
The Role of Empirical Study in
Software Engineering

Victor R. Basili

Professor, University of Maryland
and

Director, Fraunhofer Center - Maryland

© 2004 Experimental Software Engineering Group, University of Maryland

2

Outline

• Empirical Studies
– Motivation
– Specific Methods
– Example: SEL

• Applications
– CeBASE
– NASA High Dependability Computing Project
– The Future Combat Systems Project
– DoE High Productivity Computing System

3

Motivation for Empirical Software Engineering

Understanding a discipline involves building models,
e.g., application domain, problem solving processes

And checking our understanding is correct,
e.g., testing our models, experimenting in the real world

Analyzing the results involves learning, the encapsulation of
knowledge and the ability to change or refine our models over
time

The understanding of a discipline evolves over time

This is the empirical paradigm that has been used in many
fields, e.g., physics, medicine, manufacturing

Like other disciplines, software engineering requires an empirical
paradigm

4

Motivation for Empirical Software Engineering

Empirical software engineering requires the scientific use of
quantitative and qualitative data to understand and improve the
software product, software development process and software
management

It requires real world laboratories

Research needs laboratories to observe & manipulate the variables
- they only exist where developers build software systems

Development needs to understand how to build systems better
- research can provide models to help

Research and Development have a symbiotic relationship
requires a working relationship between industry and academe

5

Motivation for Empirical Software Engineering

For example, a software organization needs to ask:
What is the right combination of technical and managerial

solutions?
What are the right set of process for that business?
How are they tailored?
How do they learn from their successes and failures?
How do the demonstrate sustained, measurable improvement?

More specifically:
When are peer reviews more effective than functional testing?
When is an agile method appropriate?
When do I buy rather than make my software product elements?

6

Examples of Useful Empirical Results

“Under specified conditions, …”
Technique Selection Guidance
• Peer reviews are more effective than functional testing for faults of

omission and incorrect specification (UMD, USC)
• Functional testing is more effective than reviews for faults

concerning numerical approximations and control flow (UMD, USC)

Technique Definition Guidance
• For a reviewer with an average experience level, a procedural

approach to defect detection is more effective than a less procedural
one. (UMD)

• Procedural inspections, based upon specific goals, will find defects
related to those goals, so inspections can be customized. (UMD)

• Readers of a software artifact are more effective in uncovering
defects when each uses a different and specific focus. (UMD)

7

Basic Concepts
for Empirical Software Engineering

This process of model building, experimentation and learning
requires the development, tailoring and evolution of methods that
support evolutionary learning,

closed loop processes,
well established measurement processes and
the opportunity to build software core competencies

As well as processes that support the development of software that
is relevant to the needs of the organization
can be predicted and estimated effectively
satisfies all the stakeholders
does not contain contradictory requirements

8

Basic Concepts
for Empirical Software Engineering

The following concepts have been applied in a number of organizations

Quality Improvement Paradigm (QIP)

An evolutionary learning paradigm tailored for the software business

Goal/Question/Metric Paradigm (GQM)

An approach for establishing project and corporate goals and
a mechanism for measuring against those goals

Experience Factory (EF)

An organizational approach for building software competencies and
supplying them to projects

9

Quality Improvement Paradigm

Characterize
& understand

Set
goals

Choose
processes,
methods,
techniques,
and tools

Package &
store experience

Analyze
results

Execute
process

Provide process
with feedback

Analyze
results

CorporateCorporate
learninglearning

ProjectProject
learninglearning

10

The Experience Factory Organization

Project Organization Experience Factory

1. Characterize
2. Set Goals
3. Choose Process

Execution
plans

4. Execute Process

Project
Support

5. Analyze

products,
lessons
learned,
models

6. Package

Generalize

Tailor

Formalize

Disseminate

Experience
Base

environment
characteristics

tailorable
knowledge,
consulting

project
analysis,
process

modification

data,
lessons
learned

11

The Experience Factory Organization
A Different Paradigm

Project Organization Experience Factory
Problem Solving Experience Packaging

Decomposition of a problem Unification of different solutions
into simpler ones and re-definition of the problem

Instantiation Generalization, Formalization

Design/Implementation process Analysis/Synthesis process

Validation and Verification Experimentation

Product Delivery within Experience / Recommendations
Schedule and Cost Delivery to Project

12

SEL: An Example Experience Factory Structure

DEVELOPERS
(SOURCE OF EXPERIENCE) (PACKAGE EXPERIENCE FOR REUSE)

DATA BASE SUPPORT
(MAINTAIN/QA EXPERIENCE INFORMATION)

Development
measures for each

project

Refinements to
development

process

STAFF 275-300 developers

TYPICAL PROJECT
SIZE 100-300 KSLOC

ACTIVE PROJECTS 6-10 (at any given time)

PROJECT STAFF SIZE 5-25 people

TOTAL PROJECTS
(1976-1994) 120

STAFF 10-15 Analysts

FUNCTION • Set goals/questions/metrics
- Design studies/experiments

• Analysis/Research

• Refine software process
- Produce reports/findings

PRODUCTS
(1976-1994) 300 reports/documents

SEL DATA BASE

FORMS LIBRARY

REPORTS LIBRARY

160 MB

220,000

• SEL reports
• Project documents
• Reference papers

STAFF 3-6 support staff

FUNCTION • Process forms/data

• QA all data

• Record/archive data

• Maintain SEL data base

• Operate SEL library

NASA + CSC + U of MDNASA + CSC

NASA + CSC

PO PROCESS ANALYSTS
EF

13

Using Baselines to Show Improvement
1987 vs. 1991

Error Rates (development)

0

2

4

6

8

10

Early Baseline
8 similar systems

Current
7 similar systems

Er
ro

rs
/K

LO
C

 (d
ev

el
op

ed
)

Average ~4.5

Average ~1Low 1.7

Low 0.2

High 2.4

High 8.9

0

200

400

600

800
Cost (staff months)

Early Baseline
8 similar systems

supporting 4 projects

Current
7 similar systems

supporting 4 projects

St
af

f m
on

th
s

Average ~490

Average ~210

Low 357

High 755

Low 98

High 277

Reuse

Early Baseline
8 similar systems

Current
8 similar systems

%
 R

eu
se

FORTRAN
(3 systems)

Ada
(5 systems)

0

20

40

60

80

100

Average
~79%61

90

IE
EE

39

Average
~20%

Early Baseline = 1985-1989
Current = 1990-1993

Decreased 75% Reduced 55%

Increased 300%

14

Using Baselines to Show Improvement
1987 vs. 1991 vs. 1995

Continuous Improvement in the SEL

Decreased Development Defect rates by
75% (87 - 91) 37% (91 - 95)

Reduced Cost by
55% (87 - 91) 42% (91 - 95)

Improved Reuse by
300% (87 - 91) 8% (91 - 95)

Increased Functionality five-fold (76 - 92)

CSC officially assessed as CMM level 5 and ISO certified (1998),
starting with SEL organizational elements and activities

Fraunhofer Center for Experimental Software Engineering - 1998

CeBASE Center for Empirically-based Software Engineering - 2000

15

Empirical Software Engineering Needs

Interact with various industrial, government and academic organizations
to open up the domain for learning

Partner with other organizations to expand the potential competencies

Observe and gather as much information as possible

Analyze and synthesize what has been learned into sets of best practices
recognizing what has been effective and under what circumstances
allowing for tailoring based up context variables

Package results for use and feed back what has been learned to improve
the practices

16

Example: CeBASE
Center for Empirically Based Software Engineering

The CeBASE project was created to support the symbiotic relationship
between research and development, academia and industry

Virtual Research Center
Created by the NSF Information Technology Research Program
Co-Directors: Victor Basili (UMD), Barry Boehm (USC)
Initial technology focus: Defect reduction techniques, COTS based
development, Agile Methods

CeBASE Framework
Experience Factory, Goal/Question/Metric Approach, Spiral Model

extensions, MBASE, WinWin Negotiations, Electronic Process
Guide, eWorkshop collaboration, COCOMO cost family, EMS
Experience Base, VQI (Virtual Query Interface)

17

CeBASE
Center for Empirically Based Software Engineering

CeBASE Project Goal: Enable a decision framework and
experience base that forms a basis and an infrastructure for
research and education in empirical methods and software
engineering

CeBASE Research Goal: Create and evolve an empirical
research engine for evaluating and choosing among software
development technologies

18

CeBASE Approach

Empirical Data

Predictive Models

(Quantitative
Guidance)

General Heuristics

(Qualitative
Guidance)

Observation and
Evaluation Studies

of Development
Technologies and

Techniques

E.g. COCOTS excerpt:

Cost of COTS tailoring = f(# parameters
initialized, complexity of script writing,
security/access requirements, …)

E.g. Defect Reduction Heuristic:

For faults of omission and incorrect
specification, peer reviews are more
effective than functional testing.

19

CeBASE Basic Research Activities

Define and improve methods to

• Formulate evolving hypotheses regarding software development
decisions

• Collect empirical data and experiences

• Record influencing variables

• Build models (Lessons learned, heuristics/patterns, decision
support frameworks, quantitative models and tools)

• Integrate models into a framework

• Testing hypotheses by application

20

CeBASE
Three-Tiered Empirical Research Strategy

Technology maturity Primary activities Evolving results

Increasing success rates
in developing agile,
dependable, scalable IP
applications.

Practitioner tailoring, usage
of, and feedback on maturing
ePackage.

Practical
applications

(Government,
industry, academia)

Basic
Research

Applied
Research

(e.g. NASA HDCP)

Exploratory use of evolving
ePackage. Experimentation
and analysis in selected areas.

Explore, understand, evolve
nature and structure of
ePackage.

More mature, powerful
ePackage. Faster
technology maturation
and transition.

Evolving ePackage
understanding and
capabilities.

(ePackage = Empirical Research Engine, eBase, empirical decision framework)

21

Applied Research
NASA High Dependability Computing Program

Project Goal: Increase the ability of NASA to engineer highly
dependable software systems via the development of new
techniques and technologies

Research Goal: Develop high dependability technologies and
assess their effectiveness under varying conditions and transfer
them into practice

Partners: NASA, CMU, MIT, UMD, USC, U. Washington,
Fraunhofer-MD

22

HDCP Research Questions

• System User
– How can the dependability needs be understood and modeled?

Elicit and operationalize stakeholders’ dependability needs

• Technology Developer
– What does a technology do? Can it be empirically demonstrated?

Formalize technology claims, seed faults in test beds, apply
technologies, evaluate claim

• System Developer
– How well does a set of interventions cover the system developer’s

“problem space”?
Characterize the fault classes for the organization and domain, and
identify overlapping contributions

• System Developer
– What set of interventions should be applied to achieve the desired

dependability?
Matching Failures to Faults

23

HDCP System User Issues

How do I elicit dependability requirements?
How do I express them in a consistent, compatible way?

• How do I identify the non-functional requirements in a
consistent way?
– Across multiple stakeholders
– In a common terminology (Failure focused)
– Able to be integrated

• How can I take advantage of previous knowledge about
failures relative to system functions, models and measures,
reactions to failures?
– Build an experience base

• How do I identify incompatibilities in my non-functional
requirements for this particular project?

24

HDCP System Developer Issues

How can I understand the stakeholders dependability needs?
How can I apply the available techniques to deliver the

required dependability?

• How do I identify what dependability properties are desired?
– Stakeholders needs, dependability goals and models,

project evaluation criteria
• How do I evaluate the effectiveness of various technologies

for my project?
– What is he context for the empirical studies?

• How do you identify the appropriate combinations of
technologies for the project needs?
– Technologies available, characterization, combinations of

technologies to achieve goals
• How do you tailor the technologies for the project?

25

HDCP Technology Researcher Issues

How well does my technology work?
Where can it be improved?

• How does one articulate the goals of a technology?
– Formulating measurable hypotheses

• How does one empirically demonstrate its goals?
– Performing empirical studies
– Validate expectations/hypotheses

• What are the requirements for a testbed?
– Fault seeding

• How do you provide feedback for improving the technology?

26

HDCP : Example Outcome

A process for inspections of Object-Oriented designs was developed using
multiple iterations through this method.
Early iterations concentrated on feasibility:

- effort required, results due to the process in the context of offline, toy
systems.
Is further effort justified?

Mid-process iterations concentrated on usability:
- usability problems, results due to individual steps in the context of
small systems in actual development.
What is the best ordering and streamlining of process steps to
match user expectations?

Most recent iterations concentrated on effectiveness:
- effectiveness compared to other inspection techniques previously
used by developers in the context of real systems under development.
Does the new techniques represent a usable improvement to
practice?

27

HDCP
Using testbeds to transfer technology

• Define Testbeds
– Projects, operational scenarios, detailed evaluation criteria

representative of NASA needs
– stress the technology and demonstrate its context of

effectiveness
– help the researcher identify the strengths, bounds, and limits

of the particular technology at different levels
– provide insights into the models of dependability

• Conduct empirical evaluations of emerging HDCP technology
– Establish evaluation support capabilities: instrumentation,

seeded defect base; experimentation guidelines

28

HDCP
Increasing the relevance of the testbeds

View each technology as passing through a series of milestones

• M1. Internal: Initial set of examples that the technology
researcher has already developed in the research process

• M2. Packaged domain-specific: Set of toy examples with high
dependability needs, packaged for use by the technologists, e.g.
TSAFE, SCRover

• M3. NASA off-line: Part or all of a system previously developed
for NASA, e.g., CTAS, EOSDIS

• M4. Live examples: Part or all of a system currently under
development, e.g., MSL

29

Applied Research
DoE High Productivity Computing Systems

Project Goal: Improve the buyers ability to select the high end
computer for the problems to be solved based upon
productivity, where productivity means

Time to Solution = Development Time + Execution Time

Research Goal: Develop theories, hypotheses, and guidelines
that allow us to characterize, evaluate, predict and improve
how an HPC environment (hardware, software, human)
affects the development of high end computing codes.

Partners: MIT Lincoln Labs, MIT, UCSD, UCSB, UMD, USC,
FC-MD

30

HPCS Example Questions

• How does an HPC environment (hardware, software, human)
affect the development of an HPC program?

– What is the cost and benefit of applying a particular HPC
technology?

– What are the relationships among the technology, the work
flows, development cost and the performance?

– What context variables affect the development cost and
effectiveness of the technology in achieving its product goals?

– Can we build predictive models of the above relationships?

– What tradeoffs are possible?

– …

31

HPCS Example Hypotheses

• Effort to parallelize serial code is greater than effort to develop
serial code

• Novices can achieve speedup

• The variation in execution time of MPI codes will be greater than
the variation in execution time of OpenMP codes

• The variation in the speedup of MPI codes will increase with the
number of processors

• …

32

HPCS Research Activities

Empirical Data
Development Time

Experiments –
Novices and Experts

Predictive Models

(Quantitative
Guidance)

General Heuristics

(Qualitative
Guidance)

E.g. Tradeoff between effort and performance:

MPI will increase the development effort by y%
and increase the performance z% over OpenMP

E.g. Scalability:

If you need high scalability, choose MPI
over OpenMP

33

HPCS Testbeds

We are experimenting with a series of testbeds ranging in size from:

– Classroom assignments (Array Compaction, the Game of Life,
Parallel Sorting, LU Decomposition, …

to
– Compact Applications (Combinations of Kernels, e.g.,

Embarrassingly Parallel, Coherence, Broadcast, Nearest
Neighbor, Reduction)

to
– Full scientific applications (nuclear simulation, climate

modeling, protein folding, ….)

34

Technology Transfer
Future Combat Systems

Project Goal: Support FCS Program Management Office in the
development of the Future Combat Systems (FCS),
focusing on the complex system of systems (software)
development risk, e.g., acquisition, architecture, … and build
lessons learned for future iterations of FCS and future CSoS.

Research Goal: Build a risk experience Base and a Complex
System of Systems Lessons Learned Experience Base.

Partners: UMD, USC, FC-MD, SEI, Sandia, LSI: Boeing, SAIC

35

FCS Technology Transfer

Assumption: the technologies are mature enough and have been
shown successful in other projects or organizations

Example technologies being transferred:
GQM to help define goals of various levels of project

management for complex systems of systems
Spiral life cycle model to the development of the system
Experience base tracking problems associated with a

complex system of systems to learn from early spirals of
development and provide an experience base for future systems

Activities: Observe, interview, tailor, train, support, learn, …

Feedback: Take what has been learned and feed it back to identify
research needs, immaturity in technologies, the importance of
context variables, …

36

CeBASE
Three-Tiered Empirical Research Strategy

Evolving resultsTechnology maturity Primary activities

Increasing success rates
in developing agile,
dependable, scalable IP
applications.

Practical
applications

DoD FCS

Basic
Research

Applied
Research

NASA HDCP

DoE HPCS .

NSF Research

More mature, powerful
ePackage. Faster
technology maturation
and transition.

Evolving ePackage
understanding and
capabilities.

37

Conclusion

• This talk is about
– The role of empirical study in software engineering
– The synergistic relationship between research, applied

research, and practice

• Software developers need to know what works and under what
circumstances

• Technology developers need feedback on how well their
technology works and under what conditions

• We need
– to continue to collect empirical evidence
– analyze and synthesize the data into models and theories
– Collaborate to evolve software engineering into an

engineering discipline

	The Role of Empirical Study in Software Engineering
	Outline
	Motivation for Empirical Software Engineering
	Motivation for Empirical Software Engineering
	Motivation for Empirical Software Engineering
	Examples of Useful Empirical Results
	Basic Conceptsfor Empirical Software Engineering
	Basic Conceptsfor Empirical Software Engineering
	The Experience Factory Organization A Different Paradigm
	SEL: An Example Experience Factory Structure
	Using Baselines to Show Improvement1987 vs. 1991
	Empirical Software Engineering Needs
	Example: CeBASE Center for Empirically Based Software Engineering
	CeBASE Center for Empirically Based Software Engineering
	CeBASE Approach
	CeBASE Basic Research Activities
	CeBASE Three-Tiered Empirical Research Strategy
	Applied ResearchNASA High Dependability Computing Program
	HDCP Research Questions
	HDCP System User IssuesHow do I elicit dependability requirements?How do I express them in a consistent, compatible way?
	HDCP System Developer IssuesHow can I understand the stakeholders dependability needs? How can I apply the available techni
	HDCP Technology Researcher IssuesHow well does my technology work? Where can it be improved?
	HDCP : Example Outcome
	HDCPUsing testbeds to transfer technology
	HDCPIncreasing the relevance of the testbeds
	Applied Research DoE High Productivity Computing Systems
	HPCS Example Questions
	HPCS Example Hypotheses
	HPCS Research Activities
	HPCS Testbeds
	Technology TransferFuture Combat Systems
	FCS Technology Transfer
	CeBASE Three-Tiered Empirical Research Strategy
	Conclusion

