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' ABSTRACT

Programming languages act as software development tools for
probiems from a spécific application area. The needs of the
various scientific programming applications vary greatly with the
size and style of the problems which include everything from
small numerical algﬁrithms to large-scale systems. This latter
requires language primitives for a multitude of snﬁéf&blems that
include the management of data, the interfaces with the system
at various levels, etc, One way of making available all the
necessary primitives 1s.to develop one very large'languége ﬁo
cover all:the needs. An alternative is to use a hierarchicai .
family of languages, each covering a different aspect of the
larger problem, e.g., a mathematical language, a dgﬁa base man~
agement language, a'graphics language, etc. The coﬁcept of a
family of languages bullt from a small common base offers a
modular, well-interfaced set of small sﬁecialized languages thaﬁ
can support such software development characteristics as modu~
larity, reliability, efficiency, and transportability. ~This
paper discusses the use of the hierarchical family concepf_inu

" the development of sclentific programming systems.

I. INTRODUCTION o _
Tools are designed to aid in the construction of a product.
They help produce a better pro&uct and make the actual building*
process easier. They help in the automation of the various |
stages of development making the more tedious, difficult, and
error-prone aspects_easier and more reliable. '
Scientific programming leads to the development of products.
What do these products look 1ike? They vary in size and com-
plexity from library routines for basic mathematical functions

to self-contained programs encompassing basic algorithms to large
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whole systems involving structural analysis (NASTRAN [NAS72],
ﬁONSAP [BAT74], . . .} or control center operatious (MSOCC
[NAS75], ATSOCC {DES75], . . .).

Tools have been developed to ald the scientific programmer
in product development. Consider the problem from an historical
perspective.” In the beginning there was the bare machine. The
solution to the scientific programming problem was expressed as
a set of machine language imstructionms. The programmer developed
everything from scratch every time, working,oﬁly with the basic
hardware. Almost immediately tools were developed to help
specify programs in more'ﬁumﬁnwrelated forms improving the

The major emphasis in tools for expressing the problem
solution has been in the development of higher-level programaing
languages. Such languages create an idealized, virtual computer
that corresponds to the thinking habits and capabilities of the
programmer, rather than to the limitations of the current tech-

nology. B
One of the first téols developed was the Iibrary éoncept
permitting the reuse of existing subprograms, In this way'conmon

tasks, such as mathematical functions, could be'progrémmed once
and used over and over again, Thege subprograms were a first
step in defining a higher level set of the programming primitives
suited to the user's needs and the application area.

A second tool was the development of symbolic codes.
Asseﬁbly languages permitted the user to write in a syubolic no-
tation to specify the instructions and locations of the machine.
The use of mnemonics for imstruction primitives made it easier
for the programmer to relate to the data of the program. This
higher‘levgl of specification was made possible by the assembler
which translates the symbolic codes into the real machine codes.

Higher-level scientifically-oriented languages, such as

FORTRAN and ALGOL, were developed to automate more powerful
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.

‘forms of specification. They incorporated specifications for
arithmetic expressions,_data such as complex variables, control
structures such as conditionals and iteration, and data struc-
tures such as arrays. These higher-level languages are Lrans-—
lated using.compilers 0T MACTOPLOCESSOYs Or exeéuted via inter—
preters. . .

A set of high-level, more general-purpose languages, such
as PL/1 and HALS/S [NEW73], offered facilities to the programmer
not available in languages such as FORTRAN., These facilitiles
included string procgssing and some control over the system
environment in the form of ovgrflow-andmunderflaw control.

In order to more closely as;;ciate the terminology for
expressing the problem solution with the problem area, special
purpose application oriented languages have been developed.
Languages such ag SNOBOL and LISP were developed early to handle
string and list‘processing problems, respectively. There has
been an ever-increasing number of very high-level languages that
involve the solutions of sét—theoretic problems {e.g., SETL
[SCH73]),. combinatorial problems (e.g., MADCAP [WEL701), artifi-
cial intelligence based problems (e.g., SAIL [FEL72], PLANNER
[SUS70]), graph algorithmic problems (e.g., GRAAL [RHE72], GEA
{CRE70]), etc. Some of these languages have been célled very
high-level languages as they raise the level of specification
far above that defined by the highﬁlevel languages, €.g., &

 primitive like the union operator in SETL would require a sub-

routine in FORTRAN,

Besides being used to raise the level of the machine to hefs
the programmer express his program in the language of the probiem
area, tools have been developed to improve the environment in
which the programs and programmer live. On top of the bare
machine, mbﬁitors were developed to run the computer without
stopping, automatically sequencing batches of jobs.. This helped
make nore effective use_of machine time and removed the pro- '

grammer from pushing buttons on the bare machine. Under such a-
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system, however, interactive development was lost. In time,
sequential batch processing gave way to demand systems. Using a
multiple programming system with a virtual memory, each user was
effectively given his own machine, in spite of the fact that he
was one of many users, These systems gave the user a greater
opportunity to-share high-level resources such as text editors
and file systems. Théy returned to the programmer the ability to
interact with the machine, but this new software-extended machine
was more powerful and geveral levels closer to man's problem
areas,

Support tools have been developed which try to provide the
programmer with an environment for developing and analyzing his
programs at the level at which they are*w;ltE;;:“ These support
tools include debugglng aids. testing and evaluation aids, and
a variety of support prograums including editors and data base
analyzers. .

Given thisﬂlarge assortment of tools, the programmer needs a
mechanism for harnessing all these capabilities. Consider the
definition of a programmiﬁg language in this context. 4 program-
ming language is a standardized notation used to express a prob-
lem solution and commnicate that solution to humans and com-
puters, (Note that the idea of expressing that solution to
humans has gained considerable importance in light of the prob—
lems of correctness and maintainability.} The programming lan-
guage must provide the user with control over whatever primitives
are needed to express the problem solutidn and implement that
solution as a correctly executing program. All of the tools
mentioned earlier can be harnassed using programming language
notation.

The definition given here emphasizes several important
points which should characterize a programming language. These
include ease of expression, the abilitf toiwrite correct, read—
able, implementable and efficilent prdgrams. The ability to com-
municate with various computers implieé portability. Another
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important characteristic of a programming language is the ability
to reuse products developed in the language.

The next section discusses some of the capabilities and
characteristics a scientific programming language should have.
Section 3 recommends a method for defining a programming language
notation” that achieves this aét_of capabilities and character-
istics using the concept of a family of languages,

I1. SCIENTIFIC PROGRAMMING LANGUAGE NEEDS

The sclentific programming notation must provide the pro-
grammer with a set of capabilities for solving his problem and
this notation should have charactasristics that support the ease
of expression, correctness, ete., of the solution algorithm,
First, consider some of the actusl capabilities a sclentific pro-
gram via notation might encompass.

The most basic facility that 1s common across produét gize
and complexity is the ability to perform numerical calcﬁlations,

" The notation should provide a basic set of arithmetic data types
including integer, real, complex. For operation on these basic
data types there should be a complete set of built-in operators
for each data type, along with compléte libraries of special
functions. There should be clearly defined hierarchies of con-
versions, e.g., integer is a subset of real and real is a subset
of complex and mixed types are automatically converted to the
higher level type. The user should also have control over over-
flow and underflow with respect to the various operations.

There should be a variety of precisions for data types:
for example, there should be short and long reals, short integers,
etc. The user should have some control over precision in that it ™
should be easy to change precision across an entire program. One
way the need for a specific precision can be sétisfied is by a
variable precision arithmetic packége, This can be very in~
efficient however because the specified precision may not corres;
- pond to the machine word size boundaries, Specific precision re-

quirements could be satisfied more efficiently by permitting the
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user to specify a minimum precision requirement and permitting

the compiler to impose a precision greater than the specified

precision that corresponds to some multiple of the machine word -
size [INT75]. Precision hierarchies should be clearly defined
just as data type hierarchies. All functions should appear to the
user to be generie with respect to precision and data type.

There should be no need for the user to remember different func-
tion names for different data types and precisions,

L The notation should provide a convenient format for arith-
metic expressions. Since random reordering of expression evalua-~
tion can cause problems with precision critical computations, the
evaluation order of specific expressions-must be preserved,
However, the user is also intereeted in optimization of non-
precision-critical expressions, so there should be some . control
conventions or special formats to forbid reordering. For
example, the compiler might assume that normal parenthesized

' expressions, oxr some special form of parenthesized expressions,
cannot be reordered, . s -

What about the framework in which one imbeds arithmetic ex—
pressions? This includes the control structures, data structures,
and the runtime environment. There has been g great dezl in the
literature about good sets of control structures for writing
algorithms [DAH7Z, MIL75]. These include the standard sequencing,
the ifthenelse, whiledo, etc. These structured controlstructures
aid in the development of readable, correct algorithms, Of spe-
cial interest .in scientific computations are an assignment _
mechanism and the indexed -loop statement, i.e., the for or do
loop. There are two formats for asaignment, One is to consider
assignment as an operator, as in APL [PAR72]; the second is to
consider it as a statement as in FORTRAN Studies [GAN75] have
shown that the assignment statement as opposed to the assignment
Operator appears to be a less error Prone construct., The main
benefits of the indexed loop statement are as an aid to correct-

ness (automatic indexing buiit in) and for efficiency (the loop
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variable can be specially treated in an optimal way if the use of
the index variable ig limited to indexing, i,e., it is not avail-
able outside the loop and it camnot be assigned a value ingide
the loop.)

‘ With respect to data structures the standard workhorse has
been the array. However for many situations what is needed are
different methods of access., TFor eiample, one may want to access
an array of data both as a one-dimensional array and as a two-
dimensional array depending upon whether speed or case of access
- is of interest. Interestingly enough, FORTRAN allows the- user
this kind of control over its array data structure, It permits
the programmer to use the array as a storage map over which dif—
ferent templates may be defined. Whether - this facility was an
accident of design or purpoaeful, it is a widely used feature of
the languagé and gives the user a great deal of power with re-~
spect to data structuring, It is this kind of mechanism that
language designers are trying to improve upon and build into
languages in a less error prone way [LIS74,WUL76].

The runtime environment involves the language framework in
which the control and data structures are imbedded. For example,
the procedure organization {internal procedures, external proce-
dures, nested proéedures),‘the data scoping (block strucﬁure,
common blocks, equivalencing,...) and the existence of special
facilities (recursion, pointer variables, dynamically allocated
‘storage,...) all comtribute to the complexity of the runtime en—
vironment, From the polnts of view of efficiency and ease of
understanding it is important to keep the runtime environment as
simple as possible, It is worth noting that FORTRAN has a rela-
tively simple and efficient runtime environment compared to a
language like PL/1, which may account for part of its strong
support by the scientific programming community. A simple run~
time environment framework can be a real asset in a programming

language.
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The language facilities discussed so far have been a varia— -
tion and extension of the facilities found in languages like
FORTRAN and ALGOL. However, many of the needs of scientific pro; .
gramming go beyond the facilities mentioned so far. For exampl.e,
. string and character processing are needed for formatting outputs,
generating reports and processing data in nonnumeric form. Be—
sides the string or character &ata types, basic operators are
needed along with conversion routines for changing between
numexric and nonnumeric data, ‘ ]

When the size of the problem and the amount of data become
large, the ability to interact with the system environment be-.
comes necessary. The facility to read and write files is needed
for storing and retrieving large*aﬁ;hnggm;} data, In order to
fit various segments of the program and data into nemory at one
time, the user needs access to overlay capabilities. Larger
size implies more control over input and output routines and
devices. And, of course, as mentioned earlier, control ovér
interrupts plays an important role in handling overflow and uﬁder—
flow, etc.

As the problem gets more speclalized, new features may be-
come appropriate., Thus, the scientific programming'notation
might provide some extensibility capsbilities for creating new
features as necessary. . For example, a matrix data type might be
4 convenient primitive, along with a set of matrix operations.

It would be convenient for the programmer to be able to build
this into the notation easily to make expressing his problem
easier, 7 _ K

Thus far in the discussion we have tried to motivate a set
of capabilities building bottom up starting'with exiséing capa-
bilities in standard scientific programming languages, and
adding some of the faéilities that are needed as the problem gets
larger or the application becomes'more specialized. Let us
view the situation from the top down with respect to the needs of

large~scale gcientific programming applications, Theée 1arge4
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scale applications involve the development of entire systems.
Consider examples such ag structural mechanics systems, e.g.,
NASTRAN, NONSAP, and centrol center systems, e.g., MSOCC, ATSOCC.
Are these scientific or system applications? If they are exam—
ined from the user's point of view, they are definitely
scientific applications.

What are these large scientific programming systems composed
of? That varies with the particular application. However, there
are some aspects that many of them have in common. At the very
top is the user's interface to the system which is some form of.
system operation language (SOL). The power of the SOL is depen~
dent upon the flexibility'of the system and the sophistication of
the user. SOLs vary from a seﬁ.of_pﬁEh:BﬁEEons to some limited
form of a data input to some minimal form of sequential control
to a full high-level language. Ideally there should be some flex-
ibility in the level of the language. The unsophisticated user
should be able to enter the system at a very high level using
some standard prepared package routines. The more sophisticated
user should be given more flexibility and be able to peneirate
the system at the level of his expertise. Thus, the S0L should
be both flexible and hierarchical. .

To demonstrate the scope a programming notation must address
for a large-scale sclentific system, éousider a particular appli-~
cation area, such as structural mechanics. What are the varilous
aspects of such a system?

The user aspect involves an engineer who wants to check out
some structure. At the top level he would like some simple form .
of data input for using a canned set of techniques. However, if
the user is reasonably sophisticated and the canned techniques
donit adapt well to the particular problem, he should be allowed
to write a high-level algorithm to bring the power of the systém
to bear for his pérticuiar needs, ‘The numerical analysis aspeét
involves many numerical algorithms for the solution of. differen-

tial equations, non linear equations, eigenvalue extraction, ete.
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There is a data base management aspect. This involves the defini-
tion of data structures for the structural elements, the defini-
tion of the grid point storage structure, the physical represen-— .
tation of these structures, and the access and storage techniques.
There is a graphlecs aspect. The user should be able to display the
input graphically for checking and the output for interpreting re-
sults easily. Finally, there is the systéms aspect., One has to
K . build a system in which all of the above processing takes place.
This system should in fact include some interactive facility.

The above discussion is clearly superficial. Tt is merely
meant to demonstfate the wide variety of facilities required in

Having all of the above capabilities, the scientific pro-
gramming notation shoyld possess certain characteristics., Among
other things, it should support ease of prdblem expfession,
the writing of correct, efficient, and portable code, and the
reuse of algorithms written in it. Let us consider these
characteristics one at a time, . - _ . -

. One would like to express algorithms in a natural manner.

This implies the notation should be natural to the problem aréa.

For example, within the general problem area of mathematics there

is a specialized and different mathematical notation for the
algebraist and analyst. Each aid in expressing the problems of
the particular érea explicitly and precisely and in an easy to
communicate form, '

However, it is hard to define the right features for the'
application area. Often knowing just the right notation is
part of the solﬁtion. ‘We.need to experiment with 1aﬁguage
features. The notations of algebra and analysis have been re- ,
fined over many yeérs; To work on this problem of defining the
right notation for a particular application, one négds both a
language expert and an ap?lication area expert. Oniy the
application area expert can know the right abstractidns for the

problem area. But the language expert is needed to model and
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analyze these abstractions for ease and efficiency of implewmenta-
tion, error proneness, and interaction with other facilities in
the language and the enviromment. We have learned a lot about
language design in the last two decades and we should use this
knowledge in the design of languages. For example, all new lanrr
guages should be modeled using seﬁeral modeling techniques
[BAS75a,B0A73,H0A74,LUC68] to guarantee good design with respect
to the criteria that each of the modelz demonstrates.

Correctness of a program is defined as the ability of the
program to perform consistently with what we percelve to be its
functional specifications. The programming language should
support the writing of correct programsw-”The»languaéé ghould
simplify rather than complicate thé égaefstanding of the problem
solution. The complexity in understanding a program should be
due to the complexity inherent in the algorithms, not due to the
notation used. The notation should bé clear and simple. A lan~-
guage natural to the problem area aids in correctness as it makes
the statement of the solution easier to read and understand.

The easier it is to read and understand a solution algorithm,
the easier it is to certify its correctness. Aids in mnaking a
program readable are to structure it from top to bottom and to
break it into small pieces. In ofder to achieve the goal of
supporting correctness, a language should be simple, contain
well-structured control and data structures, permit the breaking

up of the algorithm into small pieces using procedures and macros,

and contain high-level problem area oriented language primitives.
A program is considered efficient if it executes at as fast
a speed and in as small a space as ig necessary. The language
should permit the efficlent execution ofvprograms'ﬁritten in {t.
The higher level the algorithm, the more information is exposed
for optimization and the better job a compiler can do on improv-
ing the code generated, On the other hand, high level often
implies general applicability in order to handle the majority of

cases, This can often imply an inefficiency for a patrticular
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application. For example, consider a language in which matrices
have been defined ag a primitive data type with a full set of
operators including matrily multiplication. The multiplication
operation has been defined for the general case. Suppose the
particular subproblem calle for the multiplication of two tri-
angular matrices, Using the standard built-in operator is in-
efficient. One would like to be able to substitute a more
efficient multiplication algorithm for the particular case in-

i velved, But this implies that the language permits the redef-
inition of language primitives at lower levels of abstraction.
That is, the programmer should be able to express the algorithm
at a high level and then alter 'the lower level design of the
algorithm primitives for a particular application when it is
necessary for reasons of efficlency.

A language supports portability when it permits the writing
of algorithms that can execute on differént machines., Porta-
bility is a difficult, subtle problem that involves several

diverse subproblems. The numerical accuracy of arithmetic com~
putations can vary even on machines with the same word size.
Technique94for*deaiing*with*this*prdbiem?inciudervaxiabie‘iength***“"***AMA‘f *******
arithmetic packages or a minimum precision {modulc word size) _
specifications as mentioned earlier. Ancther problem area of ' :
portability is text processing. One way of dealing with.this .
problem is to define a high?level_string data type which is
word size independent. A third area of problems involves inter-
facing with a variety of host machine systems. One method of
handling this is to define programs to run on some level of -
virtual machine that iz acceptable across the various machine
architectures and systems and then to define Ehat virtual machine .
on top of the host system for each of these architectures,
This is commonly done using a runtime library. In general the
higher level the algorithms, the more portable they are. However,
more portability often means less efficiency. A language that

supports portability should contain one of the above mechanisms
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for transporting numerical precision across machine architectures,
high-level data types, the ability to_keep nonportable aspeets in
one place, and a macro facility for patameterizing packets of
information modulo word size. _

Software is reusable if it can be used across geveral dif-
ferent projects with similar benefits, In order for software to
be reusable, its function must be of a reasonably genersl nature,

e.g8., the square root and sine functions, it must be written in

. @ general way and it must have a good, simple, straightforward

set of specifications. The area of scientific programming has
a better history of reusable sofgﬂﬁté:fhéh most. Consider as
examples some of the libraries of numerical analysis routines .
[INTE75,SMI75]. This is due largely to the easily recognizable,
general nature of many scientific functions and the simplicity
of thelr specifications. There are whble areas of scientific
software development, however, that do not have a history of
reuse., Consider telemetry software, for example.

Software writtea in a general way may perfbrm less effi-
ciently than hand-tailored software. Howeﬁer, if it is well
written it should be possible to measure it and based on theée
measures modify it sliéhtly in the appropraite places to perform
to specification for the particulaf application.

A good, simple, straightforward set of'specifications is not
easy to accomplish, especlally when the nature of the function is
complex, A good high level aigbrithm can help in eliciting that

‘specification. Specifications for software modules should also A

include an analysis of the algorithm, e.g., the efficiency of the
algorithm with respect to the size of the input data; The .
language should support the development ofja good library of '
well-specified software modules that are easy to modify 1if the
time and space requirements are off. It should also be cépable

of interfacing‘afficiently with other languages and of expressing
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algorithms so that the essential function is clear and of a
general nature.

This partial list of capabilities and characteristics for a -
scientific programming language contains a large number of '
seemingly contradictory requirements, It is quite possible we
can't have a notation with all of the above characteristics,
However, one would like to define a language tool in which we
can maximize both the capabilities and the above characteristics.
IIT. A FAMILY OF PROGRAMMING LANGUAGES .

To begin with, oﬂerlaﬁguage appears to he not enough. If we
be too large and contain too many“uontraézzfory features. The
runtime environment needed to support such a language would be
complex and inefficient. What we would like is a set of lan-
‘guages, each téilored to a particular subapplication. .Hawever,
there are several drawbacks to building a large §et of indepen-
dent languages each taildred to a subapplication. PFor one thing, -
the design and devélopmeﬁt of new programming languages are .
fraught with many problems since each language would be an en~
tirely new design experience. Secondly, if these languages
were truly different in design, it would require the user to
learn several totally different notations for solving the
different aspects of the problem. Thirdly, there would be a
proliferation of languages and compilers to maintain.

One possible approach that minimizes some of the above draw-
backs is the development of a family of programming languages and
compillers, The bagic idea behind the family 1ls thatlall the ~
languages in the family contein a core design which consists of
a minimal set of common language features and a simple common |
runtime environment. :This core design defines the base language
for which all other languages in the family are extensions. _-

This also guarantees a basic common‘design for the compilers.
The basic famlly concept can be viewed as a tree structure of

languages in which each of the languages in a subtree is an
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extension of the language at the root of the subtree, i.e.,

L4 L5 L6
~N S e
L2 L3
N

o1

and

L4 =‘L2 U {new features of L4},

Using the famdly approach permits the development of several
application area 1anguages, uﬁnimizing the difference between the
languages and the compiler design effort. Since many of the
constructs for various applicati;;sfgsﬁfain a similarity of
design or interact with the enviromment in similar ways, experi-
ence derived from one desigm and development effort can be
directly applicable to another. Since the notation for a par-
ticular application area may not be totally clear a priori, the
family idea permits some experimentation without the cost pf'

a totally new language and compiler development.

There are sevefal approaches to minimizing the compiler
development for a family of languages. One can develop an
extensible languége and build the family out of the extensible
base language. The extension can be made either By a data
definitional facility as in CLU [LIS74] or ALPHARD [WUL76] or by
some form of full 1anguage ‘extengsion as in ELF {CHE68] or IMP
[IR0701. The famlly of compilers can be built using a translator
writing system [FEL68] or by extending some base core compiler
[BAS75b]. A combination of two of the above techniques is recom-
mended here, and they will be discussed a little more fully. .

In the core extensible compiler'abpfbach,‘the base compiier
for the base language is exﬁendgd for each new language in the
family, creating a family of compilers, each built out of the base
core compiler, in order to achieve the resulting family of compi-
lers, the core compilér must be easy to modify an& easy to extend

with new fearures.  One experience with this technique, the SIMPL
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family of languages and compilers [BAS76] has proved reasonably
successful with respect to extensibility by using specialized
software development techniques to develop the compiler [BAS75c].

Using the.core extensible compiler approach, the compiler
C(L) for a new language in the family is built from the compiler
at its father node on the tree. This is done by making modifica=-
tions (mod) to that compiler to adjust it to handle the new
features of the extension, i.e.,

C(L4) = C(L2)mod{L4—fixes} U {Lkuroutines}
where the set of L4 routines represent the code for the L4
extensions to L2 and the set of L4 fixes represent the code
for modifying the L2 compiler to add those extensions. The
key to good extensible compiler design is to minimize the
number of modifications (fixes) and maximize the number of
independent routines. _

Using a data extension facility, new data types and data
structures can be added to the language using a built-in data
definition facility. In order to achieve reasonable extensibil-
ity, the facility should be easy to use and permit efficlent
implementation. Experience with forms of data abatréction
facilities in CLU, ALPHARD, and Concurrent PASCAL [HAN?S} have
deomonstrated the benefits of this approach.

Here the effective compiler for the new langeage is again
built from the compiler at its father node on the tree. This is
done by adding a new set of library modules that represent the
new data types and structures and associated operators and access
mechanisms, respectively, of the new language, i.e.,

C(L4) = C(L2) U {L4-library}.

Each of the two techniques has different assets. The core
extengible compiler approach permits full language exteusion,
including new control structures and modifications to the run-
time environment. It offers the most efficiency and permite a
full set of specialized error diagnostics to be built in. fhe
data definitional facility can be used only for data extensions,
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but these are by far the most common in the range of subapplica-—
tions. It is also a lot easier to do and can be performed by the
average programmer, where the compiler extensions require more
speciaiized training. JIdeally, the first approach should be used
for major application extensions and the second for smaller sub-
application extensions.

Let us now apply this family concept to a large-scale
system concept and analyze how the various application-oriented
language features could be distributed across several languages
in the family. Consider the sfructural mechanics system dis-
cussed earlier. There would be a language in the family for each
numerical amalysis language, a data base management language, a
graphics language, etc. Each language would be built out of some
base language (which may in fact be the system language). The

"application 1anguage may have several extemnsions, each of which

adds on some higher level set of primitives, e.g., some set of
standardized algorithms could be defined as a éimple set of
primitives, The family tree for the languages may téke on a

form such as

L
Ay
L
Al .
LY
Ly _ . _
LNA _ Aiiiiﬁztion ‘ LDBM
Numerical guag ‘ Data Base : '
Analysis ' Management.
Language ' : o Language
System
L : Languag
- Base Language ’ : LS :
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The system is then modularized so that each module is pro-
grammed in the appropriate language, i.e., the numerical analysis
module in the numerical analysis language L., , etc. The “
application area module is programmed in the application area
language LA . However, the SOL can be just'as high an extension
of L

A
Each of these modules interfaces with one another through

as is appropriate for the soﬁhistication of the user.

an interfacing system:—The interface system-is part-of-the s
basis for the family of languages and contains among other things '
the compilers for the languages. The interface system is an
extension to the host operating‘sys;éﬁﬂféf"whatevér computey the
structured mechanics system is being developed. Together with
the host operating system, it makes up the virtuél machine in
which the modules interact. .
This kind of system offers a variety of SOLs. The unsophis-
ticated user can interface into the system at the top level L, .
The more sophisticated user can drop down. any number of levels"
to gain more power over the system by using lower level languages -

in the hierarchy.

User lewvel N
User Fevel 1

Application Numerical ~ Data base
Module Analysis Management

Module Module .

Interface System

Host Operating System ‘ = SR

It is clear that the family of lamnguages céﬁégpt permits the:
incorporation of the various capabllities required for a large-
scale scientific_programming gsystem, How does this concept rate

with regard to the criteria discussed earlier, i.e., eage of

o
. F
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expression, correctness, efficiency, portability and reusability?

With resepct to ease of expression, algorithms are written
in a notation which is speclalized to the application. In fact,
since each language 1s reasonably independent of the application
level, and primitives in one notation can be fine-tuned without
affecting the primitives of another application, this permits a
certain amount of experimentation, and primitives can be varied
with experience.,

Bigh-level, application-oriented primitives make a solution
algorithm easier to read and understand and therefore easier to
prove correct. The specialized notation raises the level of the
executing algorithm to the level at which the solution is de-
veloped. Individualized.compilers talior error diagnostics and
recovery to the particular application. .

Fach language is sﬁﬁll and relatrively simple. Compilation
of programs is very efficient, and reeompilatidn of primitive '
definitions even at runtime is reasonébly efficient, Each |
language is not complicated by a mix of features whose interac-
tion may -complicate the runtime enviromment. A more tallored
runtime environment implies more efficiegt execution at runtime.
Language features are specialized to meet the application and
doa't have to be_generalized, inefficient versions of thg feature,
Because of the hierarchicalrstructuré of ;he";énguages, the'pfo—
grammer can use lower level languages to-impfofe or fine—ﬁune‘
algorithms when necessary. . & 7 :

Higher level primitives mean mQré portable algorithms, "The
hierarchy with respect to the data abstractions permits the
localization of the nonportable aspects of thé program that
can be recoded for a2 new machine architecture in a lower-level
language in the hierarchy.. ' _

With regard to the‘development of reusable'softwére, each
application area has its own language. Thus, needed éubmodules'
are written in the target applicatibn notation rather than tﬁé

" host application notation. This makes it easier to recognize

19
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the essential function of the submodule and easier to write it
in a more generally applicable way.

Several general comments should be made about the family
appreach. Since the languages are all members of a family, it
is relatively easy to move from one language to another because
of the common base. Whole new notations do not need to be
learned. Interfacing with different languages is easier since
there is a common base language/compiler system, However, good
interfacing must be designed in from the start. The high-level
primitives camn remain fized and be redefined ar lower levels for
purposes of portability or efficiency. There are several com-
pilers to maintain although one approach might be to store one
source in macro with expansions for each of the languages, 1t
is harder to build an easily extendable/modifiable compiler
and requires more care in development. But ease of modification
should be an important property of any software. Some inefficen~
cies exist with respect to the data abstractions passed between
modules. However, these problems are being studied and the use
of an interface system may help a great deal in effecting an
efficient mechanism. '

iIv. SUMMARY

Scientific programming involves a multi~facted set of needs
which vary from small programs to large systems among several
subapplication areas. A scientific programming notation is
needed for solving these problems in an effective way where
effective means easy to express, correct, efficient, portable,
and reusable. One way to conquer the complexdity of the problem
is to use as-a notation a special applicaticn-oriented family of
languages, one language for each subproblem area, and interface
these languages into a portable system that can be built on top

of a standard operating system.
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