The Experimental Paradigm in Software

Victor R. Basili
Institute for Advanced Computer Studies
and
Department of Computer Science
University of Maryland

What is software and software engineering?

Software can be viewed as a part of a system solution that can be enc
as a set of instructions; it includes all the associated documentation n
transform and use that solution. Software engineering can be defined
development and evolution of software systems based upon a set of
processes.

We will concentrate on three primary characteristics of software and s
inherent complexity, the lack of well defined primitives or componen
fact that software is developed, not produced. This combination mak
different than anything we have dealt with before.

One important characteristic about software is that it can be complex;
to understand. There are a variety of reasons for this. For example, w
part of the solution, rather than hardware, because it is the part of the
or it is something new, or there is a requirement for change and evolu
structure. In all of these cases complexity is introduced, the developn
estimation is difficult, and there is a lack of understanding of implica

However, the primary reason software is complex is probably the lac
tractable models of the product, process and any other forms of know
understand software solutions as well as the the interaction of these 1
visible, i.e., we do not have satisfactory models of the various aspec
functionality, the quality, the structure. In fact we do not even have in
This leaves us with a poor understanding of processes, requirements

Lastly, software is created via a development process, not a manufact
means software is engineered. We have learned a great deal about quz
few decades but we have not learned much about quality developmen

So given the nature of this discipline, how does one begin to analyze
process.

What are the available research paradigms?

There is a fair amount of research being conducted in software engin
building technologies, methods, tools, etc. However, unlike in other
very little research in the development of models of the various comp

' This paper appears in Experimental Software Engineering Issues: Critical 4
Proceedings of Dagstuhl-Workshop, edited by H. Dieter Rombach, Victor R. Bas

1992, published by Springer-Verlag, #706, Lecture Notes in Computer Software,

1

Engineering'

oded to execute on a computer
ccessary to understand,

as the disciplined

principles, technologies, and

oftware engineering; its
ts of the discipline, and the
es software something quite

complex to build and complex

ve often choose software for a
solution we least understand,
tion of the function or

nent becomes error prone,

tions of change.

k of models, especially
vledge required to build or
nodels. Software is not very
ts of the software, e.g., the
tuitive models in many cases.
, and products.

furing process. This really
1lity manufacturing in the past
t/engineering.

the software product and

eering, i.e., people are
disciplines, there has been
onents of the discipline. The

Assessment and Future Directives,
ili , and Richard Selby,, September
August 1993.

modeling research that does exist has centered on the software product, specifically mathematical
models of the program function.

We have not sufficiently emphasized models for other components, g.g., processes, resources,
defects, etc., the logical and physical integration of these models, the evaluation and analysis of
the models via experimentation, the refinement and tailoring of the models to an application
environment, and the access and use of these models in an appropriate fashion, on various types of
software projects from an engineering point of view. The research is mostly bottom—up, done in
isolation. It is the packaging of a technology rather than the solving of a problem or the
understanding of a primitive of the discipline.

We need research that helps establish a scientific and engineering basis for software engineering.

To this end, the research methodologies required involve the need to build, analyze and evaluate
models of the software processes and products as well as various aspects of the environment in
which the software is being built, e.g the people, the organization, etc. It is especially important
to study the interactions of these models. The goal is to develop the conceptual scientific
foundations of software engineering upon which future researchers ¢an build. This is often a
process of discovering and validating small but important concepts that can be applied in many
different ways and that can be used to build more complex and advanced ideas rather than merely
providing a tool or methodology without experimental validation of its underlying assumptions or
careful analysis and verification of its properties.

There are several example methodologies used in other disciplines [7]. These consist of various
forms of experimental or analytic paradigms. The experimental paradigms require an experimental
design, observation, data collection and validation on the process or product being studied. We will
discuss three experimental models; although they are similar, the tend to emphasize different
things.

1) The scientific method: observe the world, propose a model or a theory of behavior, measure and
analyze, validate hypotheses of the model or theory, and if possible repeat the procedure.

In the area of software engineering this inductive paradigm might best be used when trying to
understand the software process, product, people, environment. It attempts to extract from the
world some form of model which tries to explain the underlying phenomena, and evaluate whether
the model is truly representative of the phenomenon being observed. It is an approach to model
building. An example might be an attempt to understand the way so
an organization to see if their process model can be abstracted or a tool can be built to automate the
process. Two variations of this inductive approach are:

1.1) The engineering method: observe existing solutions, propose better solutions, build/develop,
measure and analyze, and repeat the process until no more improvements appear poss1ble

This version of the paradigm is an evolutionary improvement oriented approach which assumes
one already has models of the software process, product, people and environment and modifies the
model or aspects of the model in order to improve the thing being studied. An example might be
the study of improvements to methods being used in the development of software or the
demonstration that some tool performs better than its predecessor relative to certain characteristics.
Note that a crucial part of this method is the need for careful analysis and measurement.

1.2) The empirical method: propose a model, develop statististical/qualitative methods, apply to
case studies, measure and analyze, validate the model and repeat the procedure.

2

This version of the paradigm is a revolutionary improvement oriented approach which begins by
proposing a new model, not necessarily based upon an existing model, and attempts to study the
effects of the process or product suggested by the new model. An example might be the proposal
of a new method or tool used to perform software development in a new way. Again, measurement
and analysis is crucial to the success of this method. Proposing a model or building a tool is not
enough. There must be some way of validating that the model or tool is an advance over current
models or tools.

It is important to note that experimentation must be guided; there must be a rational for collecting
data. Experiments must be designed to acquire information useful for the building of a suitable
description (or model) of the systems under study. Experimentation alone is of no value if there is
no underlying framework where experimental results can be interpreted. Other issues involved in
these inductive, experimental methods include the types of experimental design appropriate for
different environments, whether the experiment is exploratory or confirmatory, the validation of the
data, the cost of the experiment, the problems of reproducibility, etc.

On the other hand, an analytic paradigm is:

2) The mathematical method: propose a formal theory or set of axioms, develop a theory, derive
results and if possible compare with empirical observations.

This is a deductive analytical model which does not require an experimental design in the statistical
sense but provides an analytic framework for developing models and understanding their
boundaries based upon manipulation of the model itself. For example the treatment of programs as
mathematical objects and their analysis of the mathematical object or its relationship to the program
satisfies the paradigm.

Unfortunately, many projects and proposals that claim to be research are simply developments.
These paradigms serve as a basis for distinguishing research activities from development activities.
If one of these paradigms is not being used in some form, the study is most likely not a research
project. For example, building a system or tool alone is development and not research. Research
involves gaining understanding about how and why a certain type of tool might be useful and by
validating that a tool has certain properties or certain effects by carefully designing an experiment to
measure the properties or to compare it with alternatives. The scientific method can be used to
understand the effects of a particular tool usage in some environment and to validate hypotheses
about how software development can best be accomplished.

How do you do experiments?

There are several different approaches to experimenting in the software engineering domain. One
set of approaches can be characterized by the number of teams replicating each project and the
number of different projects analyzed, as discussed in [6]. It consists of four different
experimental treatments, as shown in Table 1: blocked subject-project, replicated project, multi-
project variation, and single project case study.

The approaches vary in cost, level of confidence in the results, insights gained, and the balance
between quantitative and qualitative research methods. Clearly, an analysis of several replicated
projects costs more money but provides a better basis for quantitative analysis and can generate
stronger statistical confidence in the conclusions. Unfortunately, since a blocked subject-project
experiment is so expensive, the projects studied tend to be small. To increase the size of the
projects, keep the costs reasonable, and allow us to better simulate the effects of the treatment

3

variables in a realistic environment, we can study very large single project case studies and even
multi-project studies if the right environment can be found. These larger projects tend to involve
more qualitative analysis along with some more primitive quantitative analysis.

Because of the desire for statistical confidence in the results, the problems with scale up, and the
need to test in a realistic environment, one approach to experimentation is to choose one of the
treatments from below the line to demonstrate feasibility (statistical significance) in the small, and
then to try one of the treatments above the line to analyze whether the results scale up in a realistic
environment - a major problem in software engineering research.

Scopes of Evaluation

| #Projects
l
| One | More than one
l
of | One | Single Project | Multi-Project
| | (Case Study) | Variation
Teams |
l
per | More than | Replicated | Blocked
Project | one | Project | Subject-Project

Table 1: ANALYSIS CLASSIFICATION: SCOPES OF EVALUATION

Given these research paradigms and experimental approaches, how do we apply them to the study
of software and software engineering in practice? That is, software as an artifact does not exist in
nature, it exists only where it is created. Therefore, it must be studied where it exists - in industrial
and government environments. Under these circumstances, we need to provide proper motivation
for organizations to allow researchers to “interfere” with their software development.

What is the relationship between software research and development in practice?

From a research perspective, we need to establish a scientific and engineering basis for software
engineering. That is, we need industry based laboratories that allow us to understand the various
processes, products and other experiences and build descriptive models understand the problems
associated with building software, develop solutions focused on the problems, experiment with
them and analyze and evaluate their effects, refine and tailor these solutions for continual
improvement and effectiveness and enhance our understanding of their effects, and build models of
* software engineering experiences.

From a business perspective, we need to develop products and processes that will help us build
quality systems productively and profitably, e.g., estimate the cost of a project, track its progress

4

quantitatively, understand the relationships between models of cost, calendar time, functionality,
various product qualities, etc., and evaluate the quality of the delivered product. These models of
process and prooduct should be tailored based upon the data collected within the organization and
should be able to continually evolve based upon the organizations evolving experiences.

That is, a successful business must understand the process and product, define process and
product qualities, evaluate successes and failures, feedback information for project control via
closed loop processes, learn from our experiences so we can do business better, package
successful experiences so we can build competencies in our areas of business, and reuse
successful experiences. It requires a closed loop process that supports learning, feedback, and
improvement. Key technologies for supporting these needs include modeling, measurement, and
the reuse of processes, products, and other forms of knowledge relevant to our business. This is,
feedback loops are the development view of an experimental paradigm.

Thus the research and business perspectives of software engineering have a symbiotic relationship.
That is, from both perspectives we need a top down experimental, evolutionary framework in
which research and development can be focused, logically and physically integrated to produce and
take advantage of models of the discipline, that have been evaluated and tailored to the application
environment.

We can create experimental laboratories associated with the creation of software artifacts from
which we can develop and refine models based upon measurement and evaluation and select the
appropriate models to aid in development. Each such laboratory will help the business
organization be more successful. However, since each such laboratory will only provide local,
rather than global models or truths, we need experimental laboratories, at multiple levels. These
will help us generate the basic models and metrics of the business and the science.

Can this be done?

There has been pockets of experimentation in software engineering but there is certainly not a
sufficient amount of it [7]. One explicit example, with which the author is intimately familiar, is the
work done in the Software Engineering Laboratory at NASA/GSFC [4]. Here the overriding
experimental paradigm has been the Quality Improvement Paradigm [1,5], which combines the
evolutionary and revolutionary experimental aspects of the scientific method, tailored to the study
of software, i.e., the development of complex systems that need to have models built and evolved
to aid our understanding of the artifact. It involves the understanding as well as the evolutionary
and revolutionary improvement of software. The steps of the QIP are:

Characterize the current project and its environment.

Set the quantifiable goals for successful project performance and improvement.

Choose the appropriate process model and supporting methods and tools for this project.
Execute the processes, construct the products, collect and validate the prescribed data,
and analyze it to provide real-time feedback for corrective action.

Analyze the data to evaluate the current practices, determine problems, record findings,
and make recommendations for future project improvements.

Package the experience in the form of updated and refined models and other forms of
structured knowledge gained from this and prior projects and save it in an experience base
for future projects.

To aid in the setting of goals, the guiding of the experiment, the rational for collecting data, the
building of models, and the underlying framework for interpretation, the Goal/Question/Metric
(GQM) paradigm was developed and had been evolving. The GQM is

5

“a mechanism for defining and interpreting operational, measurable software goals. It
combines models of an object of study, e.g., a process, product, or any other
experience model, and one or more focuses, e.g., models aimed at viewing the object of
study for particular characteristics that can be analyze from a point of view, e.g., the
perspective of the person needing the information, which orients the type of focus and
when the interpretation/information is made available for any purpose, €.g., to
characterize, evaluate, predict, motivate, improve, specifying the type of analysis necessary
to generate a GQM model relative to a particular environment.” [3]

To help create the laboratory environment to benefit both the research and the development aspects
of software engineering, the Experience Factory concept was created. The Experience Factory
represents a for of laboratory environment for software development where models can be built
and provide direct benefit to the projects under study. It represents an organizational structure that
supports the QIP by providing support for learning through the accumulation of experience, the
building of experience models in an experience base, and the use of this new knowledge and
understanding in the current and future project developments.

The Experience Factory concept supports a software evolution model that takes advantage of
newly learned and packaged experiences, a set of processes for learning, packaging, and storing
experience, and the integration of these two sets of functions. As such, it requires separate logical
or physical organizations with different focuses/priorities, process models, expertise requirements.
It consists of a Project Organization whose focus/priority is delivery and an Experience
Factory whose focus is
“to support project developments by analyzing and synthesizing all kinds of experience,
acting as a repository for such experience, and supplying that experience to various
projects on demand. The Experience Factory packages experience by building
informal, formal or schematized, and productized models and measures of various
software processes, products, and other forms of knowledge via people, documents, and
automated support.” [2]

Via experimentation in the SEL, we have learned a great deal about the specific environment, as
well as more general concepts such as: generating a multiplicity of process models, the relationship
between process and product, measuring based upon goals and models The experimental nature of
software development, defining closed loop processes for project feedback and corporate learning,
defining and tailoring models, introducing new technologies into an environment, packaging and
reusing a variety of experiences as models, evaluating experiences for reuse potential, supporting
reuse oriented software development, and integrating packaged experiences.

There is a great deal more to learn. Similar activities need to be performed in a variety of
environments and the resulting models form the various laboratories, or Experience Factories,
need to by analyzed and compared to help us better understand the software and software
engineering discipline and build the primitives of the science.

References

[1] V. R. Basili, "Quantitative Evaluation of Software Engineering Methodology," Proc. of the
First Pan Pacific Computer Conference, Melbourne, Australia, September 1985 .

[2] V. R. Basili, “Software Development: A Paradigm for the Future”, Proceedings, 13th Annual
International Computer Software & Applications Conference (COMPSAC), Keynote Address,
Orlando, FL, September 1989

[3] V. R. Basili, “The Goal/Question/Metric Paradigm”, white paper, University of Maryland,
1990.

[4] V. R. Basili, G. Caldiera, F. McGarry, R. Pajerski, G. Page, S. Waligora, “The Software
Engineering Laboratory - an Operational Software Experience Factory”, International Conference
on Software Engineering, May, 1992, pp. 370-381.

[5S] V. R. Basili, H. D. Rombach "The TAME Project: Towards Improvement-Oriented Software
Environments," IEEE Transactions on Software Engineering, vol. SE-14, no. 6, June 1988,
pp. 758-773.

[6] V. R. Basili, R. W. Selby, Jr., "Data Collection and Analysis in Software Research and
Management," Proc. of the American Statistical Association and Biomeasure Society
Joint Statistical Meetings, Philadelphia, PA, August 13-16, 1984.

[71V. R. Basili, R. W. Selby, D. H. Hutchens, "Experimentation in Software Engineering,"
IEEE Transactions on Software Engineering, vol.SE-12, no.7, July 1986, pp.733-743.

