BIT 12 (1972), 220—241

ON A PROGRAMMING LANGUAGE
FOR GRAPH ALGORITHMS!

WERNER C. RHEINBOLDT, VICTOR R.BASILI
and CHARLES K. MESZTENYI

Abstract.

An algorithmic language, GRAAL, is defined, as an extension of ALGOL 60
(Revised), for describing and implementing graph algorithms of the type arising
in applications. It is based on a set algebraic model of graph theory which defines
the graph structure in terms of user specified morphisms between certain set alge-
braic structures over the node and arc set. Several examples of graph algorithms
written in GRAAL are included.

1. Introduction.

For the implementation of a graph algorithm on a computer, standard
algorithmic languages, such as FORTRAN or ALGOL, are, in general,
rather unsuitable. In fact, they are neither well-adapted to expressing
basic graph operations, nor to describing and manipulating most of the
data structures upon which these operations are defined. Although list
processing languages provide for a more appropriate data structure,they
tend to hide the graph theoretical nature of the algorithms besides lead-
ing to slow execution and large demands for storage. This points to the
need for the development of special-purpose languages which facilitate
the programming as well as the publication of graph algorithms.

In this article we propose such a language—named GRAAL (GRAph
Algorithmic Language)—for use in the solution of graph problems of
the type primarily arising in applications. These problems involve a wide
variety of graphs of different types and complexity; and one of the ob-
jectives in the design of GRAAL was to allow for this range of possibili-
ties with as little degradation as possible in the efficient implementation
and execution of an algorithm designed for a specific type of problem.
Our second objective relates to the need for a language which facilitates
the design and communication of graph algorithms independent of the

Received December 13, 1971. Revised February 8, 1972.

1 This work was in part supported by Grant GJ-1067 from the U.S, National Science
Foundation and Grant NGL-21-002-008 from the U.S. National Aeronautics and Space
Administration.

ON A PROGRAMMING LANGUAGE FOR GRAPH ALGORITHMS 221

computer. In line with this, we aimed at ensuring a concise and clear
description of such algorithms in terms of data objects and operations
natural to graph theory, that is, without introducing too many instruc-
tions required mainly by programming considerations. '

In order to meet these objectives, GRAAL was based on a set alge-
braic model of graph theory which allows for considerable flexibility in
the selection of the storage representation for different graph structures.
The use of sets in graph algorithms is, of course, entirely natural, if
only to express such concepts as the “set of all arcs incident with a
node”. However, in the development of a set oriented data structure
for graphs one soon faces complications with ordered pairs of elements
as they arise, for instance, in the usual definition of arcs as node pairs.
Childs [2], [3] has described a rather general approach to set theoretic
data structures. For the design of GRAAL we proceeded more simply by
using a model of graph theory in which the basic data objects are the
elements of the power sets of the node and arc set. Algebraic structures
are imposed on these power sets and the basic graph operators defining
the structure of the graph represent morphisms between these algebraic
structures. GRAAL is a modular language in the sense that the user can
specify which basic graph operators are available for any graph. This
provides for the possibility of using various different storage representa-
tions for a graph structure in line with the specific nature of the problem
at hand.

In view of its set theoretic foundation, GRAAL incorporates sets as
a new data type on the same level as integer, real, or Boolean variables.
In order to allow for an effective implementation of the standard set
operations, sets are assumed to contain only distinct elements which are
ordered by an internal key. This key constitutes the unique internal
identification for each basic element and each of these elements can in
turn be used in any graph as either a node or an arc. In addition to the
data type “set” a data structure “list’” has also been provided in GRAAL
to allow stacking.

At present GRAAL is defined as an extension of the revised ALGOL 60
language [10]. However, the language itself is relatively independent of
ALGOL and can be redefined in terms of other algorithmic languages;
in fact, a FORTRAN-based version is presently being developed.

During the past years, various graph algorithmic languages have been
described in the literature. One of the earliest efforts along this line
appears to have been a language of Tabory [17] which was based on
FORTRAN II and FLPL (FORTRAN-compiled List Processing Lan-
guage). More recently, Friedman et al. [7] (see also Friedman [6] as well

BIT 12 — 15

222 W. €. RHEINBOLDT, V. R. BASILI, AND C. K. MESZTENYI

as Pratt and Friedman {14]) developed an extension of LISP 1.5, called
GRASPE 1.5, to allow graph processing on a list processing system.
Another list-processing oriented language, HINT, has been described by
Hart [9]. The GTPL language of Read et al. [15] (see also Read [16]) is
a system of FORTRAN II subroutines designed primarily for use in
conjunction with theoretical studies of graphs. The graph language ALLA
of Wolfberg [18], [19] is a part of an interactive graphics system and
allows the solution of graph problems with the aid of a display unit.
As an aid in his work on the efficiency of graph algorithms, Chase [1]
developed a graph algorithmic software package, GASP, consisting of a
library of PL/1 procedures and run-time macros. Finally, we mention
Crespi-Reghizzi and Morpurgo [4], [5] who defined their graph language,
GEA, as an extension of ALGOL 60. Undoubtedly, there are other
similar efforts not known to us. Also, our list does not include languages
which operate only on special types of graphs, as, for instance, the
TREETRAN system of Pfaltz [12] for the manipulation of rooted trees.

2. Set theoretic foundations.

In this section, capital letters X, 8, T, etc. stand for finite sets, and the
basic set operations are indicated by the usual symbols: “U” (union),
“n’ (intersection), “~” (difference), and “A” (symmetric sum). For any
set X, the cardinality is denoted by |X|, P(X) is the power set, and we
define

2.1) PyX) = {SeP(X)||8|=k}, k=01,..,|X].

In particular, Py(X) contains only the empty set &, and, if X = {x,,...,2,}
then the members of P,(X) are the n atomic sets {;},...,{z,}.

It is well-known that under union, intersection, and complementation
(in X), P(X) becomes a Boolean algebra with the members of P,(X) as
generators. To obtain another algebraic structure, let GF(2) be the bi-
nary Galois field with the integers 0,1 as elements. Then P(X) becomes
a vector space over GF(2) if the symmetric sum is used as addition and
the scalar product is defined by AS=¢ for =0 and AS=S§ for A=1.
The elements of P,(X) now form a basis.

For any sets X,Y we denote by B(X,Y) the class of all morphisms
y: P(X) - P(Y) between the Boolean algebras P(X),P(Y). Any pe
B(X,Y) is uniquely characterized by the image sets y{x} € P(Y) of the
. generators {z} € Py(X) and

(2.2) w8 = Uy}, vSePX).

zeS

ON A PROGRAMMING LANGUAGE FOR GRAPH ALGORITHMS 223

Correspondingly, we define L(X,Y) as the class of all linear mappings
y: P(X) - P(Y) between the vector spaces P(X),P(Y). Then, instead
of (2.2), we have for any y € L(X, Y) the representation
(2.3) pS = Ay}, VS8ePX).
xesS

Let G be a graph with node set V and arc set A. The elements of P(V)
and P(4) constitute the basic data objects for all operations on G under
GRAAL and the structure of the graph is defined by certain Boolean
or linear mappings between the two power sets. In the remainder of this
section we define the basic graph operators presently included in GRAAL.,

An undirected pseudograph is a triple G'=(V,A4,p) consisting of a ver-
tex (or node) set V, an arc set 4, and an incidence operator

(2.4) (i) pe B(A4,V), (ii) p{a}e Py(V)UPy(V), Vaecd.

Thus, for any arc a,¢{a} is either the two-element subset of V consisting
of the two distinct endpoints of a, or an atomic subset of ¥V, in which
case a is a self loop.

Following Harary [8] and others, we speak of a multigraph if in (2.4)
the condition (ii) is replaced by (ii’) g{a} € Py(V), Va € A. The unquali-
fied term graph is used if, in addition to (ii’), the restricted mapping
@: Py(A4) — Py (V) is one-to-one.

For any undirected pseudograph G=(V,4,¢) the star operator is the
Boolean mapping

(2.5) ceB(V,4), o} ={acAd|vepfa}}, VvelV,

while the standard boundary operator & and coboundary operator 6 are
defined as the linear mappings

(26) 0cL(4,V), oa} = (plall—Dpla}, Vacd
(2.7) de L(V,4), 6{v} = {aco{v}||pla}|=2}, VveV.

Hence, for any node v,0{v} is the set of all arcs of G which are incident
with v. The boundary operator ¢ maps each arc into the set of its two
endpoints, provided they are distinct, and otherwise into the empty set.
Finally, 6{v} consists of all arcs incident with v excluding any self loops.
Other operators are possible and may be included later. Each one of
these operators can be used in place of ¢ to characterize graphs of a
specific type. In fact, note that ¢ has the properties
(2.8) (i) ce B(V,4), (i) Pyd) = U o}

veV
(iii) ofu}n ofv} nofw} = G for any distinct w,v,we V.

224 W. C. UHEINBOLDT, V. R. BASILI, AND C. K. MESZTENYI

Conversely, if for any sets V, A the mapping o satisfies (2.8), then ¢ is
the star operator of the pseudograph G=(V,4,p), where

peB(A,V), pla} = {veV|aco{v}], Vacd.

Correspondingly, since on a multigraph G we have d{a}=¢{a}, ac 4,
and 6{v}=0{v}, ve V, it follows that the incidence structure of any
multigraph can be defined in terms of the boundary operator or the co-
boundary operator.

In a graph @ each arc is uniquely determined by the two element set
of its endpoints, and hence the arcs are losing some of their own identity.
Accordingly, it is often expedient to work exclusively with the nodes.
For this we introduce for a graph G=(V,A4,p) the adjacency operator

(2.9) w«eB(V,V), «{v} = {ueV|Iacol}, pla}={u,v}}, VveV.

Thus, « produces for each node v the set of all nodes « which form with
v the (distinct) endpoints of some arc of G.

The adjacency operator again characterizes the incidence structure
of the graph G. In fact, if V is any set and the mapping « satisfies
(2.10) (i) «eB(V,V), (i) véafv}, VveV

(i) e «{v} if and only if vex{u}, VYu,veV,

then G=(V,A4,p) with

4 = ({0} e PyY) |ueafo})
peBA,V), pla} = {u,v} if a = {u,v}, Vaecd

is a well-defined graph with « as its adjacency operator. We call (V,«)
the node form representation of G.

The definitions of the various operators are easily carried over to
directed graphs. A directed pseudograph shall be a quadruple G=
(V,A4,p,,p_) consisting of a node set ¥, an arc set 4, as well as a positive
and negative incidence operator

(211) ¢,9-€BA4,7), ¢{a}, p{a}ePy(V), VYaecd.

In other words, ¢, {a} and ¢_{a} are atomic subsets of P(V) consisting
of the initial and terminal nodes of a, respectively. In many cases, it is
convenient to use the combined incidence operator

(2.12) peBA,V), ¢{a} = ¢ {a}ue {a}, Vaed.
As in the undirected case we speak of a directed multigraph if {a} € Py(V),

ON A PROGRAMMING LANGUAGE FOR GRAPH ALGORITHMS 225

for all @ € 4, and of a directed graph (digraph) if, in addition, ¢: Py(4) -
P,(V) is one-to-one.

The positive and negative star operators of the directed pseudograph
G are defined by

(2.13) ¢,eB(V,4), o, {v} = {acd|v=9p.fa}}, VveV,
o_eB(V, A) o_{v}={acd|v=9p_{a}}, VveV,

and we introduce also the combined star operator
(2.14) o€ B(V,A4), o{v} = fv}uoc.{v}, Vvel.

Thus, ¢, {v} consists of all the arcs beginning at » and ¢_{v} of those
terminating at that node. Again, it follows immediately that ¢, and o_
can be used to characterize the incidence structure of a directed pseudo-
graph. For this, conditions (i) and (ii) of (2.8) have to hold for both o,
and o_ and (iii) can be replaced by (iii') o, {u}ne {v}=0, ¢_{uin
o_{v}=0 for any uvin V.

The positive and negative boundary and coboundary operators of a
directed pseudograph are now those linear mappings which coincide
‘with the incidence and star operators on the appropriate family of
atomic sets:

(2 15) a+’a EL A V)’ +{a} = (P+{a/} 9 {(Z} = Q- {a} VaEA ’
8,,0_e L(V,4), 6,.{v} = o.{v}, 6_{v} =0 {v}, VveV.
It is natural to define also the combined mappings
(2.16) 0eL(A,V), ola} = 0,.{a} A0 _{a}, Vacd,
de L(V,A4), 6{v} =0.{v} Ad_{v}, VvelV.
Thus 9{a} is again the set of the endpoints of @ if these endpoints are dis-
tinet, and the empty set, if they are not. Similarly, {v} is once more the
set of all arcs incident with v excluding all self loops.
Finally, we define for a digraph G'=(V,4,p,,p_) the positive and
negative adjacency operators by the relations
oa.,x_eB(V,V)
(2.17) 0 v} = {ueV|daco,fv}, u=¢p_{a}}, VveV
axfv}={ueV|Iaco v}, u=¢.{a}}, VveV.
Then the combined adjacency operator
(2.18) xeB(V,V), afv} = «, fr}ua_{v}, VYveV

has again exactly the same meaning as in the undirected case. Moreover,

226 " W. C. RHEINBOLDT, V. R. BASILI, AND C. K. MESZTENYI

«, and «_ may be used to characterize the incidence structure of a di-
graph. Here conditions (i) and (ii) of (2.10) have to hold for both «,
and «_ and (iii) is replaced by (iii’) » € &, {v} if and only if v € x_{u},
Vu,v e V. This defines the node form representation (V,x,,x_) of a
digraph.

3. Syntax and semantics of GRAAL.

GRAAL is defined as an extension of ALGOL 60. The formal descrip-
tion presented here is simply a supplement to the syntactic and semantic
definition in the Revised ALGOL Report [10]. Each of the following
subsections begins with some BNF grammar rules of ALGOL which are
extended in GRAAL. The extensions are the metalinguistic symbols
appearing after the double slash (||). The rest of the subsection then con-
tains the syntactic definition of these new metalinguistic variables along
with some examples and a verbal explanation of their semantics. The
grammatic rules of ALGOL unaffected by the definition of GRAAL are
not repeated here.

A. Declarations

Syntax
{type) ::= real | integer | Boolean || set | alpha
(declaration) ::= (type declaration) | {array declaration |

(switch declaration)y | {procedure declaration} ||
{graph declaration) | {list declaration) | {property declaration}
{graph declaration) ::= graph (graph list)
{graph list) ::= {graph specification) | {graph list), {graph specification)
{graph specification) ::= {graph zdent@f@er}[(mteger)] |
{graph identifier)[{string)]
{graph identifier) ::= (identifier)
(list declaration)y ::= list {list list) | (local or own type) list (list list)
(list Uist) 2= (list identifier) | (list list), {list identifier)
{list identifier) 1= (identifier)
{property declaration) ::= property {(property listy |
{local or own type) property {property list)
{property listy ::= (property identifier) |
{property listy, {property identifier)
{property identifier) ::= (identifier)

ExaMpPLES.
set 4, B, C; graph Q[1], H[‘directed pseudograph’]; real list a;
set list SL; real property capacity; set property L;

ON A PROGRAMMING LANGUAGE FOR GRAPH ALGORITHMS 2217

Semantics

Two new data types are introduced. The alpha variable represents the
normal alphanumeric variable already available in most implementa-
tions of algebraic languages. In GRAAL, sets constitute a new basic
data type rather than a data structure. An atomic set (a-set) is a set
consisting of one item, and any set is either empty or a union of atomic
sets; (see subsection C below).

There are three new data structures, namely, graphs, lists, and proper-
ties. Graphs represent specific data structures together with certain
operations for manipulating them. The graph declaration identifies the
type of data structure used and the family of graph operators available
with it. The language is modular in the sense that, in general, only some
of the possible graph operators are usable with any specific graph.
Four possible modules are identified in subsection C below.

A list is a doubly-open, linked list structure which may be used as a
stack or a queue. Its order is established by the sequence in which the
user links the values of the variables of the declared type. It offers a
locally dynamic alternative to the array for storing variables.

A property may be associated with any atomic set. The property
declaration establishes the type of the property. When no type declara-
tor is given, the real type is understood. The property for a particular
atomic set exists and may be referenced only after it has been assigned
a value (i.e., storage for a property of an atomic set is dynamically
allocated). If a property is referenced which does not exist for the speci-
fied atomic set, then a default value is returned.

B. Variables
Syntax
(variable) ::= {simple variable) | {subscripted variable) ||
{property variable)
{property variable) ::= {property identifier)- ({variable))

ExAMPLES.
capacity-(x) = 2.3; m := label:(y)

Semantics

The property variable requires an argument which is enclosed between
the “dotted” left parenthesis ‘.(‘ and the right parenthesis ’)” and should
be an atomic set. If a nonatomic set is referenced in the argument, the
first element of that set is taken as the default argument. The value of

228 W. C. RHEINBOLDT, V. R. BASILI, AND C. K. MESZTENYI

the property variable is not defined if any argument other than a set
-variable is specified.

C. Assignment Statement
Syntax

{assignment statement) ::= (left part list){arithmetic expression)
(left part listy(Boolean expression) ||
(left part list){set epxression) | (left part list) empty
(left part list)(list expression) | (left part list) nil

(left part list) ::= (left part List)(left part)

left part) ::= (variable) : = | (procedure identifier) : = || (list identifier) : =
(expression) ::= {arithmetic expression) | {designational expression)
{Boolean expression) || {set expression) | (list expression)

{function designator) ::= {procedure identifier){actual parameter part) ||
(list operator designator)

(set expression) ::= (set union) | (set expression) ~ {set union)

(set union) ::= (set sum) | {set union) U {set sum)

(set sum) ::= (set intersection) | {(set sum) A {set intersection)

{set intersection) :: = (set primary) | (set intersection)y n {set primary)

(set primary) ::= {variable) | ((set expressiony) | {function designator) |
(subset designator) | (graph designator) | {a-set designator)

(subset designator) ::= subset ({simple variable), {Boolean expression))
subset ({simple variable) in (set expression), (Boolean expression))

{a-set designator) :: = create | create ({atom def list)) |
atom ({simple arithmetic expression))

{atom def list) ::= {atom definition) | {atom def list), {atom definition)

{atom definition) ::= (property identifier) : {arithmetic expression) |

{property identifier) : {Boolean expression) |
{property identifier) : {set expression)

{graph designator) :: = (basic graph operator) ({graph identifier)) |
{structure operator) ({graph identifier), {(set expression))

(basic graph operator) ::= arcs | nodes

{structure operator) ::= adj | padj | nadj | inc | pinc | ninc | star | pstar |
nstar | bd | pbd | nbd | cob | pcob | ncob

(list expression) ::= (list element) | (list expression) o (list element)

(list element) ::= {number) | {variable) | (list identifier) |
(Cexpression)) | {function designator)

(list operator designator) 1= (list operator) ({list expression})

(list operatory := £ |fd |1]1d

ON A PROGRAMMING LANGUAGE FOR GRAPH ALGORITHMS 229

ExamprEs.
S:=XuY¥YnC~DAM;L:=>bdGX)ncob(G,Y);
M := nodes(G) U arcs(();

S := subset (z in star(G, Y), cap-(z)>0); S := S U create;

x := create (name: %, cap: k); X := atom (1) U atom (2) U atom (i + 1);
8 := subset (z, cap.(x) > 0 A cap.(x) < 20); L := Loao3o(a+b)ocap.(x)
Semantics

A set expression is a rule for creating, referencing, and manipulating
sets. Hach atomic set carries a sequence number which is assigned to it
at the time of its creation. A set is a union of atomic sets ordered in
ascending order of their sequence number. This ordering allows for an
efficient manipulation of sets. All sequence numbers assigned to atomic
sets are retained in an element sequence. This is an ordered internal
structure serving the dual purpose of cataloging the atomic sets which
have been created so far and of providing the linkage between an atomic
set and the properties which are assigned to it. It is envisioned that the
#th location of the element sequence is the start of the list of property-
value pairs associated with the ith atomic set. A property-value pair is
added to the list when a value is assigned to a property for an atomic
set at execution time.

The create operator may or may not include an argument. If given,
the argument is a list of pairs each consisting of a property and of a
variable designating a value for it. The element sequence is searched for
an atomic set for which all the named properties exist and are presently
assigned the specified values. If a (complete) match is found, the create
operator returns the corresponding atomic set. If no match (or only a
partial match) occurs, a new element with the next sequence number
and with the stated property values is added to the element sequence
and an atomic set earrying this sequence number is ereated and returned.
If the create operator carries no argument, only the last action occurs,
that is, a new element with the next sequence number is added to the
element sequence and an atomic set with this new number is returned.

The atom operator returns the atomic set whose sequence number is
given by the arithmetic expression in its argument. If no atomic set
with this number exists or if the expression is not integer-valued, the
empty set is returned.

The subset operator constructs a set consisting of atomic sets which
satisfy the specified Boolean expression. Depending on the form of the
argument of the subset operator, either all atomic sets cataloged in the

230 W. C. RHEINBOLDT, V. R. BASILI, AND C. K. MESZTENYI

element sequence are tested or only those contained in the set specified
by the given set expression.

As stated earlier, different kinds (or modules) of graphs can be distin-
guished by the data structure used to represent them and/or by the
family of graph operators provided with this structure. The specific set
of modules available depends upon the implementation. For example,
four modules which are readily distinguishable in terms of their graph
operators are mod 1 ‘directed pseudograph’, mod 2 ‘undirected pseudo-
graph’, mod 3 ‘directed graph in node form’, and mod 4 ‘undirected
graph in node form’.

The graph operators construct sets on the basis of a given graph
structure. The basic graph operators nodes or arcs return the set con-
sisting of all atomic sets that were assigned either as nodes or as arcs
to a specified graph. The structure operators require as an argument a
set expression which designates either a set of nodes or of arcs of the
specified graph. The various possible operators were formally defined in
Section 2; those presently included in the language are the incidence
operators inc, pinc, ninc; the star operators star, pstar, nstar; the
boundary operators bd, pbd, nbd; the coboundary operators cob, pcob,
ncob; the adjacency operators adj, padj, nadj. If for any of these opera-
tors an argument set is specified which contains an atomic set not be-
longing to the required node or arc set of the graph, the empty set is
returned as a default value.

The binary set operators have the standard set theoretic meaning. In
increasing precedence order they are difference (~), union (U), symmetric
sum (A), and intersection (n). The ordering of sets makes the execution
of these operations fairly efficient.

The semantic interpretation of the ALGOL assignment statements
remains valid for the extended definition of these statements in GRAAL.
In particular, the type associated with all variables and procedure identi-
fiers of a left part list must be the same. Moreover, if the type of the
arithmetic expression differs from that associated with the variables and
procedure identifiers, appropriate transfer functions are to be invoked.
The specific form of the various new transfer functions is left to the
implementation. A reasonable possibility for transfers between set type
and real/integer type might be as follows: If « is a set variable and y
an integer or real variable, then the statement x:= y is equivalent
with z := atom(entier(y)), while y := x is equivalent with y := count(x)
where count is a standard function defined in subsection H. As in most
algebraic languages, including ALGOL, the copy rule applies to an as-
signment, i.e., in the simple set assignment statement, S := 7, a copy

ON A PROGRAMMING LANGUAGE FOR GRAPH ALGORITHMS 231

of T is assigned to S. Thus, each set corresponds to a unique set variable.

As stated earlier, a list structure is basically a stack or a queue. To
build the list, items are concatenated together. When a list of n items
is concatenated with a list of m items, the resulting list contains n+m
items. To remove items from a list, there are four operators: f returns the
first item of a list, while fd yields the first item and deletes it from the
list; similarly 1 returns the last item of a list, and 1d gives the last item
and deletes it from the list. A list must be declared as to type; if no
declarator is given, the real type is understood. A list operates similar
to an array in that a copy of each item is stored in it.

D. Unlabeled Basic Statement
Syniax

(unlabeled basic statement) ::= {assignment statement) | {go to statement) |
(dummy statement) | {procedure statement) || {assign statement) |
{detach statement)

assign statement) ::= assign ({graph identifier), (node)) |
assign ({graph identifier), {(node)— (node)) |
assign (({graph identifier), {node) — (node) to {arc))

(detach statement) ::= detach ({graph identifier)) |
detach ({graph identifier), (set expression)) |
detach ({graph identifier), (set expression) —{set expression))

(mode) ::= (variable) | {a-set designator)

arc) ::= (variable) | {a-set designator)

ExampLES.
assign (G, nl—n2 to al); assign (G, n—m); assign (G, n);
detach (G); detach (H, Su7T); detach (H, S-T)

Semantics.

The assign statement constructs the incidence structure of a graph.
It appears in three forms: one assigns a node to a graph; another assigns
a pair of nodes to a graph in node-form, with the connecting arc implied;
and a third assigns a pair of nodes as end points to the specified arc.
If the graph is directed, the first node specified is the initial node. An
error results if a previous assign statement is contradicted, an atomic
element is assigned as a node and an arc in the same graph, or a non-
atomic set is assigned as a node or arc.

The detach statement removes elements from a graph. It appears in
three forms. One detaches all nodes and arcs of a graph. Another detaches

232 W. C. RHEINBOLDT, V. R. BASILI, AND C. K. MESZTENYI

all the elements of a specified set from a graph (if the element is an are,
it is simply removed; if it is a node, it is removed along with all arcs
incident with it). A third form detaches all arcs connecting two specified
sets of nodes. If the graph is directed, the first set is taken as the set of
initial nodes.

E. Statement
Syntaz

{statement) :: = {unconditional statement) | {conditional statement) |
{for statement) || {for all statement) | {while statement) |
(removal statement)

(conditional statement) ::= (if statement) |
(if statement) else (statement) | {if clause) (for statement)

(label) : {conditional statement) || {if clause) {for all statement)

(for all statement) ::= {for all clause) {statement) |
(label) : {for all statement)

{for all clause) ::= for all {for all element) do

{for all element) ::= {set for all element) | {list for all element)

(set for all element) ::= {variable) in (set expression)

(list for all element) ::= (variable) in (list expression)

(while statement) ::= (while clause) (statement) |
(label) : {while statement)

(while clause) ::= while (Boolean expression) do

(removal statement) ::= delete ({set expression)) |

erase ((property identifier), {set expression)) |
erase ((property identifier)) | (label) : (removal statement)

ExamprES.
for all z in X n Y do if capacity.(x) > 0 then M := M U x;
for all ¢ in List do n:= n+1; while (S < T)do T := §;
delete (nodes (@) U arcs (()); erase (capacity, S); erase (length);

Semantics

The for all clause causes the statement § which follows it to be exe-
cuted zero or more times, once for each element in the specified set or
list. The dummy variable in the for all clause takes on as its value the
value of every element i the set or list, one at a time in sequence. The
while clause causes the statement S which follows it to be executed zero
or more times, as long as the value of the Boolea,nvexpression is true.
Control passes to the next statement when the value of the Boolean

ON A PROGRAMMING LANGUAGE FOR GRAPH ALGORITHMS 233

expression is false. The erase statement removes the specified property-
value pair from all members of the given set. If no set is specified, the
property is removed from all the atomic sets for which it exists. The
delete statement removes all atomic sets in the designated set as well
as their associated properties from the catalog in the element sequence.
If a removed atomic set is referenced, an error condition occurs.

¥. Boolean Primary

Syntax

(Boolean primary) ::= (logical value) | {variable) | {function designator) |
(relation) | ((Boolean expression) || {(set relation)

(set relation) ::= {extended set expression)
(set relational operator) {extended set expression)

extended set expression) ::= {set expression) | empty

(set relational operator) === | & | < | 2

ExamMpPLES

Xc¥Y; X =17;7Y + empty; capacity.(x) = 2;

Semantics

The metalinguistic variable {(Boolean primary) has been extended to
include relations among sets. The set relational operators equal (=), not
equal (), contained in (< or 2). In this connection the set expression
has been extended to include empty in order to check if a set is empty.

G. Procedures
Syntax
(specifier) ::= string | {type) | array | {fype) array |
label | switch | procedure | {fype) procedure ||
list | (type) list | property | {type) property | graph
actual parameter) ::= (string) | {expression) | {array identifier) |
(switch identifier) | {procedure identifier) ||
(property identifier) | {graph identifier)

ExampLES
procedure fest (G, capacity, List);
real list List; graph (; integer property capacity;
set procedure S(G, T, 4);
graph G; set T'; array 4;
test (Graph, Property, List); X := S(Graph, Set, Array)u M ;

234 W. C. RHEINBOLDT, V. R. BASILI, AND C. K. MESZTENYI

Semantics

The specifiers required in procedure and function declarations, as well
as the actual parameters needed for the corresponding statements, have
been extended in a normal way to include the new data types and struc-
tures. ’

II. Standard Funciions

Add to the list of standard functions:

size (T') Number of elements in the set or list. 7'

parity (T) True if size (T') is odd, else false, where 7' is a set or list

index (x, T') Index of the place taken by the element x in the set or
list 7

elt 3, T) The ith element of the set or list 7'

check (f(S)) True if the property variable f is defined on each element
of the set § and false otherwise

count (8) Sequence number of a given a-set S. If § is not an a-set,
the sequence number of its first element is returned.

maxcount Sequence number of the last a-set created

Each of these standard functions is programmable as a procedure in
GRAAL.

4. Examples of GRAAL programs.

We present now several typical graph algorithms in the form of GRAAL
procedures. The principal aim here is to illustrate some of the main
features of the language without attempting at this time to optimize
the algorithms or even to include all possible error checks.

GRAAL does not require any specific format for the input of a graph.
In fact, once typical input/output instructions have been added to
ALGOL, any of the standard methods of representing graphs may be
used to read in the structure. We give here only two simple examples.

procedure readone (G);

graph G; .

comment The procedure assumes that the first record provides the sizes n
and m of the node and arc set and that then m records are swpplied each
containing three integers. Any such triple (k,1,7) satisfies. 1<k=m,
14,5 £ n and signifies that the k-th arc has the i-th node as initial, and
the j-th node as terminal vertex;

begin integer n, m, k, 1, j, 1; set z;

ON A PROGRAMMING LANGUAGE FOR GRAPH ALGORITHMS 235

read (n, m);
for { = 1 step 1 until n+m do z := create;
for [= 1 step 1 until m do
begin read (k, ¢, j); assign (G, atom(s) —atom(j) to atom(n +k)) end
end
procedure readtwo (G, name);
graph (; alpha property name;
comment 4 procedure ‘read (buffer)’ is assumed to be available which al-
lows the input of a variable-length record of alphanwmeric words into
the alpha list buffer. The undirected graph @ is represented in node form
and 1s read-in as sequences of nodes forming paths in G. The input is
terminated with a record containing the single word ‘last’;
begin alpha list buffer; set z, y;
read (buffer);
while f(buffer) + ‘last’ do
begin x := create (name: fd(buffer));
if size(buffer) = 0 then assign (G, x)
else while size(buffer) + 0 do
begin y := create (name: fd(buffer)); assign (G, x—y); := y end;
read (buffer)
end
end
The next three examples concern the derivation of some simple new
graphs from an existing pseudograph G.
procedure subgraph(G, N, SubG);
graph G, Sub@; set N;
comment T'he procedure sets up the subgraph of G which has a given set N
of nodes of G as node set;
begin set 8, z, ¥, a;
while N 4+ empty do
begin x := eli(1, N); S := subset (a in star (G, z), inc (@, a) < N);
N:=N ~ z; '
if § = empty then assign (Sub@, x) else for all ¢ in S do
begin y := inc(G, a) ~ x; if y = empty then y := x;
assign(Sub@, x —y to a)
end
end
end
procedure linegraph (G, Line@);
graph G, Line@;
comment This procedure sets wp the line graph of G, that is, the graph which

236 W. C. RHEINBOLDT, V. R. BASILI, AND C. K. MESZTENYI

has the arcs of G as nodes and in which two nodes are adjacent whenever
the corresponding arcs of G are;
begin set S, R, z, a, b;
for all z in nodes(G) do
begin S := R := star (G, z);
for all ¢ in S do
begin if x = inc (G, a) then assign (LineG, o —a to create);

R:=R ~ a;
for all b in R do assign (Line@, a—b to create)
end
end
end

procedure condense (@, L, ConG, ref);
graph G, Con@; set list L; set property ref;
comment The list L is assumed to contain o family of sels representing o
partition of the node set of G. The procedure sets-up a condensed graph
which has the members of L as nodes and in which two nodes are adjacent
if there is at least ome arc between the corresponding seis of nodes in G.
The property ‘ref’ of the nodes of ConG remembers the sets of L;
begin set S, T, z;
while size(L) 4 0 do
begin S := fd(L); x : = create (ref:8); assign (ConG, x);
for all T in L do
if inc (G, star(@, 8)) N T + empty then assign (Con(, x —create
(ref: T) to create)
end
end
The following four algorithms relate to the analysis of the topological
structure of a pseudograph.
procedure cocycles (G, C);
graph G; set list C;
comment This procedure determines a basis for the cocycle space by finding
the node sets of all connected components of G
begin set N, 4, S, T';
N := nodes (G);
while N + empty do
begin 4 := T := empty; 8 := eli(1, N);
while § & empty do
begin T :=TuS; A:=star (G,8) ~ 4; §:==inc(G, A) ~ T end;
C:=CoT; N:=N~T
end
end

ON A PROGRAMMING LANGUAGE FOR GRAPH ALGORITHMS 237

procedure spaniree (G, u, Tree);
graph G, Tree; set u
comment 7'his procedure generates a directed spanning tree with root u
for the connected component of G containing the node u;
begin set S, T', w, z, y, a;
assign (T'ree, u); S:= u; T := cob (G, u);
while 7' & empty do
begin for all ¢ in 7' do
begin w:= bd(G, a); y:= w ~ §;
if ¥ + empty then
begin 8 := SUy; x:= w ~ y; assign (Tree, x—y to a) end
end; ‘
T := cob (G, S)
end
end
procedure fundcycles (G, T'ree, Cycles); -
graph G, Tree; set list Cycles;
comment ‘Tree’ is assumed to be a directed spanning tree of one of the com-
ponents of G. From this spanning tree the procedure gemerates, in a
standard manner, a basis for the cycle space of the particular component;
begin set X, S, T, a;
X := star (G, nodes(T'ree)) ~ arcs (T'ree);
for all ¢ in X do
begin S := a; T := inc(@G, a);
if size(T') = 1 then
while 7' & empty do
begin 7' := ncob (T'ree, T);
if T + empty then
begin S:= S A T; T := pbd (Tree, T') end
end;
Cycles := CyclesoS
end
end :
procedure fundcut (G, Tree, Cuis);
graph @, Tree; set list Cuts;
comment Again ‘Tree’ is assumed to be a directed spanning tree of a com-
ponent of G, and from ‘Tree’ the procedure gemerates in the standard
manner o basis of the coboundary space of the component;
begin set a, S, T';
for all ¢ in arcs (7'ree) do
begin S := empty; T := a;

BIT 12 — 16

238 W. C. REHEINBOLDT, V. R. BASILI, AND C. K. MESZTENYI

while 7' 4- empty do
begin § := Sunbd (Tree, T); T := pcob (T'ree, 8) ~ T end;
l: Cuts := Cutsocob (G, S);
end
end

Note that instead of the statement I, it might be more efficient to store
in ‘Cuts’ merely the node sets § and to generate the actual cut sets
cob (G, S) only when needed.

We end this section with a larger program to show the interplay
between different features of GRAAL. For this we chose a shortest-path
algorithm given by Pohl [13] involving a bidirectional search.

procedure shortpath (G, start, term, length, inf, m, path);
graph G; set start, term; real property length; real inf, m; set list path;
comment G is o digraph in which each arc has a given nonnegative length.
The procedure finds a shortest path from node ‘start’ to node ‘term’ and
returns it in the list ‘path’. If no such path exists, the list will be empty.
The real number ‘inf’ represents infinity, it is assumed to be larger than
the swm of the length of all arcs of G. The length of the final path will be
in ‘m’, and this number will be equal to inf, if no path exisis;
begin set 8, SR, T, TR, w, x, y, 2, w; real a, b, smin, tmin; boolean flag;
real property sdist, tdist; set property in, out;
comment T'he notation s as follows: S (or T) set of nodes reached from
‘start’ (or ‘term’). SR (or TR) nodes not in S (or T') but reachable there-
from along one arc. sdist.(x) (or tdist.(x)) current distance between
‘start’ (or ‘term’) and x. in.(x) (or out.(x)) current arc leading to (or
from) z. smin (or tmin) minimal distance from ‘start’ (or ‘term’) to
SR (or TR);
comment Initialization;
m = smin := tmin := sdist.(start) := tdist.(term) := 0;
S:= S8R := start; T := TR := term; flag := false;
comment Insert a fictitious arc w from start to term;
w 1= create; length.(w) : = inf; assign (G, start —ilerm to w);
comment Test for completion and decision to proceed either from start or
term;
decide: if m = inf then go to nopath; if flag then go to found;
if smin < tmin then go to fromstart else go to fromterm;
comment Proceed from start and find minimal distance in SR;
fromstart: m := inf; path := nil;
for all z in SR do

ON A PROGRAMMING LANGUAGE FOR GRAPH ALGORITHMS 239

if sdist.(x) < m then begin m := sdist.(x); path := x end
else if sdist.(x) = m then path := xopath;
smin i = m;
comment Transfer set memberships and determine current distances and
in arcs;
for all x in path do ,
begin if (—flag) A (x<T) then begin flag : = true; u := x end;
SR:=8R ~z; §:=8Sux;
for all z in pcob(@,) do
begin y := nbd(@, z); b : = m+length.(2);
if check(sdist.(y)) then o := sdist.(y) else a := inf;
if @ > b then begin sdist.(y) := b; in.(y) := 2; SR := SRUy end
end
end;
go to decide;
comment Proceed from term;
Sfromterm: m .= inf; path := nil;
for all z in TR do
if idist.(x) < m then begin m := {dist.(x); path := x end
else if {dist.(x) = m then path : = zopath;
tmin := m;
for all z in path do
begin if (—flag)a (x<S) then begin flag : = true; u := z end;
TR:=TR ~z;T:=Tuux;
for all z in ncob(@, z) do
begin y := pbd(G, 2); b : = m+length.(z);
if check(tdist.(y)) then a : = tdist.(y) else @ := inf;
if @ > b then begin tdist.(y) := b; out.(y) := z; TR := TR Uy end
end
end;
go to decide;
comment No path;
nopath: path := nil; go to ewit;
comment Breakthrough, establish shortest path;
SJound: m := sdist.(u)+tdist.(w); y 1= u;
for all x in 7' n (S v SR) do
begin a : = sdist.(x)+ tdist.(x);
if a < m then begin m := a; y := z end
end;
U= x:=y; path := u;
while x # start do

240 W. ¢. RHEINBOLDT, V. R. BASILI, AND C. K. MESZTENYI

begin z := in.(x); = : = pbd(G, 2); path := wozopath
end;

while y = term do
begin z : = out.(y); ¥ := nbd(G, 2); path := pathozoy
end;

comment Remove fictitious arc and exit;

exit: remove(w)

end

o

10

11

12

13.

14

15

16

17

REFERENCES

. 8. Chase, Analysis of algorithms for finding all spanning trees of a graph, Department
of Computer Science Report 401, Univ. of Illinois, Urbana, Illinois, 1970.

. D. Childs, Feasibility of a set-theoretic data structure—a general structure based on a
reconstituted definition of a relation, Proc. IFIP Congress 68 (1968), 162-172.

. D. Childs, Description of a sei-theoretic data structure, Proc. Fall Joint Computer Con-
ference 68 (1968), 557-564.

. 8. Crespi-Reghizzi and R. Morpurgo, 4 graph theory oriented ewtension of ALGOL,
Calcolo 5 (1968), 1-43.

. 8. Crespi-Reghizzi and R. Morpurgo, 4 language for treating graphs, Coram. ACM 13
(1970), 319-323.

. D. Friedman, GRASPE graph processing: a LISP extension, Computation Center
Report TNN-84, Univ. of Texas, Austin, Texas, 1968.

. D. Friedman, D. Dickson, J. Fraser, and T. Pratt, GRASPE 1.5, a graph processor
and its application, Department of Computer Science Report RS1-69, Univ. of
Houston, Houston, Texas, 1969.

. F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.

. R. Hart, HINT: a graph processing language, Institute for Social Science Research
Technical Report, Michigan State Univ., East Lansing, Michigan, 1969,

. P. Naur (ed.), Revised report on the algorithmic language ALGOL 60, Comm. ACM 6

(1963), 1-17.

. J. Nievergelt, Software for graph processing, SIGSAM Bulletin No. 14, 1970.

. J. Pfaltz, TREETAN—A FORTRAN IV subroutine package for manipulation of
rooted trees, Computer Science Center Technical Report 65-23, Univ. of Maryland,
College Park, Maryland, 1965 (revised 1970).

I. Pohl, Bi-directional and heuristic search in path problems, Computer Science Depart-
ment Technical Report CS-136, Stanford Univ., Stanford, California, 1969.

. T. Pratt, and D. Friedman, A language extension for graph processing and its formal
semantics, Comm. ACM 14 (1971), 460467,

. R. Read, C. King, C. Ca:dogan, and P. Morris, The application of digital computer
techniques to the study of graph-theoretical and related combinatorial problems, Com-
puter Centre Report on Project 1026-66, Univ. of the West Indies, Jamaica, 1969.

. R. Read, Teaching graph theory to o computer, in “Recent Progress in Combinatorics”,
Academic Press, New York, New York, 1969.

. R. Tabory, Premiers elements d'un langage de programmation pour le traitement en
ordinateur des graphes, in “Symbolic Languages for Data Processing”, Gordon and
Breach, New York, New York, 1962.

ON A PROGRAMMING LANGUAGE FOR GRAPH ALGORITHMS 241

18. M. Wolfberg, An interactive graph theory system, Moore School of Electrical Engineer-
ing Report 69-25, Univ. of Pennsylvania, Philadelphia, Pennsylvania, 1969.

19. M. Woliberg, An interactive graph theory system, Technical Report CA-7003-0211,
Massachusetts Computer Associates, Wakefield, Massachusetts, 1970.

COMPUTER SCIENCE CENTER
UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND
USA

