SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 5, 269-278 (1975)

A Transportable Extendabl‘yej Compiler*

VICTOR R. BASILI AND ALBERT J. TURNER
Computer Science Department, University of Maryland College Park, Maryland U.S.4.

SUMMARY

This report describes the development of a transportable extendable self-compiler for the
language SIMPL-T. SIMPL-T is designed as the base language for a family of languages.
The structure of the SIMPL-T compiler and its transportable bootstrap are described.
In addition, the procedures for generating a compiler for a new machine and for boot-
strapping the new compiler on to the new machine are demonstrated.

KEY WORDS Transportable Extendable Compiler Bootstrapping: SIMPL-T SIMPL family

INTRODUCTION

The differences in computer architecture and in operating systems make the development
of a transportable compiler for a programming language a formidable task. This paper
describes the development of a reasonably transportable and extendable compiler for the
language SIMPL-T'!

Most compllers that are designed to be transportable are self-c ompiling; that is, they
are written in the language that they compile. The NELIAC compilers? were among the
first self-compiling compilers, and more recent efforts include the XPL3 ¢ and BCPL3
compilers. The effort required to transport these compilers includes the rewriting of the
code generation portion of the compiler to generate object code for the new machine and
the design and programming of run-time support routines. An existing implementation
can then be used for the debugging and generation of a compiler for the new machine. As
an alternate procedure, the BCPL design allows the bootstrap process to be performed
without using an existing implementation by writing (and debugging) two code generators,
one in BCPL and another in an existing language already implemented on the target
machine.

The SIMPL-T compiler is also self-compllmg and the effort required to transport it
to a new machine consists of the design and programming of a new code generator and a
run-time environment for SIMPL-T programs executing on the new machine. This paper
discusses three features of the transportable, extendable SIMPL-T compiler.

Firstly, there is a transportable bootstrap which permits the SIMPL-T compiler to be
transported to most machines without using an existing implementation of the language.
Moreover, this bootstrap requires no extra effort such as writing a temporary code gener-
ator for the bootstrap that will not be used in the final implementation on the new machine.
This transportable bootstrap distinguishes the SIMPL-T bootstrap procedure from that
required for most other self-compiling compilers.

* This research was supported in part by the Office of Naval Research under Grant N00014-67-A-0239-0021
(NR-044-431) to the Computer Science Center of the University of Maryland, and in part by the Computer
Science Center of the University of Maryland.)

Received 16 Fanuary 1974
Revised 21 October 1974

© 1975 by John Wiley & Sons, Ltd.
269

{

270 VICTOR R. BASILI AND ALBERT J. TURNER

Secondly, the highly modular design of the compiler, along with the features of the
SIMPL-T language itself, minimizes the effort required to write and interface the new
code generator and run-time environment. A reasonably competent systems programmer
should be able to bootstrap SIMPL-T to a new machine in one to three months. The
actual time required depends mostly on the quahty of the object code to be produced by
the compiler.

Finally, the compiler has been designed to perm1t extensions so that other compllers
may be built out of it.

THE SIMPL-T LANGUAGE
SIMPL-T is a member of the SIMPL family of structured programming languages.® The
SIMPL family is a set of languages each of which contains common features, such as a
common set of data types and control structures. The fundamental idea behind the family
is to start with a base language and a base compiler and then to build each new language
in the family as an extension to the base compiler. Thus, each new language and its com-
piler are bootstrapped from some other language and compller in the family.

SIMPL-T was designed to be the transportable extendable base language for the family.
The transportable extendable base compiler for SIMPL-T was written in SIMPL-T to
permit the entire family of languages to be implemented on various ‘machines in a relatively
straightforward manner, as suggested by Waite.” (The exten51b111ty scheme is thus similar
to that used for Babel and SOAP.8)

Other members of the SIMPL family include 2 typeless compiler-writing language,
SIMPL-X,? a standard mathematically-oriented language, SIMPL-R, a systems imple-
mentation language for the PDP-11, SIMPL-XI'! and the graph algorithmic language
GRAAL.22 The original design and 1mp1ementat10n of the SIMPL family of languages
and compilers were done at the Un1vers1ty of Maryland for the UNIVAC 1100 series
computers.

SIMPL-T and other members of the SIMPL family have been used in research pro-
jects and in classes at a variety of levels in the Computer Science Department at the Uni-
versity of Maryland. SIMPL-T is being used as an implementation language by the Defense
Systems Division, Software Engineering Transference Group at Sperry Univac. SIMPL-R

'is being used in the development of a transportable system for solving large spare matrlx

problems.10
The salient features of SIMPL-T are

(1) Every program consists of a sequence of procedures that can access a set of global
variables, parameters or local variables. - , ;

(2) The statements in the language are the ass1gnment 1f—then—else while, case, call,
exit and return statements. There are compound statements m the language, but
there is no block structure.

(3) There is easy communication between separately complled programs by means of
external references and entry points. : ‘

(4) There is an integer data type and an extensive set of integer operations including
arithmetic, relational, logical, shift, bit and partword operations.

(5) There are string and character data types. Strings are of variable length with a
declared maximum. The range of characters is the full set of ASCII characters.

A TRANSPORTABLE EXTENDABLE COMPILER 271

The set of string operators includes concatenation, the substring operator, an
operator to find an occurrence of a substring of a string and the relational operators.

(6) Strong typing is 1mposed and there are intrinsic functlons that convert between
data types.

(7) There is a one-dimensional array data structure.

(8) Procedures and functions may be recursive but may not have local procedures or
functions. Only scalars and structures may: be passed as parameters. Scalars are
passed by value or reference and structures are passed by reference. .

(9) There is a facility for interfacing with other languages.
(10) There is a simple set of read and write stream ‘I/O'commands ~

(11) The syntax and semantics of the language are relatlvely simple, consistent and
uncluttered.

It seems prudent to emphasize here that SIMPL-T programs are not necessarily trans-
portable. The language contains some highly machine-dependent operations, such as bit
manipulation operators. The merits and disadvantages of having such operations in the
language will not be discussed here. However, it is not difficult to write SIMPL-T pro-
grams that are transportable, and this is what was done in writing the SIMPL-T compiler.

A simple stack is adequate for the run-time environment in an implementation of SIMPL-
T. This together with the simple I/O facilities in the language and the lack of reals makes
the design and implementation of support routines. easier than for languages such as
FORTRAN and ALGOL.

The availability of external procedures in SIMPL-T means that operatmg systems inter-
faces that may be desired for a compiler can easily be managed by writing the interface as
an external procedure. Such external interfaces are needed only for uses involving individual
operating system idiosyncracies, however, as SIMPL-T is sufficiently powerful to allow the
compiler to be written entirely within itself.. (Examples of such uses are the obtaining of
date and time, the interchanging of files, etc.) .. :

THE SIMPL-T COMPILER

Although SIMPL-T programs can be compiled in one pass, the compiler was written as a
three-pass compiler with separate scan, parse and code generation phases. The separate
code generator is needed for the portability scheme, and separate scan and parse phases
promote modularity and provide more flexibility for.implementing later extensions.

The scanner and parser are designed-and programmed to be machine independent so
that the compiler can be transported to a new machine by writing only the code generation
pass for that machine. The parser generates a file containing a machine-independent inter-
mediate form of a SIMPL-T program that can readily be converted into machine code
for most computers. (This approach is similar to that used for the BCPL compiler.)

Extendability in the scanner and parser is provided by using a modular approach that
avoids the use of obscure programming ‘tricks’. In order to enhance the clarity and ease of
extendability, occasional inefficiency and repetition of code has been allowed. The parser
uses a syntax-directed approach that is based on an OptlleCd SLR(1)13 algorlthm and uses
an operator precedence!* scheme for parsmg expressions.

An additional optimization pass is planned that will perform machme-mdependent
optimization on the intermediate output from the parser. (Such an optimizer was written

272 VICTOR R. BASILI AND ALBERT:]J. TURNER

for an earlier version of the compiler but has not been updated for the latest version.) The
design of the compiler permits the use of a variety of machine-independent optimization
techniques, such as those suggested by Hecht and Ullman,'® and Kildall.’¢ In order to
provide more efficient usage of storage on a variety of machines, the scan and parse phases
of the compller are written in macro code. A macro preprocessor17 is used to generate
different versions of these phases for different word sizes on the target machines. The
differences mostly involve the symbol table, whose entries consist of several 16-bit fields.
For machines having a word size of less than 32 bits, these fields are allocated one per
word; for larger words, one field is right-justified in each halfword.

All implementation-dependent decisions in the compiler are delayed until the code
generation phase. These include the assignment of addresses, decisions on immediate
constants, generation of object output for initialized variables and the handling of entry
points and external references. These actions could be performed more efficiently during
the scan phase, but delaying them untll code generatlon facilitates a new implementation
of the compiler.

The intermediate form generated by the parser is a quadruple!®

OP, A, B, R

consisting of an operation field, an A-operand, a B-operand and a result field. The quads
represent high-level operations that make no assumptions about the architecture of the
machine for which the compiler is to generate code. Some redundancy is introduced into
the quads so that writing a straightforward code generator is made easier.

The quads are generally of two types: operation quads and structure quads. The opera-
tion quads correspond to the primitive operators of the SIMPL-T language, and the
structure quads represent the program structure. As examples the operatlon X+Y would
be represented by the quad

B XY,
where t is an internal designator for the result; a statement beginning
IF X > Y THEN
would generate the quads '
>, X, Y,t
IF, t,,

The choice of quads over a polish string rcpresenta'aon18 was made prlmanly to enhance
the writing of a machine- mdependent optimization pass. Quads also allow more flexibility
in the design of a code generator since, for example, no stack is required. Quads were
chosen over two-address codes (triples)'® for the same reasons, although the same argu-
ments apply to a lesser degree. We believed that there would be less bookkeeping effort
required for quads than for triples. Our experience thus far has shown the choice of quads
to be satisfactory in every way.

The high level of the quads allows a great deal of ﬂex1b1hty as to the efficiency of the
object code generated. For example, the original 1108 code generator, designed and imple-
mented in three weeks, was fairly straightforward and generated mediocre to poor object
code. However, an extensive revision of the code generator, requiring a six-week effort,
yielded a compiler that provides good object code comparing favourably with the code
that is produced by other compilers on the 1108. Thus, the time and effort expended on a

A TRANSPORTABLE EXTENDABLE COMPILER 273

new implementation of SIMPL-T depends a great deal on the quality of the object code
to be produced for the new machine.

Table I gives a comparison of the core requirements for the ALGOL, FORTRAN and
SIMPL-T compilers on the UNIVAC 1108. The FORTRAN figures are for the smaller
of the two standard FORTRAN compilers supported by UNIVAC, and the ALGOL
compiler used is the NUALGOL compiler from Norwegian University. Both the ALGOL
and FORTRAN compilers are coded in ‘assembly language.

Table 1. Size comparisons for UNIVAC 1108 compilers. K = 1,000 words

Overlay Space required Non-overlayed size
Compiler segments Instructions Data 'Total Instructions Data Total
ALGOL 3 13K 9K © 22K 30K 17K 47K
FORTRAN 6 16K 19K = 35K 53K 39K 92K
SIMPL-T 4 15K 14K 29K 30K 20K 50K

Table II. Comparison between a sample program coded in FORTRAN and SIMPL-R. The timings
are CPU times, and the program sizes include library routines

Object program size -

Language Compile time Instructions Data Execution time
FORTRAN 69 sec 681 21862 T7sec

SIMPL-R 7-0 sec 5,339 20,875 66 sec

Comprehensive comparisons have not been made between object programs produced
by the different compilers. However, the results of one comparison between the object
programs generated by the FORTRAN and SIMPL-R compilers is given in Table II. (The
SIMPL-R compiler is an extension of the SIMPL-T compiler and the two compilers
generate identical code for SIMPL-T programs.) For this comparison, a sparse matrix
problem was coded in both FORTRAN and SIMPL-R and executed on several sets of
data.l® Both programs consisted of about 750 source cards (360 SIMPL-R statements),
and the execution timings are for a typical set of test data.

The performance figures in Tables I and II illustrate some success in achieving the
SIMPL-T design criterion of generating efficient object code. The favourable compari-
sons are in spite of the fact that the FORTRAN compller has a ‘good optlmlzer whlle the
SIMPL-T and SIMPL-R compilers have only local optimization.”

The figures also show reasonable results in compile time for the SIMPL compilers when
compared with FORTRAN. This is in spite of the facts that the SIMPL compilers are
designed for portablhty rather than for fast compilation and are coded in a high-level
language rather than in assembly language.

BOOTSTRAPPINC YSIMPL T

Plans for transporting a compiler from computer M to a new computer N must include a
procedure for bootstrapping on to the target machine N unless the compiler i is written in
a language ‘that already exists on the target machine. Singce the SIMPL-T compiler is
written in SIMPL-T, a bootstrap is required in order to transport the compller

274 VICTOR R. BASILI AND ALBERT J. TURNER

Two procedures for bootstrapping SIMPL-T on'to a new machme are illustrated in
Figures 1 and 2. The notation ‘

denotes program P coded in language L and

M

denotes program P, in language L, executing on machine M (so that I. would be machine
language for M). %(L, M) denotes a language L compiler for machine M, and ML(M)
denotes machine language for machine M. Thus the objective of a bootstrap of
SIMPL-T to a new machine N is to obtain

€ (sIMPLN)

ML)

Finally, 7 (L,, L,) denotes a translator from language L, to language L,, and

A — B |f—=]C

indicates that A is input to processor B and the output is C
It is worth noting that the code generation module of

@ sivPLN|

SiMPL

represents the major effort required to transport the SIMPL-T compiler to a new
machine N.

One method of bootstrapping that could be used for SIMPL-T is to compile the new
compiler for machine N using the existing SIMPL-T compiler on machine M and then
transport the object code to the new machine. This procedure, illustrated in Figure 1, has

A TRANSPORTABLE EXTENDABLE COMPILER 275

the advantage that no intermediate language is involved, and it is possibly the best procedure
to use if a system that supports an existing SIMPL-T compiler is conveniently available.

As an alternative to using an existing SIMPL-T compiler for the bootstrap, and as a
means of bootstrapping SIMPL-T on to our 1108 initially, it was decided to write a trans-
portable bootstrap compiler. This required that the bootstrap compiler be written in a
transportable language and that the compiler produce transportable output.

€ (SIMPLN) € smeLm| € (SIMPLN)
Step 4: : —
siMPL | ML(M) ML(M)
i
M /
//
R * AR
€ (SIMPLN) € (siMPLN) € (SIMPL,N)
Step 2: ' , :
SIMPL ML{M) ML(N)
M

Figure 1. Bootstrapping a SIMPL compiler ontoa machine N using an existing implementation on machine M

Of the languages available only FORTRAN and SNOBOL satisfied the main require-
ments of portability and availability. SNOBOL was preferred because of its recursion and
string handling facilities, but the lack of compiler versions of SNOBOL is a disadvantage
for several reasons.’® SNOBOL interpreters are usually large and slow and are not designed
for easily debugging large modular programs.

On the other hand, FORTRAN provides convenient facilities for working with separately
compiled modules, but it is undesirable for writing portable string manipulation programs.
It was thus desired to find a solution that would provide the ease of programming a trans-
lator in SNOBOL and the ease of working with programs written in FORTRAN.

The solution obtained was to write a translator in SNOBOL4 that translates a SIMPL-T
program into ANSI FORTRAN IV. This would yield a bootstrap procedure that would
enable SIMPL-T programs to be run on a machine that has no SIMPL-T compiler, pro-
vided the machine has SNOBOL4 and FORTRAN IV available. The SNOBOL bootstrap
translator would be used to convert a SIMPL-T program into a FORTRAN program, and
the FORTRAN program could then be compiled and executed. This procedure is illustrated
in Figure 2,

To facilitate the use of the bootstrap, string handling and 1/O packages (written in
FORTRAN) are included. Thus the only effort required to transport the bootstrap (in
addition to the effort required for the compiler) is to write a few machine-dependent sub-
routines, such as bit manipulation and system interface subroutines. This practically
negligible effort yields the desired bootstrap package for a new machine.

276

It should be noted that the SNOBOL translator produces transportable FORTRAN
code through such devices as allocating' strings one character per word. Essentially all of
the features of SIMPL-T are supported by the translator, 1ncludmg recursion, call by

VICTOR R. BASILI AND ALBERT J. TURNER

value and reference and externals.

Step 1:

Step 2:

Step 3¢

Step 4:

Figure 2. Bootstrapping a SIMPL compiler. on to machine N. using the SNOBOL translator. Machines
N’ and N” would normally (but need not) be the same as machine N. Note that if N”
is still needed to produce a more efficient compiler. Note also that Steps 1 and 2 would be combined if a

F(SIMPL,FORTRAN) € (SNOBOL,N") 9(SIMPL,FORTRAN)
SNOBOL ML(N") ML(N"
N' -7
-~
~
~
/
~
~
~
y
€ (SIMPLN) F(SIMPL FORTRAN) & (sIMPLN)
SIMPL" ML(N") FORTRAN
!
\ N’
\
\
|
! - |@(FORTRAN, N") € (SIMPLN)
|
\ k1] N Hi
\ ML (N") MLN")
1 =
\ Nu _ 7
\ i
\ -
| iy
€(SIMPL,N) € (SIMPL,N) & (SIMPL,N)
SIMPL ML(N") ML{N)
NII

SNOBOL interpreter (instead of a compiler) were used

= N, the last step

A TRANSPORTABLE EXTENDABLE.COMPILER 277

Some variation on the bootstrap procedure using the SNOBOL translator may be de-
sirable if SNOBOL, FORTRAN or both are not ‘available on the target machine. Either
the translation of a SIMPL-T program into FORTRAN, or the compilation and execution
of the resulting FORTRAN program (or both) could be done on another machine. (This
might be the case, for example, in bootstrappmg to a small machine for which SNOBOL is
not available.) Thus, the bootstrap process is rather flexible due to the portability of the
SNOBOL translator and of the FORTRAN programs that it produces

RESULTS AND COMMENTS

The bootstrap procedure described here was used initially to bootstrap the typeless lan-
guage SIMPL-X on to the UNIVAC 1108 at the University of Maryland Computer
* Science Center. This bootstrap was facilitated by the fact that the varrables of SIMPL-X
translated directly into FORTRAN integer variables.

A code generator for the PDP-11 has also been written in order to 1mp1ement the systems
programming language SIMPL-XI mentioned earlier. This code generator was interfaced
with the existing scanner and parser with no problemis. SIMPL-XI, which also requrred
some extensions to the compiler, is being run as a cross-compller on the 1108 for the
PDP-11.

The SIMPL-T compiler was bootstrapped from SIMPL- X and has been extended to
yield a compiler for STMPL-R, a language that has reals. The SIMPL-R implementation?
was a six-week effort by a programmer who was not familiar with either the SIMPL-T
compiler or the 1108 computer and operating system. :

Currently, efforts are under way to bootstrap SIMPL-T on to the IBM 360/ 370 machmes
The SNOBOL-FORTRAN bootstrap for SIMPL-T was recently completed and has been
used to run the scan and parse passes of the compiler on a 360.

While the bootstrap procedure has been successful in general, there have been some
problems. No compller version of SNOBOL was available for the 1108, and the available
interpreter versions proved to be inadequate and required local modification. SPITBOL
on the 360 has been a vast 1mprovement and would have more than adequately solved this
problem had a working version been available for the 1108.

The other problems were prrmarlly due to the inadequacies and restrictions of
FORTRAN. Again, if SPITBOL were generally available, most of these problems could
have been eliminated by translating SIMPL-T into SNOBOL (SPITBOL). This would
have made available such features as recursion and strrng data, thereby facilitating the
translation.

Although these problems were foreseen, they were underestimated. The large amount
of time and memory required for the SNOBOL programs and the size of the FORTRAN
programs generated (about 90K words for the scanner and parser on the 1108) made the
development of the bootstrap an expensive and time-consuming process. Furthermore,
these requirements make the bootstrap procedure impractical (if not impossible) for small
machines.

Yet these were the only languages available for which there was reasonable expectation
of producing portable programs. This is a rather sad commentary on the availability of
reasonable general-purpose languages and compilers, and indicates a need for widespread
implementation of languages and compilers such as SIMPL-T and its compiler.

On the basis of our experience, we believe that this approach to bootstrapping a language
on to a variety of machines would be quite satisfactory if a suitable language were already

278 VICTOR R. BASILT AND ALBERT J. TURNER

available on the target machines. Even with the drawbacks mentioned, we know of no
alternative that would provide an easier means of performing a stand-alone bootstrap. -

ACKNOWLEDGEMENTS °

The bootstrap for SIMPL-X was written by Mike Kamrad and the bootstrap for SIMPL T
was written by Bruce Carmichael. The system routines for the UNIVAC 1108 compilers
were written by Hans Breitenlohner. C. Wrandle Barth at Goddard Space Flight Center
and Robert Knight at Princeton Umversny are bootstrapplng SIMPL-T to a 360.

11
12.
13.
15. R. W. Floyd, ‘Syntactic analysis and operator precedence’, ¥nl ACM, 10, No. 3,.316-333 (1963).
16.
17.

18.
19.

'REFERENCES

V. R. Basili and A. J. Turner, SIMPL-T: 4 Structured Programmmg Language, CN-14, University

of Maryland Computer Science Center, 1974.-

. M. Halstead, Machme-mdependent Computer Programmmg, Spartan Books, Rochelle' Park, New

Jersey, 1962.

. W. M. McKeeman, J. J. Horning and D. B. Wortman, A Compiler Generator, Prentice-Hall,

Englewood Cliffs, New Jersey, 1970.

. G. Leach and H. Golde, ‘Boétstrapping XPL to an XDS s1gma 5 computer SoftwarewPractzce
and Experience, 3, No. 3, 235-244 (1973).

. M. Richards, ‘BCPL: a tool for compiler Wntmg and system programming’, AFIPS Proceedings,

34, 557-566 (SJCC 1969).

. V.R. Basili, The SIMPL Family of Programmmg Languages and Compzlers, TR-3OS Umvers1ty of

Maryland Computer Science Center, 1974,

.. W. M. Waite, ‘Guest editorial’, Software—Practice arnid Experience, 3, No. 3, 195-196 (1973).
. R. S. Scowen, ‘Babel and SOAP, appllcatxons of extensxble compllers , ‘Saftware—Practice and

Experience, 3, No. 1, 15-27 (1973).

. V. R. Basili, SIMPL-X A Language for Wrztmg Structured Piograms, 'TR-223, University of
10.

Maryland Computer Science Center, 1973.

J. McHugh and V. R. Basili, SIMPL-R and Its Applzcatzon to Large Sparse Matrix Problems,
"FR-310, University of Maryland Computer Science Center, 1974.

R. G. Hamlet and M. V. Zelkowitz, ‘SIMPL systems programming on a minicomputer’, Micros
and Minis Applications and Design, Proc. of 9th Annual IEEE COMPCON, 203206, 1974.

W. C. Rheinboldt, V. R. Basili and C.. K. Mesztenyi, ‘On a programming language for graph
algorithms’, BIT, 12, No. 2, 220-241 (1972)

F. L. De Remer, ‘Simple LR(k) grammars’, Comm. ACM, 14, No 7, 453-460 (1971).

M. 8. Hecht and J. D. Ullman, ‘Analysis of a simple algorithm for global flow problems’, ACM
Symposium on Principles of Programming Languages, 1973.

G. A. Kildall, ‘A unified approach to global problem optimization’, ACM Symposium on Principles
of Programming Languages, 1973.

J. A. Verson and R. E. Noonan, 4 High-level Macro Processor, TR-297, University of Maryland
Computer Science Center, 1974.

D. Gries, Compiler Construction for Digital Computers, Wiley, New York, 1971:

R. Dunn, ‘SNOBOL4 as a language for bootstrapping.a compiler’, SIGPLAN" Notices, 8, No. 5,
28-32 (1973)

