time a new version of a component is released. We thus add a new dimension to Rachet: to perform incre-
mental and prioritized compatibility testing. We describe algorithms to compute differences in compo-
nent compatibilities between current and previous component builds, a formal test adequacy criterion
based on covering the differences, and cache-aware configuration sampling and testing methods that
attempt to reuse effort from previous testing sessions. Because testers are often interested in focusing
test effort on newly released and modified components and their versions, we have developed a priori-
tization mechanism that enhances compatibility testing by examining the configurations that test new or
modified component versions first, while also distributing the work over a cluster of machines. We eval-
uate our approach using the 5-year evolution history of a scientific middleware component. Our results
show that our methods can increase performance significantly over Rachet’s previous retest-all approach
and also tests important component compatibilities early in the overall testing process, making the pro-
cess of compatibility testing practical for evolving components.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Over the last two decades software engineering researchers
have studied methods to reduce incompatibilities between soft-
ware components, and those methods are embodied in technolo-
gies such as component models, component interconnection
standards and service-oriented architectures [4,6,10,11,13,19]. De-
spite these efforts, testing modern software components is still a
challenging task for many reasons. One particular challenge is that
components may be built in many configurations. Consider, for
example, InterComm [14,24], a component used to support cou-
pled parallel scientific simulations. InterComm has complex
dependencies on multiple third-party components, each of which
in turn depend on other components, and every component has
multiple active versions. Each possible combination of components
and their versions is a configuration that might contain unique
ll rights reserved.

als@cs.umd.edu (A. Sussman),
Porter).
errors. To make matters worse, each component may evolve inde-
pendently of the others, and each configuration may need to be re-
built and retested after each change. Developers may have limited
time and resources to perform compatibility testing.

In prior work, we have addressed some of these challenges by
creating Rachet [30–32], a process and infrastructure for testing
whether a component can be built correctly for all its configura-
tions. Rachet includes a formal, graph-based representation for
encoding a component’s configuration space – the set of all possible
configurations. Using this representation, developers specify the
components and versions, component dependencies, and con-
straints. Rachet then automatically computes the component’s
configuration space. Rachet uses a test adequacy criterion and
algorithms for generating a set of configurations that satisfy the
criterion. Finally, Rachet efficiently tests the selected configura-
tions, distributing the build effort across a grid of computers, cach-
ing and reusing partially built configurations whenever possible. In
our study, we used independently compilable and deployable soft-
ware libraries or tools (e.g., GNU compiler and GMP library) as
components in our experiments. Although we believe that our

http://dx.doi.org/10.1016/j.infsof.2012.09.010
mailto:icyoon@sunykorea.ac.kr
mailto:als@cs.umd.edu
mailto:atif@cs.umd.edu
mailto:aporter@cs.umd.edu
http://dx.doi.org/10.1016/j.infsof.2012.09.010
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

*

+ D

B C

*

E

*

F

*

G

A

Version Annotations

Constraints
(ver(C) == 2) (ver(E) E 3)

Component Versions
1

1 , B2

1 , C2

1 , D 2

1, E2 , E3

1, F2 , F3

A A
B B
C C
D D
E E
F F
G G1

 C

Fig. 1. Example configuration model consisting of a CDG and annotations.

446 I. Yoon et al. / Information and Software Technology 55 (2013) 445–458
model used to encode configuration space of a component-based
system is domain-neutral and can be used for other systems based
on components with different granularity (e.g., Jar files), the cur-
rent Rachet architecture that leverages virtual machines to repre-
sent configurations fits better with components that take long
time to build and deploy.

Since the original design of Rachet did not accommodate com-
ponent evolution, when new components or new versions of exist-
ing components were introduced Rachet simply retested all
configurations, including the ones that had been covered in previ-
ous test sessions. To test component compatibilities incrementally,
taking into account component evolution, in [29] we presented
methods to rapidly test configurations that contain new or modi-
fied components, and evaluated the effectiveness of our approach
through simulations with 20 actual builds for the InterComm com-
ponent, developed over a 5-year period. The experimental results
showed that the incremental approach is more efficient than the
previous retest-all approach, and can produce results for new com-
patibilities early in the overall test process. More specifically, the
paper made the following contributions:

� An incremental compatibility testing adequacy criterion.
� An algorithm to compute incremental testing obligations, given

a set of changes to the configuration space.
� An algorithm to select small sets of configurations that effi-

ciently fulfill incremental testing obligations.
� A set of optimization techniques that reuse test artifacts and

results from previous test sessions, to decrease testing time.

Although testing configurations incrementally can improve the
performance of Rachet, as we reported in [29], the configurations
tested may contain few compatibilities related to new components
and their versions, but must contain many compatibilities to build
the components required to test the new compatibilities. In this
case, incremental testing will take longer to identify compatibili-
ties for new components. In order to alleviate this problem, we
have extended our work on incremental compatibility testing
and make the following new contributions in this paper:

� A mechanism to prioritize the test order of configurations to
discover test results for new compatibilities rapidly.
� An evaluation of the prioritization mechanism.

The next section provides an overview of Rachet. Section 3 de-
fines a test adequacy criterion for incremental compatibility test-
ing, and also describes algorithms to generate configurations for
incremental and prioritized compatibility testing. Section 4 pre-
sents the results of our empirical study. Main extensions from
our previous work [29] are described in Sections 3.4 and 4.7. Sec-
tion 5 describes related work and Section 6 concludes with a brief
discussion of future work.
2. Rachet overview

We summarize our prior work on Rachet [30–32], which is both
a process and an infrastructure to perform compatibility testing for
component-based software systems. The Rachet process has sev-
eral steps. First, developers formally model the configuration space
of the component under test. The model has two parts: (1) a direc-
ted acyclic graph called the Component Dependency Graph (CDG)
and (2) a set of Annotations. As demonstrated in Fig. 1, a CDG con-
tains one node for each component and specifies inter-component
dependencies by connecting component nodes through AND and
XOR relation nodes. For example, component A depends on com-
ponent D, which is represented by an AND node labeled � between
component A and component D. Component A also depends on ex-
actly one of either B or C, which is represented by the XOR node
labeled +. The model’s Annotations include one identifier for each
component version and, optionally, constraints between compo-
nents and/or over full configurations, expressed in first-order logic.
A model must contain all component dependencies and con-
straints, and the model cannot change during a single test session.

Together, the CDG and Annotations implicitly define the config-
uration space. More formally, a configuration to build the compo-
nent represented by the top node of the CDG is a sub-graph that
contains the top node, the relation node connected to the outgoing
edge of the top node, and other nodes reachable from the top node,
where we pick one child node for an XOR node and all child nodes
for an AND node. Each component node is labeled with exactly one
valid version identifier. A valid configuration is one that does not
violate any constraint specified in a model, and the configuration
space is the set of all valid configurations. For the example in
Fig. 1, a sub-graph that contains the nodes A, B, D, E, F, G, along with
intervening relation nodes, is a valid configuration to build the
component A. However, for example, if the sub-graph does not
contain component G, it is not a valid configuration.

Because it is often infeasible to test all possible configurations,
Rachet’s second step is to select a sample set of configurations for
testing. The default sampling strategy is called DD-coverage, and
is based on covering all direct dependencies between components.
In CDG terms, a component c directly depends on a set of compo-
nents, DD, such that for every component, DDi 2 DD, there exists
at least one path from c to DDi not containing any other component
node. In the running example, component A directly depends on
components B, C and D, and component A has two direct dependen-
cies – one is to build A with B and D and the other with C and D.

From these direct dependencies, Rachet computes DD-instances,
which are the concrete realizations of direct dependencies, specify-
ing actual component versions. A DD-instance is a tuple, (cv,d),
where cv is a version v of component c, and d is a set of component
versions on which c directly depends. For example, there are 3 DD-
instances for component E in Fig. 1: (E1, {G1}), (E2, {G1}), (E3, {G1}).
Once all DD-instances for all components in the model have been
computed, Rachet computes a set of configurations in which each
DD-instance appears at least once. Rachet implements this step
with an algorithm called BuildCFG. The algorithm works greedily,
attempting to generate each configuration to cover as many previ-
ously uncovered DD-instances as possible, with the goal of mini-
mizing the total number of configurations needed to cover all
DD-instances.

The BuildCFG algorithm takes two parameters: (1) a set of DD-
instances already selected for the configuration under generation,

G1

I. Yoon et al. / Information and Software Technology 55 (2013) 445–458 447
and (2) a set of component versions whose DD-instances must still
be added to the configuration. To generate a configuration that is to
cover a given DD-instance (call it ddi1 = (cv,d)), Rachet calls Build-
CFG with the first parameter set to ddi1 and the second parameter
containing all the component versions in d. BuildCFG then selects a
DD-instance for some component version in the second parameter.
The configuration (the first parameter) is extended with the se-
lected DD-instance, and component versions contained in the
dependency part of the DD-instance are added to the second
parameter, if DD-instances for those component versions are not
yet in the configuration. BuildCFG then checks whether the ex-
tended configuration violates any constraints. If the configuration
does not violate constraints, BuildCFG is called recursively with
the extended configuration and the updated second parameter. If
there has been a constraint violation, BuildCFG backtracks to the
state before the DD-instance was selected and tries another DD-in-
stance, if one exists. BuildCFG returns true if the configuration has
been generated (i.e., the second parameter is empty) or false if it
runs out of DD-instances that can be selected, due to constraint vio-
lations. If all of those calls return success, the configuration under
construction contains all DD-instances needed for a configuration
that covers ddi1 (and all other DD-instances selected for the
configuration).

As described above, in the process of generating a configuration
to cover a DD-instance of a component c in a CDG, the BuildCFG
algorithm backtracks when the configuration is extended by add-
ing a DD-instance of another component that violates any con-
straints. This means that, in the worst case, the algorithm could
explore every combination of DD-instances of all other components
(except the component c), before it returns a valid configuration.
Therefore, for n components c1, c2, . . ., cn in a CDG with the DD-in-
stance sets DDI1, DDI2, . . ., DDIn, where c1 is the top component of
the CDG and DDIi is the DD-instance set of the component ci, the
worst-case time complexity of the BuildCFG algorithm applied to
generate a configuration to cover a DD-instance in the set DDI1 isQn

i¼2jDDIij, where jDDIijis the number of DD-instances in the set
DDIi. However, in practice, constraints may be defined between
components with direct dependencies, and such constraints do
not make BuildCFG backtrack because they are enforced when
we compute the set of DD-instances.

The BuildCFG algorithm is applied first to generate a configura-
tion that covers a DD-instance for a component higher in a
CDG – the component at depth 0 is the top component, since the
algorithm may then choose more DD-instances that have not been
covered by any other configuration in the recursive process, and as
a result, we can minimize the total number of configurations gen-
erated. Fig. 2 illustrates the process of generating a configuration to
cover a DD-instance for component A, (A1, {B1,D1}). Starting from
the leftmost sub-graph, the figure shows DD-instances selected
for the configuration. For the example model in Fig. 1, BuildCFG
generates 11 configurations to cover all DD-instances.

Rachet’s third step takes each of the configurations and topolog-
ically sorts its component nodes to produce a build-ordered
sequence of components. That is, the ith component in the se-
quence does not depend on any component with an index greater
A1

D1

B1

+

B1

E1

E1

G1

D1

F1

F1

G1

G1

Fig. 2. Applying the BuildCFG algorithm to cover a DD-instance for component A.
than i. Therefore, Rachet can build the 1st component in the se-
quence, then build the 2nd component, etc. Rachet combines the
build sequences for each configuration into a prefix tree, by repre-
senting each common build prefix (a build subsequence starting
from the first component) exactly once. Thus, each path from the
root node to a leaf node corresponds to a single build sequence,
but common build subsequences are explicitly represented. The
rationale behind combining configurations is that many configura-
tions are quite similar, so we can reduce test effort by sharing par-
tially built configurations across multiple configurations. The
prefix tree essentially acts as a test plan, showing all opportunities
to share common build effort. Fig. 3 depicts a test plan for the run-
ning example. This test plan contains 37 nodes (components to be
built), reduced from 56, the number contained in the 11 original
configurations generated by applying BuildCFG.

Finally, Rachet executes the test plan by distributing component
builds across multiple client machines and collecting the test re-
sults. Instead of distributing complete configurations, Rachet dis-
tributes partial configurations (prefixes in the test plan). The
partial configurations are built in virtual machines (VMs), which
can be cached (since a VM is a (large) disk image), for reuse in
building other configurations, – i.e., Rachet tries to build a prefix
only once, reusing it to build other configurations, sometimes by
transferring a VM image between client machines across the net-
work. In previous work [31], we examined three different test plan
execution strategies, where each uses a different method to select
the next prefix to be distributed to a client machine that performs
the build: a depth-first strategy, a breadth-first strategy and a hybrid
strategy. Our results showed that the hybrid strategy generally per-
formed best across a wide variety of execution scenarios. In that
strategy, Rachet first distributes prefixes for non-overlapping sub-
trees of a test plan to each machine and then continues building
components in depth-first order.

Rachet’s final output is test results indicating whether each DD-
instance was (1) tested and building the component encoded by the
DD-instance was successful, (2) tested and building the component
failed, or (3) was untestable, meaning that there was no way to
produce a configuration to test that DD-instance. For example, sup-
pose that in testing for our example, all attempts to build B2 with
E1, E2, and E3 fail. Then, two DD-instances of component
A, (A1, {B2,D1}) and (A1, {B2,D2}), are untestable because the
DD-instances require a successfully built B2 to build A1.
3. Incremental testing

Our previous work cannot be directly used to efficiently test
evolving software systems, because Rachet will generate configura-
tions that test all DD-instances for the components in a model after
any component changes, so the set can include unnecessary
configurations that only test DD-instances whose results are
already known from previous testing sessions. To support
E2 E1 E3

F1 F3 F2

B1

D2

A1

C1

D2

A1

B2

D2

A1

F1 F3 F2

B1

D1

A1

C1

D1

A1

B2

D1

A1

B2 F1 B1 C1

C2 D1

D2

A1

A1

Fig. 3. Test plan with DD-coverage. (Dependency part of each DD-instance is
omitted.)

448 I. Yoon et al. / Information and Software Technology 55 (2013) 445–458
incremental compatibility testing, we have extended Rachet to first
identify the set of DD-instances that need to be tested given a set of
component changes, compute a minimal set of configurations that
cover those DD-instances, and order the test executions so that new
and modified component versions get tested first. These extensions
required us to develop new mechanisms to (1) compute incremen-
tal test obligations, (2) reuse cached configurations from previous
test sessions, (3) manage cached configurations across test ses-
sions, and (4) order the test executions so that newly modified
components and their versions get tested first (we call this priori-
tizing the test order). We now describe each of these mechanisms.

We continue to use our running example from Fig. 1 to explain
our algorithms. Suppose that during the previous testing session,
B2 could not be built over any version of component E. As a result,
all DD-instances in which component A must be built over B2 have
not yet been tested. Now suppose that new versions of compo-
nents B and D become available, and that the latest version of E,
E3, has been modified. In this case the configuration model changes
in the following ways. First, the new versions of B and D are added
to the configuration model as version identifiers B3 and D3. Next,
the modified component is handled by removing the old version,
E3, and then adding a new version, E4. For this example, the origi-
nal version of Rachet would produce a test plan with 56 component
versions to build (Fig. 4a), which is larger than necessary because
some configurations involve only DD-instances whose tests results
are already known.
3.1. Computing incremental test obligations

The types of changes to the configuration models include add-
ing and deleting (1) components, (2) component versions, (3)
dependencies and (4) constraints. To deal with all such changes
in a uniform way, we assign unique identifiers to each component
and its versions, and compute the set of DD-instances for both the
old and new configuration models and then use set differencing
operations to compute the DD-instances to be tested. Using a Venn
diagram, we can describe the relationship between the DD-in-
stances for two successive builds. Fig. 5 shows the set of DD-in-
G1

E2 E1

F1 F2 F3

B1 C1

D2

A1

D2

A1

B2

D2

A1

B3

D2

A1

F1 F3 F2

B1 C1

D1

A1

D1

A1

B3

D1

A1

B2

D1

A1

G1

E2 E1

F1

B3

D2

A1

F1

B3

D1

A1

B2

D2 D1

A1

C2

A1

D3

A1

Fig. 4. Test plans: retest-all (56 components) vs. incremental (35 componen
stances for two consecutive builds, buildi�1 and buildi. DDi�1
all and

DDi
all represent the sets of all DD-instances in the respective builds.

DDi
new represents the DD-instances in DDi

all, but not in DDi�1
all . DDi�1

tested

is the subset of DDi�1
all whose build status (success or failure) was

determined in that testing session and DDi�1
untestable is the subset of

DDi�1
all whose build status is unknown – each of those DD-instances

could not be tested because at least one of the component versions
in the dependency part of the DD-instance failed to build in all pos-
sible ways.

Using this set view, the DD-instances that must be tested for
buildi are shown as the shaded area in the figure, and are computed
as follows:

DDi
test ¼ DDi

all � DDi�1
tested

We include previously untestable DD-instances in the current
testing obligations, since newly introduced component versions
might provide new ways to build a given component, thus enabling
previously untestable DD-instances to be tested.

The next step applies the BuildCFG algorithm as many times as
needed to generate a set of configurations that cover all the DD-in-
stances in DDi

test . The algorithm generates configurations for DD-in-
stances that have not yet been covered, starting from DD-instances
for the component closest to the top node in a CDG. As previously
discussed in Section 2, we expect to generate fewer configurations
compared to not taking into account prior test results. An outline of
this process is as follows:

1. Compute DDi
test .

2. Select the DD-instance from DDi
test that builds the component

closest to the top node of the CDG (if more than one, select
one at random).

2.1 Generate a configuration that covers the selected DD-
instance, by applying BuildCFG.

2.2 Remove all DD-instances contained in the generated con-
figuration from DDi

test .
2.3 If DDi

test is not empty, go to step 2.
3. Merge all generated configurations into a test plan.
4. Execute the test plan.
E4

F2 F1 F3

B2

D3

A1

C2 B1 C1

D2 D1 D3

A1 A1 A1

D3

A1

D3

A1

B3

D3

A1

E4

F1 F2 F3

B1 C1 B2

D3

A1

B3

D3

A1

D3

A1

D3

A1

ts). The shaded nodes can also be reused from the previous test session.

DDall
i-1 DDall

i

DDuntestable
i-1

DDnew
iDDtested

i-1

Fig. 5. DD-instances for two consecutive builds, buildi�1 and buildi. The DD-instances
represented by the shaded areas need to be tested in buildi.

G1

E2 E1 E4

F2

C1 B1 B3

D3

A1

D3

A1

D2 D1 D3

A1 A1 A1

B3 F1 F3 B3 B1 C1

B2

D2 D1 D3

A1 A1 A1

C2

D3

A1

Fig. 6. Test plan produced from configurations selected in a cache-aware manner.
Thirty-four component versions must be built. (Shaded area is cached from the
previous test session.)

I. Yoon et al. / Information and Software Technology 55 (2013) 445–458 449
For the running example, the new algorithm produces nine
configurations, reducing the test plan size from 56 (Fig. 4a) to 35
components (Fig. 4b). As the test plan executes, Rachet caches
partially-built configurations (prefixes) on the client machines when
a prefix can be reused later in the test process. As a result, for the
running example, the total number of component builds is only 30,
because the five components depicted by shaded nodes in Fig. 4b
have already been built in partial configurations and the configura-
tions were cached in the previous test session (assuming those par-
tial configurations were not deleted at the end of the test session).

3.2. Cache-aware configuration generation

In our previous work [30–32], we assumed that the cache space
in each client test machine is empty at the beginning of a test ses-
sion. For incremental testing, however, previous tests effort can
and should be reused. On the other hand, just preserving the cache
between test sessions may not result in reduced effort unless the
cached prefixes are shared by at least one configuration generated
for the new test session. We present a method that uses informa-
tion about cached prefixes from previous test rounds in the process
of generating configurations, to attempt to increase the number of
configurations that share cached prefixes. More specifically, step
2.1 in the configuration generation algorithm from Section 3.1 is
modified as follows:

2.1.1 Pick the best prefix in the cache for generating a configura-
tion that covers the DD-instance.

2.1.2 Generate a configuration by applying BuildCFG, using the
prefix as an extension point.

2.1.3 Repeat from step 2.1.1 with the next best prefix, if no config-
uration can be generated by extending the best prefix.

To generate a configuration that covers a DD-instance, in step
2.1.1, we first pick the best prefix, which is one that requires the
minimum number of additional DD-instances to turn the prefix into
a full configuration. Then in step 2.1.2, the BuildCFG algorithm is
used to extend the prefix by adding DD-instances. It is possible that
BuildCFG will fail to generate a configuration by extending the best
prefix, due to constraint violations. In that case, the new algorithm
applies step 2.1.1 with the next best cached prefix, until one is
found that does not have any constraint violations.

However, the best cached prefix can be found only after apply-
ing the BuildCFG algorithm to every prefix in the cache. That can
be very costly, since the algorithm must check for constraint viola-
tions whenever a DD-instance is added to the configuration under
construction. Therefore, we instead employ a heuristic that selects
the best prefix as the one that requires the longest time to build all
the components in the prefix. The rationale behind this heuristic is
that fewer DD-instances should need to be added when a configu-
ration is constructed by extending the cached prefix that takes lon-
gest to build. However, the downside of this heuristic is that a
prefix could be regarded as the best prefix to cover a DD-instance
only because it takes the longest time to build, even though many
components in the prefix are not really needed. We currently over-
come this problem by not considering a prefix as an extension
point if it contains at least one component that appears later in
the topological ordering of the components in the CDG than the
component in the DD-instance to be covered.

Not all prefixes in the cache can be extended to generate a con-
figuration that covers a DD-instance. To reduce the cost to generate
configurations, we check whether any constraint is violated when
the DD-instance is added to each cached prefix, before extending
the prefix with the DD-instance. This can be achieved efficiently
by maintaining an auxiliary data structure called a cache plan,
which is a prefix tree that combines prefixes in the cache. (In
Fig. 6, the sub-tree reaching the shaded nodes is the cache plan
for the example system, after the first test session completes.)
For a DD-instance that is to be covered, the cache plan is traversed
in depth-first order, checking whether constraints are violated
when the DD-instance is added to the path from the root node to
a node in the cache plan. If there is a violation, we filter out all ca-
ched prefixes reaching any node in the subtree starting at the node.

Fig. 6 shows a test plan created by merging the configurations
produced by applying the cache-aware algorithm to the example
system. The test plan has 13 configurations, which is 4 more than
the test plan that does not consider cached prefixes (Fig. 4b). The
number of components that actually need to be built is 30 in both
cases because we can reuse prefixes in the cache. However, the
average build sequence length is smaller for the cache-aware plan
by about 1.3 components compared to the cache-unaware plan,
because almost half of its configurations are extended from cached
prefixes. Shorter build sequences can greatly decrease the overall
time needed to execute the test plan.

3.3. Managing cached configurations

Because cache space is a limited resource, when the cache is full
we must discard a previously cached prefix to add a new one. In
previous work [30–32], we employed the commonly used Least-
Recently-Used (LRU) cache replacement policy. However, during
the execution of a test plan, Rachet can, for each prefix in the cache,
compute how many times the prefix can be reused for testing addi-
tional DD-instances. This information can then be used to select the
victim prefix to be replaced in the cache. For example, if all the
plan nodes in the subtree rooted at the last node of a prefix in a test
plan have already been tested, the prefix can be deleted from the
cache even though it has been recently used, without increasing
overall test plan execution time.

To keep prefixes with more reuse potential longer in the cache
throughout test sessions, we have designed a heuristic to estimate
the reuse potential of prefixes in the cache. When we need to re-
place a prefix in the cache, we compute, for each prefix in the
cache: (1) the expected time savings from reusing the prefix to

450 I. Yoon et al. / Information and Software Technology 55 (2013) 445–458
execute the remaining portion of the current test plan, and (2) the
average change frequency of components in the prefix across pre-
vious test sessions.

The expected time savings measures how useful a prefix can be
for executing the current test plan. To compute the expected time
savings for each prefix, we first identify, for each plan node, the ca-
ched prefix that enables saving the most time to test the node by
reusing that cached prefix. Then, we multiply the number of nodes
that benefit the most from reusing the prefix by the time required
for building the prefix from an empty configuration. In Fig. 6, pre-
fixes <G1,E2> (call that p1) and <G1,E2,F2> (call that p2) are cached
during the first test session. When the test plan in the figure is exe-
cuted in the next test session, the time savings expected from p1 is
0, since p2 is the best prefix for testing all plan nodes in the subtree
starting from p1.

We also estimate how likely a prefix cached during the execu-
tion of a test plan is to be helpful to execute test plans for subse-
quent test sessions, by considering change frequencies of
components in the prefix. Component version annotations in the
CDG can include both officially released versions of a component
and also the latest states of development branches for a component
from a source code repository, because developers often want to
ensure compatibility of a component with the most recent versions
of other components. To model an updated system build, a devel-
oper must specify modified component versions in version annota-
tions, including patches for released versions or code changes in
development branches. We regard such changes as version
replacements in the CDG annotations, but also keep track of the
test sessions in which the changes occurred.

The change frequency of a cached prefix is computed by count-
ing the number of preceding test sessions in which a component
version has changed. We do the counting for each component ver-
sion contained in the prefix and compute the average across the
components to compute the frequency for the whole prefix. There-
fore, if a prefix in the cache contains only component versions that
have not changed at all, the change frequency is 0, which means
that components involved in the prefix are not likely to change
in the future so that it may be worthwhile to keep the prefix in
the cache. On the other hand, if a prefix contains only component
versions that have changed often across test sessions, it is more
likely that the prefix is not reusable in later test sessions.

When a cache replacement is necessary, the victim is the prefix
that has the least time savings. The highest change frequency is
used as a tie breaker. That is, we first focus on completing the test
plan under execution more quickly and secondarily try to keep pre-
fixes that may be useful for later test sessions.

The scheduling strategy for test plan execution cannot be
considered separately from the cache replacement policy. For
the hybrid scheduling strategy described in Section 2, when a cli-
ent requests a new prefix to test, the scheduler searches the test
plan in breadth-first order starting from the root node, or, if that
client has cached prefixes available for the test plan, in depth-
first order from the last node of the most recently used cached
prefix.

For the new cache replacement policy, the prefix with the
least reuse potential, call it p1, is replaced when the cache is full.
If the test plan is searched starting from the most recently used
cached prefix, p1 could be replaced before it is reused. If such a
replacement happens, we must pay the cost to build p1 from
scratch later when we need p1 for testing plan nodes beneath
the subtree rooted at p1. Hence, we search the test plan giving
higher priority to prefixes with low reuse potential, because such
prefixes are more likely to be reused for testing only a small part
of the test plan. By testing those parts of the plan earlier, those
prefixes can be replaced in the cache after they are no longer
needed.
3.4. Prioritizing configuration test order

During compatibility retesting, i.e., rerunning the Rachet process
after one or more components have changed, a test plan for a build
can contain DD-instances whose results have already been deter-
mined from testing prior builds. If a developer wants to obtain
compatibility results for new DD-instances first, the developer
may use a greedy approach that first tests the configurations that
contain the most new DD-instances. However, because test plan
execution in Rachet is distributed and cache-aware, this greedy ap-
proach does not take advantage of reusing partial configurations
cached in multiple client machines. We thus designed an algorithm
that dynamically prioritizes configurations based on the freshness
of the configurations at any point in time during the plan execu-
tion. At each client’s request, we apply the algorithm to determine
the next configuration to be tested.

Algorithm 1. Schedule a configuration, considering both the
freshness and the locality of the configuration to be tested.
Algorithm Prioritized-Incremental-Execution(Plan, M)

1:
 // Plan: the test plan being executed

2:
 // M: the client machine requesting a configuration to test

3:
 CandidateCfgs an empty list

4:
 for each configuration c in Plan do

5:
 p the longest cached prefix of c

6:
 newddic the number of new, not yet assigned, and

not yet tested DD-instances in c

7:
 ddic the number of DD-instances in c, excluding the

ones in p.

8:
 freshness newddic/ddic

9:
 local 1 if p is already cached in M, and 0 otherwise.
10:
 m the number of clients where p is cached

11:
 CandidateCfgs CandidateCfgs [{hc, freshness, local,mi}

12:
 end for

13:
 Sort CandidateCfgs by freshness in decreasing order.

14:
 return, the first configuration in CandidateCfgs, using

local and m as the first and second tie-breaker,
respectively.
Algorithm 1 gives a high-level description of the selection pro-
cess. When a client requests a new configuration to test, we eval-
uate the freshness of each configuration at that time by
computing the ratio of the number of new, not yet assigned, and
not yet tested DD-instances in the configuration to the number of
DD-instances in the configuration, excluding the ones contained
in the longest cached prefix of the configuration. A configuration
(call it c1) is not considered as a good candidate to be tested by
the requesting client, if (1) c1 contains many DD-instances whose
results are already determined, or (2) another configuration (call
it c2) that shares a prefix with c1 is already being tested by other
client. The rationale behind this heuristic is that c1 could be tested
later with less test effort by reusing the shared prefix produced by
the client testing c2.

Algorithm 1 first build a list of candidate configurations (Candi-
dateCfgs) that can be tested by the requesting client. Each configu-
ration is added into the list, annotated with the freshness and two
auxiliary values: (1) local is a boolean value that indicates whether
the requesting client has the longest prefix of the configuration in
its cache. When multiple client machines are employed to execute
a test plan, this information can be used to increase the locality of
the plan execution, taking advantage of reusing prefixes cached lo-
cally in each client. (2) m is the number of clients that have the lon-
gest prefix of the configuration in their cache. This is used to

*

+

++

pvm ap

*

mchlam

* **

ic

I. Yoon et al. / Information and Software Technology 55 (2013) 445–458 451
reduce redundant work across multiple clients, when there are
multiple candidate configurations with identical freshness and lo-
cal values.

Although local and m are used to increase the locality of the plan
execution and also cause each client to test non-overlapping re-
gions of the test plan, a more important concern for developers is
to test new DD-instances early in the test plan execution. Therefore,
we sort the entries in CandidateCfgs by the configuration freshness
in decreasing order, using local and m as the first and second tie
breakers, respectively, and then dispatch the configuration that is
the first entry in the sorted list to the requesting client.
+

*

pc

pxx

gxx

pf

gf

gf77

*

*

*

mpfr

*

gmp

gcr

*

fc

Fig. 7. CDG for InterComm.

Table 1
Components used in the InterComm model.

Comp. Description

ic InterComm, the SUT
ap High-level C++ array management library
pvm Parallel data communication component
lam A library for MPI (Message Passing Interface)
mch A library for MPI
gf GNU Fortran 95 compiler
gf77 GNU Fortran 77 compiler
pf PGI Fortran compiler
gxx GNU C++ compiler
pxx PGI C++ compiler
mpfr A C library for multi-precision floating-point number

computations
gmp A library for arbitrary precision arithmetic computation
pc PGI C compiler
gcr GNU C compiler
fc Fedora Core Linux operating system
4. Evaluation

Having developed a foundation for incremental and prioritized
compatibility testing between evolving components, we now eval-
uate our new approach and algorithms on a middleware compo-
nent from the high performance computing community.

4.1. Subject component

Our subject component for this study is InterComm,1 which is a
middleware component that supports coupled scientific simulations
by enabling efficient and parallel data redistribution between data
structures managed by multiple parallel programs [14,24]. To pro-
vide this functionality, InterComm relies on several other compo-
nents, including compilers for various programming languages,
parallel data communication libraries, a process management library
and a structured data management library. Some of these compo-
nents have multiple versions and there are dependencies and con-
straints between the components and their versions.

For this study, we examined the change history of InterComm
and the components required to build InterComm over a 5 year
period. To limit the scope of the study, we divided this 5 year per-
iod into 20 epochs, each lasting approximately 3 months. We took
a snapshot of the entire system for each epoch, producing a se-
quence of 20 builds.

4.2. Modeling InterComm

We first modeled the configuration space for each build. This in-
volved creating the CDGs, and specifying version annotations and
constraints. We considered two types of version identifiers – one
is for identifying versions officially released by component devel-
opers, and the other is for the change history of branches (or tags)
in source code repositories. Currently the modeling is manual work
and based on careful inspection of the documentation that de-
scribes build sequences, dependencies and constraints for each
component.2

Fig. 7 depicts dependencies between components for one build,
and Table 1 provides brief descriptions of each component. The
CDGs for other builds were different. For instance, GNU Fortran
(gf) version 4.0 did not yet exist when the first version of Inter-
Comm (ic) was released. Therefore, the CDG for that build does
not contain the Fortran component and all its related dependencies
(shaded nodes in the figure).

Table 2 shows the history of version releases and source code
changes for the components in each build. Each row corresponds
1 http://www.cs.umd.edu/projects/hpsl/chaos/ResearchAreas/ic.
2 We spent about (1) a month to identify dependencies and constraints between

components and their versions used in any of the 20 builds and to integrate the
information into the models for individual builds; (2) another month to develop tools
that download components from different types of source code repositories. However,
the efforts could be greatly reduced if the dependency and constraint information are
provided clearly in a uniform way.
to a specific build date (snapshot), and each column corresponds
to a component. For each build, entries in the last eight columns
of the table indicate official version releases of components. For
example, InterComm (ic) version 1.5 was released between
02/25/2006 (build6) and 05/25/2006 (build7). We use a version re-
leased at a given build date to model that build and also for mod-
eling all subsequent builds. Entries in the six columns labeled
Branches contain version identifiers for development branches.
We assign a unique version identifier for the state of a branch at
a given build date by affixing to the branch name an integer that
starts at 1 and is incremented when the branch state at a build date

http://www.cs.umd.edu/projects/hpsl/chaos/ResearchAreas/ic

Table 2
History of version releases and source code changes for components in the InterComm build sequence.

Build Date Branches Released versions

ic gcr gxx gf77 gf gmp mpfr ic gcr gxx gf gmp mpfr lam pvm

0 08/25/04 3.4d1 3.4d1 1.1 3.4.0 3.4.0 6.5.9 3.2.6
3.4.1 3.4.1 7.0.6 3.3.11

1 11/25/04 1.1d1 3.4d2 3.4d2 3.4.2 3.4.2 3.4.5
3.4.3 3.4.3

2 02/25/05 3.4d3 3.4d3
3 05/25/05 3.4d4, 4.0d1 3.4d4 4.0d1 3.4.4 3.4.4 4.0.0 4.1.0, 4.1.1 2.1.0

4.0.0 4.1.2, 4.1.3 2.1.1
4.1.4

4 08/25/05 3.4d5, 4.0d2 3.4d5 4.0d2 4.0.1 4.0.1 2.1.2
5 11/25/05 1.1d2 3.4d6, 4.0d3 3.4d6 4.0d3 4.0.2 4.0.2 2.2.0
6 02/25/06 3.4d7, 4.0d4 3.4d7 4.0d4 3.4.5 3.4.5
7 05/25/06 1.1d3 3.4d8 3.4d8 4.0d5, 4.1d1 1.5 3.4.6 3.4.6 4.0.3 4.2.0,4.2.1

4.0d5, 4.1d1 4.0.3 4.1.0
4.1.0 4.1.1
4.1.1

8 08/25/06 1.5d1 4.0d6, 4.1d2 4.0d6, 4.1d2
9 11/25/06 4.0d7, 4.1d3 4.0d7, 4.1d3
10 02/25/07 1.5d2 4.0d8, 4.1d4 4.0d8, 4.1d4 2.2d1 4.0.4 4.0.4 2.2.1 7.1.3
11 05/25/07 1.5d3 4.1d5 4.1d5 2.2d2 4.1.2 4.1.2
12 08/25/07 1.5d4 4.1d6 4.1d6
13 11/25/07 1.5d5 4.1d7 4.1d7 2.3d1 4.2.2 2.3.0
14 02/25/08 4.1d8 4.1d8 2.3d2 2.3.1
15 05/25/08 4.1d9 4.1d9
16 08/25/08 4.1d10 4.1d10 2.3d3 4.2.3
17 11/25/08 2.3d4 4.2.4 2.3.2
18 02/25/09 4.1d11 4.1d11 2.3d5
19 05/25/09 4.3d1 4.3.0,4.3.1

452 I. Yoon et al. / Information and Software Technology 55 (2013) 445–458
has changed from its state in the previous build.3 For example,
1.1d2 in the third column of build5 indicates that there were file
changes in the branch 1.1d between 08/25/2005 (build4) and 11/
25/2005 (build5). Compared to a released version whose state is fixed
at its release date, the state of a branch can change frequently and
developers typically only care about the current state for testing.
Therefore, for a branch used to model a build, we consider only
the latest version identifier of the branch, so include the latest ver-
sion identifier in the model and remove the previous version identi-
fier for the branch.

Using this information, we define a build to contain all released
component version identifiers available on or prior to the build
date, and the latest version identifiers for branches available on
that date. For example, at build7, three major versions (3.4, 4.0,
4.1) of GNU compilers were actively maintained, and four minor
revisions were released for the major versions, and there were
changes in their development branches. With these changes, Inter-
Comm developers had to make sure that the new InterComm ver-
sion 1.5 released at build7 was build-compatible with the compiler
versions available, and also they had to test whether the old Inter-
Comm version 1.1 was compatible with new compiler versions.

Note that Table 2 does not include several components: fc ver-
sion 4.0, ap version 0.7.9, mch version 1.2.7, and the PGI compil-
ers (pxx, pc, pf) version 6.2. For these components, we could
obtain only one version or we considered only one version to limit
the time to perform the experiments (fc). For this study, we as-
sumed that these versions were available from the first build. Also,
we considered development branches for only 4 major GNU com-
piler versions (3.3, 3.4, 4.0 and 4.1), due to limited test resource
availability and the time required to perform the experiments.

In addition to the CDGs and version annotations, InterComm
places several constraints on configurations. For example, if com-
pilers from the same vendor for different programming languages
3 Branches are not used for modeling builds unless there has been at least one
official version released from the branch.
are used in a configuration (e.g., gcr, gxx, gf and gf77), they must
have the same version identifier. These constraints eliminated con-
figurations that we knew a priori would not build successfully.

4.3. Study setup

To evaluate our incremental and prioritized testing approach,
we first gathered component compatibility results (i.e., success
or failure to build the component version encoded by each
DD-instance) and the time required to build each component
version. To collect this data, we created a single configuration
space model containing identifiers for all released component ver-
sions and all branch states that appear in any build. We then built
every configuration using a single server (Pentium 4 2.4 GHz CPU
with 512 MB memory, running Red Hat Linux) and 32 client
machines (Pentium 4 2.8 GHz Dual-CPU machines with 1 GB mem-
ory, all running Red Hat Enterprise Linux), connected via Fast
Ethernet. To support the experiment we enhanced Rachet to work
with multiple source code repositories and to retrieve source code
for development branches as needed. Rachet currently supports the
CVS, Subversion, and Mercurial [2,20] source code management
systems.

By running the test plan for the integrated model, we obtained
compatibility results for the 15,128 DD-instances needed to test the
InterComm builds. Building components was successful for 6078
DD-instances and failed for 1098 DD-instances. The remaining
7952 DD-instances were untestable because there was no possible
way to successfully build one or more components in the depen-
dency part of the DD-instances. For example, all the DD-instances
to build an InterComm version with a dependency on PVM compo-
nent version 3.2.6 could not be tested, because all possible ways to
build that PVM version failed.

Using the data obtained from the experimental run just de-
scribed, we simulated a variety of use cases with different combi-
nations of client machines and cache sizes. For example, we used
the average time required to build a component for calculating

retest−all
test−diff

0

1

2

3

4

5

6

0 1 2 5 63 4 7 8 9 10 11 12 13 14 15 16 17 18 19

T
ur

na
ro

un
d

T
im

e
(d

ay
s)

Builds

Fig. 8. Turnaround times for testing DDi
all and DDi

test for each build (eight machines
and four cache entries per machine).

I. Yoon et al. / Information and Software Technology 55 (2013) 445–458 453
total build times for each simulation. Table 3 shows the number of
DD-instances corresponding to each region in the diagram in Fig. 5.

For the ith build in the InterComm build sequence, the second
column in the table is the total number of DD-instances repre-
sented by the annotated CDG. Note that for some builds the num-
ber of DD-instances does not differ from the previous build. This is
because model changes between builds only involved replacing
branch version identifiers with more recent ones. The last column
is the number of nodes in the initial test plan for each build. In
some cases, the number of nodes in a test plan is fewer than the
number of DD-instances to cover (the sum of the 4th and 5th col-
umns). That happens when a large number of DD-instances are
classified as untestable when we produce the set of configurations
that are merged into the test plan for the build.

We ran the simulations with 4, 8, 16 or 32 client machines, each
having 4, 8, 16, 32, 64 or 128 cache entries. To distribute configu-
rations to multiple machines, we used the modified plan execution
strategy described in Section 3.3. For each machine/cache combi-
nation, we conducted multiple simulations to test the InterComm
build sequence: (1) retest-all: retests all DD-instances for each build

from scratch DDi
test ¼ DDi

all

� �
, (2) test-diff: tests builds incremen-

tally DDi
test ¼ DDi

all � DDi�1
tested

� �
but without reusing configurations

cached in prior builds, (3) c-forward: test-diff plus reusing cached
configurations across builds, but without applying any of our opti-
mization techniques, (4) c-aware: c-forward plus applying cache
aware configuration production (Section 3.2), (5) integrate-all:
c-aware plus applying the improved cache management strategy
(Section 3.3), (6) prioritized: integrate-all but with the prioritized
plan execution strategy (Section 3.4). For the different incremental
test strategies, we measured the turnaround time for each build in
the sequence, and also measured the times at which test results for
DD-instances are produced while executing the test plan for each
build.
4.4. Retest all vs. incremental test

The configuration space for InterComm grows over time be-
cause it incorporates more component versions. As a result, we ex-
pect incremental testing to be more effective for later builds. Fig. 8
depicts the turnaround times for all 20 builds. The testing is done
in two ways; by retesting all DD-instances for each build and by
testing DD-instances incrementally. The figure shows that turn-
Table 3
Numbers of DD-instances for the InterComm build sequence.

i ddi
all ddi�1

tested \ ddi
all ddi�1

untestable \ ddi
all ddi

new
of plan nodes

0 123 0 0 123 252
1 403 44 42 317 579
2 403 141 186 76 170
3 781 141 186 454 756
4 945 271 320 354 753
5 1129 287 255 587 1061
6 1229 411 498 320 561
7 2480 416 341 1723 2766
8 2921 981 1170 770 960
9 2921 1050 1488 383 758

10 4407 981 1170 2256 3243
11 4407 1450 1886 1071 1594
12 4407 1585 1940 882 915
13 5064 1585 1940 1539 2078
14 5296 2031 2514 751 1654
15 5296 2355 2622 319 706
16 5576 2193 2568 815 1754
17 6146 2586 2728 832 1414
18 6146 2877 2622 647 1684
19 7073 3301 2844 928 1704
around times are drastically reduced with incremental testing.
For example, for the last build, retest-all takes about 6 days, while
incremental testing takes less than one day.

With retest-all, the turnaround time required for a test session

increases as the number of DD-instances (DDi
all) increases. However,

for incremental testing, the test time varied depending on the
number of DD-instances covered by the generated configurations.

For example, as seen in Table 3, the sizes of DDi
test

DDi
all � DDi�1

tested

� �
for build 11 and build 15 are comparable (2957

for build 11 and 2941 for build 15), but the testing time required
for build 11 is twice as long as that for build 15. The reason is that
857 DD-instances were covered by configurations generated for
build 11, compared to 369 for build 15. The rest of the DD-instances
were classified as untestable while generating configurations, be-
cause there was no possible way to generate configurations to cov-
er those DD-instances because of build failures identified in earlier
builds.

4.5. Benefits from optimization techniques

Fig. 9 depicts the aggregated turnaround times for incremental
testing without cache reuse across builds (test-diff) and for incre-
mental testing with all optimization techniques applied (inte-
grate-all). The x-axis is the number of cache entries per client
machine and the y-axis is turnaround time. The simulations use
4–32 client machines and the number of cache entries per machine
varies from 4 to 128.
0

100

200

300

400

500

600

700

4 8 16 32 64 128

T
ur

na
ro

un
d

T
im

e
(h

ou
rs

)

Number of cache entries per machine

Turnaround Times for testing all 20 InterComm builds

M=4 (integrate-all)
M=8 (integrate-all)

M=16 (integrate-all)
M=32 (integrate-all)

M=4 (test-diff)
M=8 (test-diff)

M=16 (test-diff)
M=32 (test-diff)

Fig. 9. As the number of cache entries per machine increases, overall test cost
decreases up to 24% when optimization techniques are applied, compared to the
baseline incremental test.

test−diff
integrate−all

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

T
ur

na
ro

un
d

T
im

e
(h

ou
rs

)

Builds

Turnaround times required for testing each build (M=16,C=128)

Fig. 10. Test-diff vs. integrate-all. There are significant cost savings for some builds
from the optimization techniques (16 client machines, 128 cache entries per
machine).

test−diff
c−forward
c−aware
integrate−all

0

5

10

15

20

25

1 5 7 8 10 11 12 13

T
ur

na
ro

un
d

T
im

e
(h

ou
rs

)

Builds

Turnaround times required for testing each build (M=16,C=4)

test−diff
c−forward
c−aware
integrate−all

0

5

10

15

20

25

T
ur

na
ro

un
d

T
im

e
(h

ou
rs

)

Turnaround times required for testing each build (M=16,C=128)

1 5 7 8 10 11 12 13

454 I. Yoon et al. / Information and Software Technology 55 (2013) 445–458
As the number of cache entries increases, we observe that the
optimization techniques reduce turnaround times by up to 24%.4

That is because a larger cache enables storing more prefixes between
builds, so more configurations can be generated by extending cached
prefixes, and cached prefixes can also be more often reused to exe-
cute test plans for later builds. On the other hand, for test-diff, we
see few benefits from increased cache size. These results are consis-
tent with results reported in our previous study [31], that little ben-
efit was observed beyond a cache size of 8 for InterComm. Also, as
reported in that study, turnaround times decreased by almost half
as the number of client machines doubles.

We also observed that the benefits from the optimization tech-
niques decrease as more machines are employed. With four ma-
chines, the turnaround time decreases by 24% when the number
of cache entries per machine increases from 4 to 128, but decreases
by only 10% when 32 machines are used. There are two reasons for
this effect. First, with more machines the benefits from the in-
creased computational power offset the benefits that are obtained
via intelligent cache reuse. With 32 or more machines, parallel test
execution enables high performance even with only four cache en-
tries per machine. Second, communication cost increases for more
machines, because each machine is responsible for fewer nodes in
the test plan and machines that finish their work faster will take
work from other machines. In many cases, the best cached config-
urations for the transferred work must be sent over the network.

As we previously noted, the cost savings may vary, depending
on the component changes between two builds. In Fig. 10, we com-
pare turnaround times for each build, for test-diff and integrate-all.
We only show results for 16 machines, each with 128 cache en-
tries, but the overall results were similar for other machine/cache
size combinations.

In the figure, we see significant cost reductions for several, but
not all, builds (1, 5, 7–8, 10–13). We found that for those builds
there were either new version releases or source code updates for
InterComm, the top component in the CDG. Since we have to first
build all other components before building InterComm, we can sig-
nificantly reduce the execution time for the builds of interest by
first extending configurations that took more time to build in the
process of the configuration generation, and then reuse those con-
figurations during test plan execution. From the results, we see a
decrease of more than 50% in build time for builds 11 and 12 and
a 40% time reduction on average for the other builds of interest.

The optimization techniques are heuristics, and do not always
reduce testing time much. There were smaller cost reduction for
builds 0–4 and 14–19. There are several reasons for that. First, test
4 For our subject component, turnaround times did not decrease further with more
than 128 cache entries per machine.
plans for builds 0–4 contain fewer nodes than for other builds, and
therefore the plan execution times are dominated by the parallel
computation. Second, for builds 14–19, as seen in Table 2, there
were no changes for InterComm or for other components close to
the top node in the CDGs. Although the test plan sizes for those
builds, seen in Table 3, were comparable to those for other test
plans where we achieved larger cost savings, for these builds we
could only reuse shorter prefixes that can be built quickly from
an empty configuration, because changes are confined to compo-
nents close to the bottom nodes in the CDGs.

4.6. Comparing optimization techniques

Fig. 11 shows turnaround times for testing each build using 16
machines, with cache sizes of 4 (top) and 128 (bottom) entries per
client machine. We only show results for builds for which we saw
large benefits in Fig. 10, when both optimization techniques are
applied. For each build of interest, we show results for four cases
– test-diff, c-forward, c-aware and integrate-all.

In both graphs, we do not see large time decreases from simply
forwarding cached configurations across builds (c-forward), even
for a large cache. This implies that we must utilize cached prefixes
intelligently. For the c-forward case, whether cached prefixes are
reused or not depends on the order in which the DD-instances in
the test plans for subsequent builds are executed, and the order
in which configurations are cached and replaced.

With a smaller cache size, benefits from the optimization tech-
niques are limited because configurations cached from earlier
builds often get replaced before they are needed in later builds.
However, we still see a small cost reduction by keeping the most
valuable configurations in the cache.

In the bottom graph, with cache size 128, we observe that
cache-aware configuration generation (c-aware) plays a major role
in reducing turnaround times. A larger cache can hold more pre-
fixes for reuse, and therefore fewer cache replacements are neces-
sary, and also we can extend cached prefixes with a few additional
DD-instances. Consequently, it takes less time to execute the result-
Builds

Fig. 11. Each optimization technique contributes differently for different cache
sizes.

I. Yoon et al. / Information and Software Technology 55 (2013) 445–458 455
ing test plans. In both graphs, the new cache management policy
did not greatly decrease test plan execution time. Since our sched-
uling policy searches the test plans mostly in depth-first order, in
many cases the least recently used prefixes in the cache were also
less valuable for the new policy.

In the simulation with 16 machines, each with 128 cache en-
tries, there was no cache replacement for the entire build se-
quence. We still observe some additional cost reduction for
integrate-all compared to c-aware. We believe that the benefit is
from synergy between the scheduling policy for dispatching pre-
fixes to client machines and the new cache management policy.

4.7. Evaluating the prioritization technique

Recall that our goal for prioritization is to test new DD-instances
earlier in the test process, and we are interested in answering the
question: ‘‘To what extent can the prioritization mechanism help
to test new DD-instances earlier in the overall test process?’’. To an-
swer this question, we compared our prioritized approach with the
cost-based integrate-all strategy described in Section 4.3. Fig. 12
depicts how fast the prioritized plan execution (incprior in the
graphs) tests new DD-instances compared to the cost-based plan
execution (Inc. in the graphs). These graphs show the results for
build1 with 4, 8, 16 and 32 client machines, where each client
can cache up to eight prefixes. Note that we normalized the
x- and y-axes to allow easier comparison.

In the top-left plot, for four client machines, we see that the pri-
oritized strategy tests more new DD-instances earlier, compared to
Inc. Halfway through the entire test process, the prioritized strat-
egy is able to test almost 85% of DD-instances compared to 48%
 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t

Time

Percentage of tested new DD-instances (M=4,C=8,Build=1)

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t

Time

Percentage of tested new DD-instances (M=16,C=8,Build=1)

incprior
inc

incprior
inc

Fig. 12. Prioritized plan execution identifies results for new DD
with the cost-based strategy. The difference between the two strat-
egies decreases as we increase the number of machines, because
the cost-based strategy can benefit more from the increased paral-
lelism. As described previously, with the prioritized strategy, at
any plan execution point Rachet dispatches the freshest configura-
tion to a requesting client, and in many cases the best cached prefix
to test the configuration has to be transferred over the network be-
fore DD-instances in the configuration are tested.

We note that the plots contain several spikes, where the per-
centage of tested DD-instances jumps. This happened when Rachet
failed to build a component version and there was no alternate
way to build the component version. If the component version is
a prerequisite to build other component versions, a large number
of DD-instances can be simultaneously classified as untestable. For
example, in the plot with four machines (top left in Fig. 12), 55
DD-instances are classified as untestable at 3.8% of the plan execu-
tion time, because Rachet failed to build gf77 version 3.4.3. This
component was required to build other component versions en-
coded by the 55 DD-instances. The integrate-all approach tested
configurations that contain the DD-instance later in the plan execu-
tion. That is, the prioritized strategy is effective at quickly identify-
ing results for DD-instances that encode new component versions
critical in building other components.

We also see that the prioritized strategy tested new DD-instances
faster for build 7, 10, 13, and 16–19, even with 32 machines. This is
because the test plan sizes for the builds are large, compared to
other builds, as seen in Table 3. This implies that the prioritized exe-
cution may perform better as the plan size grows. We believe that
this will be very helpful when a test plan involves many compo-
nents and component versions that evolve over time.
 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t

Time

Percentage of tested new DD-instances (M=8,C=8,Build=1)

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t

Time

Percentage of tested new DD-instances (M=32,C=8,Build=1)

incprior
inc

incprior
inc

-instances quickly, compared to cost-based plan execution.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t

Time

Percentage of tested new DD-instances (M=4,C=8,Build=6)

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t

Time

Percentage of tested new DD-instances (M=8,C=8,Build=6)

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t

Time

Percentage of tested new DD-instances (M=16,C=8,Build=6)

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t

Time

Percentage of tested new DD-instances (M=32,C=8,Build=6)

incprior
inc

incprior
inc

incprior
inc

incprior
inc

Fig. 13. Percentage of DD-instances with prioritized plan execution for build6 (untestable DD-instances are excluded).

−5

0

5

10

15

191817161514131211109876543210

A
re

a
D

if
fe

re
nc

e

Builds

M=4
M=8
M=16
M=32

Fig. 14. APFD area difference between the prioritized and cost-based plan
execution strategies (C = 8).

456 I. Yoon et al. / Information and Software Technology 55 (2013) 445–458
To see the performance of the prioritized execution without the
effects of untestable DD-instances, in Fig. 13 we show results for
build6 that exclude untestable DD-instances. We see that with a
small number of machines the prioritized strategy is able to clas-
sify more DD-instances in DD6

test as successes or failures compared
to the integrate-all approach. For the subject system, on average,
82% of plan nodes in the initial test plans for 20 InterComm builds
represent DD-instances related to new or modified components.
Therefore, we do not see a large difference between the prioritized
and cost-based execution strategies. However, as seen in Fig. 12,
the prioritized strategy is more likely to discover build failures
early in the plan execution when the failures are related to compo-
nents required for building many other components.

To quantitatively measure the benefit from the prioritized ap-
proach, we use a metric similar to the weighted average of the per-
centage of faults detected (APFD) [23]. We compute the differences
between the computed APFDs of the two strategies, as we vary the
number of machines, where each machine can cache up to eight
prefixes. We also did not consider DD-instances classified as untest-
able. The area differences are depicted in Fig. 14. When four ma-
chines are used, we see that the prioritized strategy has a higher
APFD (up to 12% more), but the differences decrease when more
machines are employed.
4.8. Threats to validity

Like other empirical studies, our study also has internal and
external validity issues that should be considered when practitio-
ners evaluate the results presented in this paper.
The representativeness of the subject system is a threat to
external validity. We used InterComm as our subject system be-
cause it is intended to be successfully built on a wide range of con-
figurations that involve many coarse grained components with
multiple active versions. All the components can be built sepa-
rately and their build processes can take a long time. Although
we believe that our results would be valid for other systems based
on coarse grained components, the results could be further vali-
dated with other component-based systems. In addition, there
are other types of component-based systems for which we may
need to modify our methods to test component compatibilities.

I. Yoon et al. / Information and Software Technology 55 (2013) 445–458 457
For example, if components in a system are fine grained (e.g.,
ActiveX components or scientific components conforming to the
Common Component Architecture [3]), or the components do not
take long to build, the overhead to manage virtual machines in
Rachet could be too high.

The fixed set of options and their values we used to build com-
ponents in the experiments can be considered as a threat to inter-
nal validity. For example, we considered an MPI component as a
prerequisite to build InterComm, and this is true if we build Inter-
Comm with the ‘–with-mpi’ option. However, users can disable the
option if they do not need MPI support when they build Inter-
Comm. As described in [18], the component build process can be
affected by enabling or disabling certain build options, and/or by
setting different values for the options. Another internal validity is-
sue is that the CDG and Annotations for the subject system are cre-
ated by manually inspecting documents provided by component
developers. It is possible that components can have undocumented
dependencies or constraints, and that human errors occur in the
modeling process.
5. Related work

Work on regression testing and test case prioritization [9,12,28]
attempts to reduce the cost to test software systems when they are
modified, by selecting tests that were effective in prior test ses-
sions and also by producing additional test cases if needed. Rachet
has similar goals in its attempts to reduce test cost as components
in a system evolve over time. In particular, Qu et al. [21] applied
regression testing to user configurable systems and showed that
a combinatorial interaction testing technique can be used to sam-
ple configurations. Robinson et al. [22] presented the idea of test-
ing user configurable systems incrementally, by identifying
configurable elements affected by changes in a user configuration
and by running test cases relevant to the changes. Although their
basic idea is similar to our work, those approaches are applied only
to a flat configuration space, not for hierarchically structured com-
ponent-based systems [21], or they only test modified configura-
tions after a user has changed a deployed configuration [22],
instead of proactively testing the configuration space before releas-
ing the system.

ETICS [17], CruiseControl [1] and Maven [16] are systems that
support continuous integration and testing of software systems
in diverse configurations, via a uniform build interface. Although
these systems can be used to test the component build process,
their process is limited to a set of predetermined configurations.
Rachet instead generates and tests configurations dynamically,
considering available component versions and dependencies be-
tween components. Virtual lab manager [26,27], developed by
VMware, can also be used to test the build process for a component
in various configurations. However, configurations must be manu-
ally customized by building each configuration in a virtual
machine. Our approach can test compatibilities between compo-
nents without any intervention from developers after they model
the configuration space for their components.

Duarte et al. [7,8] describe a technique to improve confidence in
the correctness of applications designed to be executed in hetero-
geneous environments. To test the correct build and execution of a
software system in diverse field configurations, they distribute the
software and its unit test suites onto multiple heterogeneous ma-
chines accessible in a network of machines. The distributed soft-
ware is built on the machines and test suites are run to test the
behavior of the software. Although their work pursues a similar
goal to ours, they do not analyze the configuration space of the
evolving system by intelligently sampling configurations to effec-
tively identify component compatibilities, but instead try to deter-
mine whether the software under test can be built successfully in a
limited set of configurations explicitly selected by the testers.

Syrjänen [25], and Mancinelli et al. [5,15] studied methods to
identify inconsistencies (e.g., missing packages or version conflicts)
between components contained in GNU/Linux distributions. They
used rule-based representations to describe dependencies and con-
straints between components in the distributions, and formulate
the component installability as a satisfiability (SAT) problem. Their
work can be used by distribution editors to check the installability
of components in Linux distributions, based on a set of dependen-
cies and constraints between components. Our approach is rather
to help component developers to determine whether their compo-
nents can be built in a wide range of possible configurations by
testing component compatibilities for all components and their
versions required to build a given component.

6. Conclusions and future work

In this paper we have presented an approach to support incre-
mental and prioritized compatibility testing for component-based
systems that contain multiple components that can evolve indepen-
dently over time. As part of the approach, we have defined test obli-
gations for testing system builds by capturing the difference across
builds and described algorithms for sampling and testing configura-
tions that test only the difference, while reusing test results ob-
tained from prior builds. We also presented methods that make
proactive use of configurations cached in prior builds to further re-
duce the time required for compatibility testing, and a method that
prioritizes the configuration test order, by testing configurations
starting from the one that returns the largest number of new com-
patibility results when testing time and resource are limited.

The results of our empirical study showed large performance
improvements from incremental testing. In addition, we showed
that our cache-aware optimization methods can often reduce test
time significantly, and that compatibility results can be discovered
rapidly with the prioritized plan execution method.

In the future, we plan to investigate methods to automatically
extract component dependencies directly from source code and
build instructions, thereby enabling developers to more easily cre-
ate configuration space models that can be used as input to the
Rachet test process. We are also working to release the Rachet tool
to the wider community and are beginning to investigate
techniques for performing compatibility testing as part of both
functional and performance testing.

Acknowledgments

This research was supported by NSF Grants #CCF-0811284,
#ATM-0120950, #CNS-0855055, #CNS-1205501, and #CNS-
0615072, DOE Grant #DEFC0207ER25812, and NASA Grant
#NNG06GE75G.

References

[1] CruiseControl: an extensible framework to support continuous integration
process. <http://cruisecontrol.sourceforge.net>.

[2] Mercurial: a distributed source control management tool. <http://
mercurial.selenic.com>.

[3] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S.R. Kohn, L.C. McInnes, S.R.
Parker, B.A. Smolinski, Toward a common component architecture for high-
performance scientific computing, in: Proceedings of the Eighth IEEE
International Symposium on High Performance Distributed Computing, 1999,
pp. 115–124.

[4] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, second ed.,
Addison-Wesley, 2003.

[5] J. Boender, R.D. Cosmo, J. Vouillon, B. Durak, F. Mancinelli, Improving the
quality of GNU/Linux distributions, in: Proceedings of the 32nd Annual IEEE
International Computer Software and Applications Conference, 2008, pp.
1240–1246.

http://cruisecontrol.sourceforge.net
http://mercurial.selenic.com
http://mercurial.selenic.com

458 I. Yoon et al. / Information and Software Technology 55 (2013) 445–458
[6] P. Clements, L. Northrop, Software Product Lines: Practices and Patterns,
Addison-Wesley, 2001.

[7] A. Duarte, G. Wagner, F. Brasileiro, W. Cirne, Multi-environment software
testing on the Grid, in: Proceedings of the 2006 Workshop on Parallel and
Distributed Systems: Testing and Debugging, 2006, pp. 61–68.

[8] A.N. Duarte, W. Cirne, F. Brasileiro, P. Machado, GridUnit: software testing on
the grid, in: Proceedings of the 28th International Conference on Software
Engineering, May 2006, pp. 779–782.

[9] S. Elbaum, A. Malishevsky, G. Rothermel, Test case prioritization: a family of
empirical studies, IEEE Transactions on Software Engineering 28 (2) (2002)
159–182.

[10] W. Emmerich, An introduction to OMG/CORBA, in: Proceedings of the 19th
International Conference on Software Engineering, 1997, pp. 641–642.

[11] T. Erl, Service-Oriented Architecture (SOA): Concepts, Technology, and Design,
Prentice Hall, 2005.

[12] T.L. Graves, M.J. Harrold, J.-M. Kim, A. Porter, G. Rothermel, An empirical study
of regression test selection techniques, ACM Transactions on Software
Engineering and Methodology 10 (2) (2001) 184–208.

[13] M.N. Huhns, M.P. Singh, Service-oriented computing: key concepts and
principles, IEEE Internet Computing 9 (1) (2005) 75–81.

[14] J.-Y. Lee, A. Sussman, High-performance communication between parallel
programs, in: Proceedings of 2005 Joint Workshop on High-Performance Grid
Computing and High-Level Parallel Programming Models, 2005, p. 177b.

[15] F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon, B. Durak, X. Leroy, R. Treinen,
Managing the complexity of large free and open source package–based
software distributions, in: Proceedings of the 21th IEEE/ACM International
Conference On Automated Software Engineering, 2006, pp. 199–208.

[16] V. Massol, T.M. O’Brien, Maven: A Developer’s Notebook, O’Relilly Media, 2005.
[17] A.D. Meglio, M.-E. Bégin, P. Couvares, E. Ronchieri, E. Takacs, ETICS: the

international software engineering service for the grid, Journal of Physics:
Conference Series 119 (4) (2008).

[18] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D.C. Schmidt, B. Natarajan, Skoll:
distributed continuous quality assurance, in: Proceedings of the 26th
International Conference on Software Engineering, 2004, pp. 459–468.
[19] Object Management Group, Inc., The common object request broker
architecture 3.0 specification, 2002.

[20] B. O’Sullivan, Mercurial: The Definitive Guide, O’Reilly Media, first ed., 2009.
[21] X. Qu, M.B. Cohen, G. Rothermel, Configuration-aware regression testing: an

empirical study of sampling and prioritization, in: Proceedings of the
International Symposium on Software Testing and Analysis, 2008, pp. 75–86.

[22] B. Robinson, L. White, Testing of user configurable software systems using
firewalls, in: Proceedings of the 19th International Symposium on Software
Reliability Engineering, 2008, pp. 177–186.

[23] G. Rothermel, R. Untch, C. Chu, M. Harrold, Prioritizing test cases for regression
testing, IEEE Transactions on Software Engineering 27 (10) (2001) 929–948.

[24] A. Sussman, Building complex coupled physical simulations on the grid with
InterComm, Engineering with Computers 22 (3–4) (2006) 311–323.

[25] T. Syrjänen, A rule-based formal model for software configuration. Technical
Report A55, Helsinki University of Technology, Laboratory for Theoretical
Computer Science, December 1999, pp. 1–74.

[26] VMware, Inc., Accelerating test management through self-service provisioning
– whitepaper, 2006, pp. 1–5.

[27] VMware, Inc., Virtual lab automation – whitepaper, 2006, pp. 1–11.
[28] W.E. Wong, J.R. Horgan, S. London, H.A. Bellcore, A study of effective regression

testing in practice, in: Proceedings of the 8th International Symposium on
Software Reliability Engineering, 1997, pp. 230–238.

[29] I. Yoon, A. Sussman, A. Memon, A. Porter, Towards incremental component
compatibility testing, in: Proceedings of the 14th International ACM SIGSOFT
Symposium on Component Based Software Engineering, 2011, pp. 119–128.

[30] I.-C. Yoon, A. Sussman, A. Memon, A. Porter, Direct-dependency-based software
compatibility testing, in: Proceedings of the 22th IEEE/ACM International
Conference On Automated Software Engineering, 2007, pp. 409–412.

[31] I.-C. Yoon, A. Sussman, A. Memon, A. Porter, Effective and scalable software
compatibility testing, in: Proceedings of the International Symposium on
Software Testing and Analysis, 2008, pp. 63–74.

[32] I.-C. Yoon, A. Sussman, A. Memon, A. Porter, Prioritizing component
compatibility tests via user preferences, in: Proceedings of the 25th IEEE
International Conference on Software Maintenance, 2009, pp. 29–38.

	Testing component compatibility in evolving configurations
	1 Introduction
	2 Rachet overview
	3 Incremental testing
	3.1 Computing incremental test obligations
	3.2 Cache-aware configuration generation
	3.3 Managing cached configurations
	3.4 Prioritizing configuration test order

	4 Evaluation
	4.1 Subject component
	4.2 Modeling InterComm
	4.3 Study setup
	4.4 Retest all vs. incremental test
	4.5 Benefits from optimization techniques
	4.6 Comparing optimization techniques
	4.7 Evaluating the prioritization technique
	4.8 Threats to validity

	5 Related work
	6 Conclusions and future work
	Acknowledgments
	References

