RE T
S

RS
R
,m.,«w i

el

!




1d results from the use of Z in

:&, Lecture Notes in Computey °

nt Using VDM Prentice-Haj] '

mroom Software Engineering

Z to be published by Addison.

8 Software Quality : A Modelling and
Measurement View

Victor R. Basili

8.1 Software Quality Needs

In order to deal with the concept of software quality, we need deal with such
issues as quality definition, process selection, evaluation, and organization. In
order to develop a “quality” object, we need to define the various qualities and
quality goals gperé,tionally relative to the project and the organization. It is
clear that there are a large number of qualities or characteristics that a prod-
uct may possess and different projects will prioritize these qualities differently.
Once we have defined the kind and level of qualities we want, we need to find
criteria for selecting the appropriate methods and tools and tailoring them to
the needs of the project and the organization in order to achieve these quality
characteristics. This implies we may be interested in the quality of the pro-
cesses as well as the quality of the product. We need to evaluate the quality
of the process and product relative to specific project and organizational goals
while the product is being developed, as well as when it is complete. This 1s
to assure we know we are on the right track and can make the appropriate ad-
justments to the process to achieve our goals. Lastly, we must create a support
organization to oversee the quality goals from planning through execution, by

. evaluation, feedback and improvement.

The software industry has been slow in recognizing these needs for software
quality. Part of the problem has been a lack of understanding of the nature
of the artifact and its desirable qualities and the difficulty of achieving the
quality characteristics desired. In many organizations, the definition of quality
is simply a small number of errors reported from the customer. This is a rather
narrow and limited definition of quality since quality means more than error
reports. Most companies have a software development methodology standards
document (which few projects follow). For them, process selection means using
this single model of process definition, independent of the project characteristics
and quality needs. That is, using the same processes for a well understood
project development and a first time product. Quality evaluation often means
counting the number of customer trouble reports generated. This is a rather
passive view of quality, not an active one. It does not provide a mechanism
for learning how to produce software with the desired characteristics and does
not provide an evaluation of the methods or tools needed to provide those
characteristics. Lastly, for many companies the quality organization is the
group that provides management with the trouble report data. This is not a
quality oriented organization, quality is the result not the driver.

What kinds of quality approaches exist? We can have quality control and
quality assurance. Quality control is the act of directing, influencing, verifying,
and correcting for ensuring the conformance of a specific product to a design
or specification. Quality assurance is the act of leading, teaching and auditing
the process by which the product is produced to provide confidence in the
conformance of a specific product to a design or specification. Quality control




72

18 project oriented, quality assurance is process oriented.

Quality control involves such activities as evaluating products and provid-
ing feedback to the project. A quality control organization is typically part of
the project and interactive with it. It requires people with a knowledge of the
processes and the product requirements, and an understanding of the solutions.

On the other hand quality assurance usually involves the following activi-
ties:

¢ Definition and evaluation of processes
o Collection of data from quality control

e Feedback to the projects it is assuring, as well as to the organization and
itself (for the purpose of learning).

It involves an independent chain of command from the project. People
requirements involve a high level of knowledge with respect to technology and
management and a deep understanding of the process and the product.

What control do quality control and quality assurance have? How often is
a project stopped from moving on to the next phase? How often is a design
rejected because it doesn’t pass standards? The answer is not too often. This is
because we do not have the information necessary to make the proper decision,
i.e., we do not have models and baselines (measurement data) to provide the
real understanding of the situation to exercise control.

8.2 Modelling Software Experiences

In the software business, we need to be able to characterize and understand
the the elements of the business. We need to be able to differentiate project
environments and understand the current software process and product. We
need to provide baselines for future assessment. We need to build descriptive
models of the business.

We need to be able to evaluate and assess our processes and products.
That is we need to assess the achievement of quality goals and the impact of
technology on products. We need to understand where technology needs to be
improved, tailored. We need to be able to compare models.

We need to be able to predict and estimate the relationships between and
among processes and products. We need to find patterns in the data, product
and processes that allow us to build predictive models.

We need to motivate, manage, and control the software development pro-
cess by providing quantitative motivation and guidelines that support what it
is we are trying to accomplish. We nccd to build and use prescriptive models.

These issues argue for the need to define models to help us understand
what we are doing, provide a basis for defining goals, and provide a basis
for measurement. We need models of the people, e.g., customer, manager,
developer, the Processes, and the products. We need to study the interactions
of these models.

These models should be as formal as we can make them, based upon the
maturity of our understanding of the software process and products. Once
we have models we can ask the following questions: Is the model correct in




73

principle? Does the model actually describe what we are doing? How can we
improve the model based on theory, practice and analysis? How do we feed
back what we have learned to improve the model or our adherence to it? We
want to build descriptive models to explain what is happening. We want to
define prescriptive models to motivate improvement.

What kinds of things can we package into models? At NASA/GSFC, in the
Software Engineering Laboratory, we have built resource models and baselines,
e.g., local cost models, resource allocation models, change and defect baselines
and models, e.g., defect prediction models, types of defects expected for the
application, project models and baselines, e.g., actual vs. expected product
size, library access, over time, process definitions and models, e.g., process
models for Cleanroom, Ada waterfall model, method and technique evaluations,
e.g., best method for finding interface faults, products and product parts, e.g.,
Ada generics for simulation of satellite orbits, quality models, e.g., reliability
models, defect slippage models, ease of change models, and lessons learned,
e.g., risks associated with an Ada development.

Many of the models we use are based on measurement. Measurement takes
on different forms. We perform objective and subjective measurement. Objec-
tive measures are absolute measures taken on the product or process, usually
involving interval or ratio data. Examples include time for development, num-
ber of lines of code, work productivity, and number of errors or changes. Sub-
jective measures represent an estimate of extent or degree in the application
of some technique or a classification or qualification of problem or experience.
There is no exact measurement and the measures are usually done on a rela-
tive scale (nominal or ordinal data). Examples include the quality of use of a
methodology or the experience of the programmers in the application.

We use a mechanism called the Goal/Question/Metric, GQM [BaWe84],
paradigm to build particular models based upon goals. A GQM is a mecha-
nism for defining and interpreting operational, measurable software goals. It
combines models of an object of study, e.g., a process, product, or any other
experience model, and one or more focuses, aimed at viewing the object of
study for characteristics that can be analyze from a point of view, e.g., the
perspective of the person needing the information. This orients the purpose
of the analysis, namely, to characterize, evaluate, predict, motivate, improve,
specifying the type of analysis necessary to generate a GQM model relative to
a particular environment. In this context, goals may be defined for any object,
for a variety of reasons, with respect to various models of quality, from various
points of view, relative to a particular environment.

We must build models of our various products and processes. By way of
example, consider the need to build an operational model of our education and
training in a particular process. We articulate the process as the following set
of activities:

1. Provide the individual with training manuals they must read.
2. Provide a course, educating the individual in the process.

3. Provide training by applying the process to a toy problem.

4

. Assign the individual to a project using the process, mentored by an
experienced method user.




74

5. After this the individual is considered fully trained in the process.

We convert into an operational model by associating a set of interval values
with the various steps of the process. In this case, since the model is clear, each
of the steps represents a further passage along the interval scale. Thus a value
of “0” implies no training,

1. implies the individual has read the manuals

implies the individual has been through a training course

implies the individual has had experience in a laboratory environment

implies the process had been used on a project before, under tutelage

ovs o

implies the process has been used on several projects.

Even though we call this a subjective rating, if the education and training
process model is valid, then our model and the metrics associated with it are
valid. Using the GQM, we generate a question that gathers the information for
the model.:

Characterize the process experience of the team (subjective rating per per-
son) : (again, “0” corresponds to no training)

1. have read the manuals

2. have had a training course

3. have had experience in a laboratory environment
4. have used on a project before

5. have used on several projects before

The data from the question can then be interpreted in a variety of ways, e.g.,
if there are ten team members, we might require that a minimum requirement
is that all team members have at least a three and the team leader has a five,
etc. This evaluation process will become more effective with experience over
time. *

Factors or characteristics that affect software development and which need
to be modelled include people factors such as number of people, level of ex-
Dertise, group organization, problem experience, process experience, problem
factors such as, application domain, newness to state of the art, susceptibility
to change, problem constraints, process factors such as, life cycle model, meth-
ods, techniques, tools, programming language, other notations, product factors
such as, deliverables, system size, required qualities, e.g., reliability, portability, 1
and resource factors such as, target and development machines, calendar time, :
budget, existing software.

These models help us to classify the current project with respect to a variety
of characteristics, to find the class of projects with similar characteristics and
goals to the project being developed, and to distinguish the relevant project




75

environment for the current project. They provide a context for goal defi-
nition, reusable experience/objects, process selection, evaluation, comparison,
and prediction.

- The choosing and tailoring of an appropriate generic process model, inte-
grated set of methods and techniques is done in the context of the environment,
project characteristics, and goals established for the products and other pro-
cesses [BaRo87]. Thus, the model for expressing process needs to provide a
flexible process definition appropriate, information for process selection, and
support for process integration and configuration, via tailorable definitions and
characterizations for life cycle models, methods and techniques.

Goals need to be defined for the various processes. They help in the choice
of a life cycle model, methods, and techniques. To show why this is necessary,
consider the testing phase of a project development. What are the goals of
the test activity? Is it to assess quality or to find failures? The selection of
activities depends upon the answer. If it is to assess quality, then tests should be
based upon user operational scenarios, a statistically based testing technique,
and reliability modelling for assessment. If the goal is to find failures, then we
might test a function at a time, general to specific. Reliability models would
not be appropriate.

For example, it needs to permit advice and selection criteria based upon
the problem characteristics and goals, containing such rules as:

o If the problem and solution are well understood, choose the waterfall
process model

o If a high number of faults of omission expected, emphasize traceability
reading approach, embedded in design inspections

e When embedding traceability reading in design inspections, make sure
traceability matrix exists.

8.3 Model Evolution

The research in software engineering typically involves the building of tech-
nologies, methods, tools, etc. Unlike other disciplines, there has been very
little research in the development of models of the various components of the
discipline. The modelling research that does exist has centered on the software
product, specifically mathematical models of the program function.

We have not emphasized models for other components, e.g., processes, re-
sources, defects, etc. What is needed is a top down experimental, evolutionary
framework in which research can be focused, logically and physically integrated
to produce models of the discipline, that can be evaluated and tailored to the
application environment.

In the SEL, we use an organizational framework called the Quality Im-
provement Paradigm [Ba85a]. It consists of the following steps:

o Characterize the current project and its environment with respect to
models and metrics.

e Set the quantifiable goals for successful project performance and im-
provement.




Choose the appropriate process model and supporting methods and tools
for this project.

¢ Execute the processes, construct the products, collect and validate the
prescribed data, and analyze it to provide real-time feedback for correc-
tive action.

¢ Analyze the data to evaluate the current practices, determine problems,
record findings, and make recommendations for future project improve-
‘ments.

o Package the experience in the form of updated and refined models and
other forms of structured knowledge gained from this and prior projects
and save it in an experience base to be reused on future projects.

We have used this evolutionary paradigm to define, refine and evolve models
in the SEL. For example, we have used it to help develop and formalize the
definition of process models as follows:

o Use the project characteristics and goals to find the most appropriate
process models for the current project

¢ Develop, modify or refine the process based upon the lessons learned
from previous applications of the model

 Set goals to monitor those new or high risk areas

* Execute, collect and analyze data, making changes to the process in real
time .

¢ Based upon goals and analysis, write lessons learned and modify the
process for future use

One such model has been the Cleanroom Process Model [Dy82], proposed
by Harlan Mills. The key components of the process model are a mathemati-
cally based design methodology, the functional specification for programs, state
machine specification for modules, reading by stepwise abstraction, correctness
demonstrations when needed, and top-down development. Implementation is
done without any on-line testing by developer. Testing is performed by an in-
dependent test group using statistical testing techniques, based on anticipated
operational use. Testing takes on a quality assurance orientation, rather than
a failure finding orientation.

Before applying the Cleanroom in the SEL environment, we ran a con-
trolled experiment at the University of Maryland [SeBaBa87]. The goal of the
study was to analyze the Cleanroom process to evaluate it with respect to the
effects on the process, product and developers relative to differences from a
non-Cleanroom process. The project was an electronic message system (1500
LOC) and there were 15 three-person teams (10 used Cleanroom). Fach team
was allowed 3 to 5 test submissions. We collected data on the developers back-
ground and attitudes, all on-line activity, and the test results.



77

The results of the Cleanroom project were quite strikingly in favor of Clean-
room. The Cleanroom developers felt they more effectively applied off-line re-
view techniques, while others focused on functional testing. The Cleanroom
developers spent less time on-line and used fewer computer resources. The
Cleanroom developers tended to make all their scheduled deliveries. The prod-
uct developed by the Cleanroom teams had less dense complexity, a higher
percentage of assignment statements, more global data, and more comments.
The Cleanroom products more completely met requirements and had a higher
percentage of test cases succeed.

Based upon the success of the controlled experiment, we decided to exper-
iment with the Cleanroom process model in the SEL. Following the Quality
Improvement Paradigm, we

o Used the project characteristics and goals to find the most appropriate
process models for the current project, i.e. we picked the process based
upon the project needs and process strengths, e.g., Cleanroom for better
lowering defect rate.

o Modified and refined the process based upon the lessons learned from
previous applications of the model. Existing process model descriptions
available for use included the standard SEL model, IBM/FSD Clean-
room Model, experimental UoM Cleanroom model. Lessons learned as-
sociated with the IBM/Cleanroom model included: basic process model,
methods and techniques, and knowledge that the process was very effec-
tive in given environment. Lessons learned from the UoM/Cleanroom
model included the facts that no testing enforces better reading, the
process was quite effective for small projects, formal methods were hard
to apply, require skill, and we might have insufficient data to measure
reliability. We defined the SEL/Cleanroom process model using the best
practices from our experience base models, e.g., informal state machine
and functions, training consistent with UoM course on process model,
methods, and techniques, emphasize reading by two reviewers, allow
back-out options for unit testing certain modules, etc. When no new
information was available, used the standard SEL activities.

o Set goals to monitor those new or high risk areas. Here the goals were
to characterize and evaluate in general, and with respect to changing
requirements.

o Execute, collect and analyze data, making changes to the process in
real time. We monitored the project carefully and made changes to the
process model in real time.

e Based upon goals and analysis, write lessons learned and modify the
process for future use. We wrote lessons learned for incorporation into
next version, redefining process for the next execution of the process
model, and rewriting the process model definition.

Lessons learned from the first application of the Cleanroom process in the
SEL included :




the fact that we could scale u
changing requirements.

P to 30KLOC and use the process with

¢ The failure rate during test reduced to close to 50% over our typical
project.

e There was a reduction in rework effort: 95% as opposed to 58% took
less than 1 hour to fix.

e Only 26% of faults were found by both readers.
® Productivity increased by about 30%.

e The effort distribution changed in that there was more time spent in
design and 50% of code time spent reading.

¢ Code appears in library later than normal and more like a step function
than in the standard project.

® There was less computer use by a factor of 5.

We also learned that we needed better training for methods and techniques ‘

and better mechanisms for transferring code to testers. Testers need to add

requirements for output analysis of code. As expected, there was no payoff
in reliability modelling due to the inability to seed a model with such a small
number of failures. One of the side effects of the project was that the Clean-
room development caused more emphasis on requirements analysis and the
requirements writers were willing to refine their methods.

were defined. A goal for both was to try to apply the formal models more
effectively, i.e., use Mills’ box structure approach. One project involved a
change in the application domain, keeping the size of the project about the

same (30KSLOC). The second project was a scale up to over 100KLOC and
the use of contractors.

8.4 An Organization for Packaging Experience Models

Improving the quality of the software process and product requires the con-
tinual accumulation of evaluated experiences (learning) in a form that can be
effectively understood and modified (experience models) into a repository of in-
tegrated experience models (experience base) that can be accessed/modified to
meet the needs of the current project (reuse) [BaRo91]. Systematic learning re-
quires support for recording experience, and off-line generalizing, tailoring and
formalizing of experience. Packaging requires a variety of models and formal
notations that are tailorable, extendible, understandable, flexible and accessi-
ble. An effective experience base must contain accessible and integrated set
of analyzed, synthesized, and packaged models that captures the local expe-
riences. Systematic reuse requires support for using existing experience and
on-line generalizing or tailoring of candidate experience.

Based upon the success of this project, two new Cleanroom experiments

for Reuse




79

This combination of ingredients requires an organizational structure that
supports them. This includes: a software evolution model that supports reuse,
processes for learning, packaging, and storing experience, and the integration
of these two functions. We define a capability based organization to deal with
such needs, which differentiates between the software development (Project
Organization) and the packaging of experience in models (Experience Fac-
tory) [Ba89]. The Project Organization develops products with the support
of reusable experiences from the Experience Factory tailored to its particu-
lar needs. The Experience Factory is a logical or physical organization that
supports project developments by ana.lyzmg and synthesizing all kinds of expe-
rience, acting as a repository for such experience, and supplying that experience
to various projects on demand. It packages experience by building informal,
formal or schematized, and productized models and measures of various soft-
ware processes, products, and other forms of knowledge via people, documents,
and automated support.

8.5 Conclusions

The integration of the Improvement Paradigm, Goal/Question/Metric Para-
digm, and Experience Factory Organization provides a framework for software
engineering development, maintenance, and research. It takes advantage of
the experimental nature of software engineering. It provide a framework for
defining quality operationally relative to the project and the organization, a
justification for selecting and tailoring the appropriate methods and tools for
the project and the organization, a mechanism for evaluating the quality of the
process and the product relative to the specific project goals, and a mechanism
for improving the organization’s ability to develop quality systems productively.

References

[Ba85a] V.R. Basili. Quantitative Evaluation of Software Engineering Method-
ology Proc. of the First Pan Pacific Computer Conference, Melbourne, Aus-
tralia, September 1985 [also available as Technical Report, TR-1519, Dept.
of Computer Science, University of Maryland, College Park, July 1985].

[Ba85b] V. R. Basili. Can We Measure Software Technology: Lessons Learned
from 8 Years of Trying Proceedings of the Tenth Annual Software Engi-
neering Workshop, NASA Goddard Space Flight Center, Greenbelt, MD,
December 1985.

[Ba89] V. R. Basili. Software Development: A Paradigm for the Future Pro-
ceedings, 13th Annual International Computer Software & Applications
Conference (COMPSAC), Keynote Address, Orlando, FL, September 1989

[BaPa85] V. R. Basili, N. M. Panlilio-Yap. Finding Relationships Between
_Effort and Other Variables in the SEL IEEE COMPSAC, October 1985.

[BaRo87] V. R. Basili, H. D. Rombach. Taisloring the Software Process to
Project Goals and Environments Proc. of the Ninth International Confer-




80

ence on Software Engineering, Monterey, CA, March 30 - April 2, 1987, pp.
345-357.

[BaRo91] V. R. Basili, H. D. Rombach. Support for Comprehensive Reuse
Software Engineering, IEE British Computer Society, September 1991.

[BaWe84] V. R. Basili, D. M. Weiss A Methodology for Collecting Valid Soft-
ware Engineering Data IEEE Transactions on Software Engineering, vol.
SE-10, no.6, November 1984, pp. 728-738.

[Dy82] M. Dyer. Cleanroom Software Development Method IBM Federal Sys-
tems Division, Bethesda, Maryland, October 14, 1982.

[Mc85] F. E. McGarry. Recent SEL Studies Proceedings of the Tenth Annual
Software Engineering Workshop, NASA Goddard Space Flight Center, De-
cember 1985.

[SeBaBa87] R. W. Selby, Jr., V. R. Basili, and T. Baker. CLEANROOM
Software Development: An Empirical Evaluation IEEE Transactions on
Software Engineering, Vol. 13 no. 9, September, 1987, pp. 1027-1037.

9 Modellin

Dan Craigen

9.1 Descriptic

One of the central 1
of digital systems.
digital systems can

Hence, there is intere
model the digital en
of models should lea

9.2 Discussiol

The following list o
participants prior to
clear that the topics

Topic 1: How does 1
of digital systems?

o What are the
them?

e What are the

R What are the
them?

e What is requ
digital system

o Identify gener:
Topic 2: What insig

e Are we develc
primary defini

o Identify gener:

- Topic 3: What can w

we have now?

e Are the currer
If not, how is
those models 1
and explicit?




As digital systems grow in size and cntlcahty means must be
sought to master the resultmg complexnty One such’ :
technology goes by the name “f

In 'thIS volumea number of practltloners in the field address
_the issue of how bes to integrate formal methods '

Also included are two chapters dlscussmg some of the soc1a|
lmpllcatlons of the use and role of formal methods '

ISBN 3-540-19751-6
ISBN 0-387-19751-6




