
4 CROSSTALK The Journal of Defense Software Engineering October 2008

The purpose of the system safety
process is to identify and mitigate haz-

ards associated with the operation and
maintenance of a system under develop-
ment. System safety is often implemented
through an approach that identifies haz-
ards and defines actions that will mitigate
the hazard and verify that the mitigations
have been implemented. The residual risk is
the risk remaining when a hazard cannot
be completely mitigated. The goal of the
system safety process is to reduce this
residual risk to an acceptable level, as
defined by the safety certifier. Cost is a
consideration in determining the level of
acceptable residual risk.

As software contributes an ever-
increasing level of functionality and con-
trol in today’s systems, the system safety
process must scrutinize software-specific
components of the system. Software can
contribute to system safety as both a haz-
ard source and hazard mitigation.
Software is not intrinsically hazardous, but
plays a role in safety in many systems
where it:
• Causes hardware to perform unsafe

actions.
• Directs an operator to perform unsafe

actions.
• Guides an operator to make unsafe

decisions.
• Mitigates hazards.

In this article, we define a measure-
ment approach that provides early visibili-
ty into the implementation of the software
safety hazard process, assessing the level
of consistency and discipline that is
applied to the process for identifying and
mitigating software-related hazards. Early
process visibility assists safety engineers in
detecting breakdowns in the process, ask-
ing the right kinds of questions, and mak-
ing timely decisions that will improve the

resulting system safety. This early visibility
is important as mitigations typically affect
system requirements and design; making
these decisions late in the system develop-
ment lifecycle can be cost-prohibitive. The
proposed measurement approach identi-
fies risks resulting from the application of

the safety hazard analysis process (or lack
thereof) by performing process checks,
and assesses the potential for achieving a
safe system. It is important to note that
this approach does not provide for an
evaluation of the system’s safety.

This article begins by defining terms
and documenting our assumptions. We
then describe our approach for defining
specific safety measures in the context of
an existing environment and provide some
examples.

Terminology and Key Concepts
A hazard is any real or potential condition
that can cause injury, illness, or death to

personnel; damage to or loss of a system,
equipment, or property; or damage to the
environment. Key terms associated with
hazards and their management are:
• Causes. What can make the hazard

occur.
• Controls. Mitigation actions whose

purpose is to minimize the chances of
a hazard occurring.

• Verifications. Some assurance, like
safety test cases, that the hazard has
been controlled.
A hazard is open if at least one of its

causes is open; a cause is open if at least
one of its controls is open; a control is
open if at least one of its verifications is
open. A hazard is closed when all the con-
trols for all its causes have been imple-
mented and verified.

A safety-related requirement is a require-
ment whose purpose is to control a haz-
ard. One hazard might be addressed by
several requirements (e.g., one hazard may
affect several parts of the system), or one
requirement might address several hazards
(e.g., a central control or communication
system may mitigate hazards from multi-
ple nodes).

A hazard tracking system (HTS) is a
repository of identified system hazards
and their associated causes, controls, and
verifications. Within the HTS, causes
should be related with the system element
causing the hazard, controls should be
related with the requirement(s) controlling
or mitigating the hazard, and verifications
should be related with the hazard cause
and the test verifying that the hazard is
controlled.

A hazard is defined as a software-relat-
ed hazard if it has at least one software
cause or one software control. A software
safety-related requirement is a software
requirement that can create or contribute

Measures and Risk Indicators for
Early Insight Into Software Safety

Kathleen Dangle and Linda Esker
Fraunhofer Center - Maryland

Software contributes an ever-increasing level of functionality and control in today’s systems. This increased use of soft-
ware can dramatically increase the complexity and time needed to evaluate the safety of a system. Although the actual
system safety cannot be verified during its development, measures can reveal early insights into potential safety problems
and risks. An approach for developing early software safety measures is presented in this article. The approach and the
example software measures presented are based on experience working with the safety engineering group on a large
Department of Defense program.

Dr. Victor Basili
University of Maryland and Fraunhofer Center - Maryland

Development of Fault-Tolerant Systems

Ioana Rus
Honeywell Aerospace

Frank Marotta
U. S. Army Aberdeen Test Center

“Early process visibility
assists safety engineers
in detecting breakdowns
in the process, asking the
right kinds of questions,

and making timely
decisions that will

improve the resulting
system safety.”

Measures and Risk Indicators for Early Insight Into Software Safety

October 2008 www.stsc.hill.af.mil 5

to a hazard in the system or is defined to
control or mitigate a hazard.

An example of a system hazard
description that has a software-related
cause is as follows:
• Accident/Mishap. Undesired and un-

planned event that results in a speci-
fied level of loss (e.g., two planes col-
lide).

• Hazard/Description. State that leads
to an accident (e.g., guidance system
may malfunction).

• Hazard Cause. The action causing
the hazard to occur (e.g., a miscalcula-
tion of the projected trajectory.

• Hazard Control or Safety
Requirement. Mitigation via a
requirement or set of requirements
whose purpose is to minimize the
chances of a hazard (e.g., multiple
computations of the projected trajec-
tory are computed and poled).

• Verification. An assurance that the
hazard has been controlled (e.g., safety
test cases).
Figure 1 provides an illustration of the

context for this example.
Several assumptions are made: (1) all

hazards should be recorded in an HTS;
(2) hazards are retired or have their asso-
ciated risk reduced over time, but do not
leave the HTS; and (3) closed hazards can
become open hazards when a new cause
is found. Although the approach does not
prescribe a particular management or
organizational structure, it is assumed
that the safety and project organizations
communicate and collaborate effectively
in both evolving requirements and verify-
ing mitigations. As the safety hazard
analysis will impact requirements, design,
code, and tests, it is assumed that the
standard processes defined by the project
for change management apply to artifacts
impacted by safety hazard analysis.

The level of rigor (LoR) is the amount
of requirements analysis, development
discipline, testing, and configuration con-
trol required to mitigate the potential
safety risks of the software component
[1]. Each software component should be
assessed and assigned an LoR for devel-
opment. This refers to any mechanism
put in place to treat specific requirements
with special treatment, giving a piece of
software higher levels of safety assurance
and providing users higher confidence
through greater discipline and process.

A safety-related defect is a defect that
refers to a failure to comply with a safety
requirement, an unexpected behavior that
affects safety, or the recognition that a
control has not been defined/implement-
ed/verified. Safety-related defects should

be traceable to a hazard or may generate
a new hazard. Defects can be counted
directly or they can be weighed by the set
of related requirements or hazards they
affect. A software defect tracking system (i.e.,
tool/database to capture software defects
identified during testing) is used as the
source of safety-related software defects.

Gaining Software Safety
Visibility
Our goal in applying the proposed mea-
surement approach is to provide software
safety engineers visibility into the soft-
ware safety process and to assist them in
making judgments about the software
safety process implementation and its
execution. We identified five needs, and
an associated inquiry area for each was
defined:
1. Software Safety Analysis Process.

Confirm that system and software
requirements and development prac-
tices are in compliance with safety
processes.

2. Hazard and Mitigation Identifi-
cation. Ensure that the program is
adequately identifying and document-
ing the appropriate information about
a hazard (i.e., hazards, causes, and
controls as defined by the software
safety analysis process).

3. Hazard Monitoring. Ensure that
sufficient actions are taken by analyz-
ing and monitoring hazard causes,
controls, and verifications over time
(i.e., are the hazard controls being
implemented, and verified).

4. Appropriate LoR for Software
Safety. Balance risk with the cost of
safety by identifying the appropriate
software development LoR.

5. Safety-Related Defects. Identify
whether any safety problems remain
in the system for the safety assess-
ment reports by identifying all out-
standing safety-related defects.
For each area, readiness and visibility

measures are defined, specifying different
measurement details. A readiness assessment
provides a preliminary view into the state
of the safety process for software and
checks that the data needed for the sec-
ond type of measurement is available.
Software safety visibility digs deeper by
defining models, measures, and interpre-
tations that provide information on the
implementation of safety practices (or
lack thereof) and points to safety-related
risks and issues.

To minimize the overhead associated
with data collection and analysis, a com-
bination of a top-down goal/ques-
tion/metric analysis and a bottom-up
inventory of the data already collected by
the organization is used to identify the
measures that will be cost-effective and
address management needs [2].

For example, to address software safe-
ty analysis, an investigation may be per-
formed to determine whether there is a
documented safety process that identifies
requirements as safety-related and
records that information in the require-
ments repository. If this is not true, then
the program may have a problem and fur-
ther measures that assume counting the
number of safety-related requirements
cannot be utilized. A sample set of key
questions addressing the five inquiry
areas for the readiness assessment are
shown in Table 1. All readiness questions
must be answered Yes to indicate that the
appropriate measurements can be gath-

Inquiry Area Readiness Assessment Questions

Software Safety Analysis
Process

o Is there a documented software safety process that
identifies requirements as safety-related?

o Are safety-related software requirements marked as
such in the requirements repository?

Hazard and Mitigation
Identification

o Is there an (automated) HTS where software-related
hazards, causes, controls, and verifications are
recorded (and can be counted)?

Hazard Monitoring o Are hazards mapped back to their source
(requirements) and controls mapped to
requirements?

o Are all the fields being entered into the HTS?
Appropriate LoR for
Software Safety

o Are the various levels of rigor identified and is the
distribution rational?

Safety Defects o Are software safety-related failures/faults identified as
such in the software defect tracking system?

o Are safety-related test cases identified as such?
o Are defect closures recorded?

Unmanned Air Vehicles
Cause 1: Miscalculation of the projected trajectory

Control/mitigation: Multiple computations
of the projected trajectory are computed
and poled

<<Network Node >>
Cause 1: . . .

Control/mitigation 1.1

Control/mitigation 1.x

Cause n: . . .

...
...

...

Hazard: Guidance system may malfunction

Network

Manned
Systems

Soldiers

Battle
Command

Unmanned Air
Vehicles

Sensors

Headquarters

Unattended
Munitions

Verification Test # 123

Verification 1

Verification 1

System of Systems

Figure 1: Example of a Hazard, Cause, Control, and Verification

Development of Fault-Tolerant Systems

6 CROSSTALK The Journal of Defense Software Engineering October 2008

ered. No answers provide an early warn-
ing that software safety may not be prop-
erly addressed. In this case, the recom-
mended action is to identify why the data
is not available (root cause) and take an
appropriate corrective action. The ques-
tions in Table 1 address problems in deal-
ing with safety in general and software
safety in particular.

While these data readiness questions
seem simplistic, they can uncover a host
of issues that may not be obvious unless

the questions are asked explicitly. These
questions expose some common prob-
lems in implementing a useable, cost-
effective HTS and the overall hazard
tracking approach:
• Software Hazard Identification.

Safety-related requirements are not
identified as such and hazard controls
are not identified as software-related
safety requirements, if they are. This
can demonstrate inadequate attention
to software safety.

• Hazard Traceability. The HTS does
not provide sufficient linkages among
the requirements documentation sys-
tem, the test plan, or to the defect
tracking system. Hazards must be bi-
directionally traceable to require-
ments, tests, and defects in order to
verify complete coverage, determine
comprehensiveness of the hazard
analysis, and ensure that the hazard
data represents the system accurately
over time.

• Data Integrity. Hazards, causes, and
controls may not be described in suf-
ficient detail to be understood and
verified. The information in the haz-
ard tracking system must be accurate,
clear, and specific in order to under-
stand and track hazards throughout
the development and deployment of
the system.

• LoR. There may be difficulty in dif-
ferentiating among different levels of
rigor for the various software safety
requirements and identifying, assign-
ing, and tracking the appropriate LoR
to specific software components that
implement the safety-related require-
ment. Lack of proper LoR differenti-
ation can lead to inadequate attention
on high-risk hazards or too much
attention on low-risk hazards.
Additionally, the trade-off between
higher levels of rigor and their associ-
ated higher costs must be considered
in order to assess the right balance of
LoR distribution. An LoR should be
assigned and traceable from require-
ments through design to code.
Many HTS problems are caused by an

inadequate vision for the use of the HTS,
such as when it is viewed as a storage
repository rather than an analysis tool. It
is important to make sure that (1) the
HTS has adequate functionality, quality
checks, and documentation; (2) there is
traceability and synchronization among
the various support systems (e.g., the
HTS and the requirements management
system and the defect tracking system);
and (3) the quality of the data is moni-
tored to minimize the need to scrub the
data later on. The cost of not adhering to
this advice is high rework costs and lower
than desired system safety. Addressing
these issues should simply be a part of
the software safety development process.

Laying the Measurement
Foundation
Once it is clear that the safety process has
been established, deeper investigation of
each inquiry area can be performed. An

Inquiry
Area

Goal Software Safety Visibility
Questions

Software
Safety
Analysis
Process

Check how well each
organization, system, and
integrator is addressing software
safety in the system hazard
analysis process.

o Have a reasonable number of
software safety-related
requirements been identified?

Hazard and
Mitigation
Identification

Check if a reasonable number of
software-related hazards,
causes, controls, and
verifications are identified.

o Have a reasonable number of
software safety hazards been
identified?

o Are causes, controls, and
verifications being generated
over time?

o Does every cause have at
least one control?

o Does every control have at
least one verification?

Hazard
Monitoring

Check if software-related
hazards (and hazard software
components, i.e., causes,
controls, and verifications) are
identified and closed at an
appropriate rate.

o Have the number of open
software causes/controls for
hazards decreased over time?

Appropriate
LoR for
Software
Safety

Check if the various software
development groups are
assigning reasonable levels of
rigor to safety-related software.

o Have the appropriate levels of
rigor been allocated to
software development?

Safety
Defects

Check if software safety-related
defects are being dealt with.

o Have safety-related software
defects been closed at a
reasonable rate over time?

Table 2: Software Safety Visibility Needs

Inquiry Area Readiness Assessment Questions

Software Safety Analysis
Process

o Is there a documented software safety process that
identifies requirements as safety-related?

o Are safety-related software requirements marked as
such in the requirements repository?

Hazard and Mitigation
Identification

o Is there an (automated) HTS where software-related
hazards, causes, controls, and verifications are
recorded (and can be counted)?

Hazard Monitoring o Are hazards mapped back to their source
(requirements) and controls mapped to
requirements?

o Are all the fields being entered into the HTS?
Appropriate LoR for
Software Safety

o Are the various levels of rigor identified and is the
distribution rational?

Safety Defects o Are software safety-related failures/faults identified as
such in the software defect tracking system?

o Are safety-related test cases identified as such?
o Are defect closures recorded?

Table 1: Readiness Assessment Questions

Measures and Risk Indicators for Early Insight Into Software Safety

October 2008 www.stsc.hill.af.mil 7

example set of software safety visibility
goals and questions is presented in Table
2. When a readiness assessment question
has been satisfied, the software safety vis-
ibility questions and measures throughout
the life cycle of the program can be
applied.

Establishing the measures requires
more than identifying the data to be col-
lected. Each measure is characterized in
terms of the question it answers, the model
used to interpret its values in order to
answer the target question, the response
that suggests the action to be taken based
upon the answer to the question, and the
scope of applying the measure. Table 3
presents examples of models and responses
for three of the five inquiry areas1.

For each model, assumptions were
made about how the resulting measure-
ments should be interpreted. An expected
value and a range are selected for within
which the actual is acceptable. The
expected value can be derived by: (1) his-

torical data from past programs, (2) prior
data from the current program, (3) proxy
estimate (i.e., comparison with something
similar), or (4) expert estimate. The range
of the expected values can be based on
general distributions, or specific or relat-
ed experience.

If the calculated value is not within
the expected range, then there may be a
problem. Expected values or ranges can
be improved over time based upon the
incorporation of new data into the
model.

To illustrate these concepts, consider
one measure proposed for the process
area, PSSR, which is defined as PSSR = #
software safety requirements / # software
requirements *100. The model can be
defined as:

if |PSSR – EPSSR| < e
where EPSSR is the estimated value of
PSSR, e is the acceptable threshold for
deviation from the estimate, and (EPSSR

-e, EPSSR +e) is the acceptable range,

then a reasonable number of software
safety requirements have been identified.

The key is to have good estimates for
EPSSR and e. Ideally, historical data
should be used and the estimated value
and range (i.e., sigma, the standard devia-
tion) is taken from a similar system or sub-
system. However, there may be little his-
torical data. In this case, proxies are iden-
tified for estimates2.

One possible proxy is to use system
safety requirements as the benchmark for
software safety requirements. We can let
the range be defined by some percentage
around that value that provides initially
acceptable limits. Once the program is
under development, early data can be sub-
stituted on the program for these proxies.
Thus:

EPSSR = #system safety requirements /
#system requirements *100

Inquiry Area Measure(s) Model(s) Response(s)
Software
Safety
Analysis
Process

Percent Software Safety
Requirements (PSSR)

PSSR = # software safety
requirements / # software
requirements *100

if |PSSR - EPSSR| < e then a
reasonable number of software safety
requirements have been identified
where
the EPSSR = the average of the
PSSRs for all systems in the family,
(in line with other systems) and e =
(EPSSR) (i.e., standard deviation of the
PSSRs used to calculate EPSSR)

EPSSR = #system safety requirements
/ #system requirements * 100, (in line
with system safety in general) and
e = 20% of EPSSR

PSSR not being within the range of
EPSSR should indicate the need for a
management action. For example,
check into the safety hazard elicitation
process and whether it is being
applied right, investigate the reason
why the system under consideration
has such a small (or large)
percentage of safety requirements,
and develop a “get well” plan. If the
value is too large, what are the cost
and schedule implications of
corrective actions?

Hazard
Monitoring

Hazard cause/control closure
evolution (HCCE)

HCCEi,3 = MAi+1,3 / MAi,3

where
MAi,3 = (Xi-2 + Xi-1 + Xi)/ 3
is the moving average of the set
of open causes (controls) at
three consecutive time intervals.

If HCCEi,3 1 then the closure rate of
hazard software causes/controls is
not converging

If the number is 1 and it is not in the
beginning phases of development,
more effort should go into closing the
hazard software causes/controls. If it
is because the opens are increasing
too fast (new hazards are being
introduced, new causes for existing
hazards), then investigate the
reasons. If it is because the closes
are not increasing fast enough, then
investigate the reasons.

Graphing the cumulative identified,
open, and closed causes/controls
provides good insight into the trends
of these variables

Safety
Defects

Count by priority of open safety-
related software trouble reports
at time i (COSRTR)

If COSRTR 0 then there are open
defects that need further analysis

If all safety-related defects are not
closed, then create a list of open
defects, prioritize them, and investigate
why they exist. This measure should be
taken periodically starting at the
beginning of test and up until safety
assessment report delivery.

or

Table 3: Some Examples of Software Safety Measures

Development of Fault-Tolerant Systems

and e = 20 percent of EPSSR.

The model is interpreted by defining a
response if the resulting value is not within
range. For example, if PSSR is not within
the range e of EPSSR, it indicates the need
for management action. One example
would be to check into the safety analysis
process and whether it is being appropri-
ately applied, investigate the reason why
the system under consideration has such a
small (or large) percentage of safety
requirements, and develop a “get well”
plan.

In defining these measures, existing
data sources (e.g., hazard tracking data-
base, requirements management reposito-
ries, and defect tracking systems) and
processes (e.g., safety analysis processes)
were leveraged. This can be done provid-
ed that the assumptions upon data collec-
tion listed in the Terminology and Key
Concepts section are true. The derived
measures in Table 3 can be graphically
represented (e.g., as evolution over time),
as appropriate, for the analysis results on
the questions it helps to answer. Key
issues for determining software safety vis-
ibility are: (1) selecting the right subset of
measures, (2) defining appropriate thresh-
olds, (3) determining appropriate manage-

ment responses, and (4) providing user-
friendly reports and actionable responses;
all of these issues are program-dependent.

The safety measures collected by a
program form the beginning of an experi-
ence base, which creates a historical base
across current programs within a program
and for future programs. To date, there is
very little data on which to calibrate the
models. It is hoped that programs will
start collecting data so that more knowl-
edge can be obtained and software safety
measures baselines can be established.

Conclusion
The methodology presented here should
be tailored to fit the context of the orga-
nization; it is not intended to imply a cor-
rect answer or an all or nothing approach.
The areas of inquiry and the measures can
be adjusted appropriately; however, as a
minimum, any program dealing with safe-
ty should at least address the readiness
questions.

Gaining visibility through objectives
measures into software safety has become
increasingly important for today’s software-
intensive programs. Although software
safety measures cannot determine whether
a system is safe, they can provide valuable
indicators of problems and risks that give
management critical knowledge for making

timely and well-informed decisions.u

References
1. Radio Technical Commission for

Aeronautics, Inc. “Software Consider-
ations in Airborne Systems and
Equipment Certification.” RTCA DO-
178B. 1 Dec. 1992.

2. Basili, V., and D. Weiss. “A Method-
ology for Collecting Valid Software
Engineering Data.” IEEE Transac-
tions on Software Engineering Nov.
1984: 728-738.

Notes
1. The question is omitted from this table

due to space limitations; for scope, we
assume that these measures apply to
the entire system.

2. This argues for the need to accumulate
data on programs, not just for the
good of the current program but for
use in future programs.

Additional Reading
1. Joint Software System Safety

Committee. Software System Safety
Handbook. Dec. 1999.

2. MIL-STD-882. DoD Standard
Practice for System Safety. 10 Feb.
2000 <http://safetycenter.navy.mil/
instructions/osh/milstd882d.pdf>.

About the Authors

Victor Basili, Ph.D., is
a professor of computer
science at the University
of Maryland and Chief
Scientist at the Fraun-
hofer Center - Maryland.

He works on measuring, evaluating, and
improving the software processes and
products.

E-mail: basili@fc-md.umd.edu

Kathleen Dangle is a
division director at the
Fraunhofer Center -
Maryland where she
works with organizations
to implement software

management-related improvements,
such as software measurement, acquisi-
tion, Capability Maturity Model®

Integration-based processes, and helps
create learning organizations.

E-mail: kdangle@fc-md.umd.edu

Linda Esker is a senior
engineer at the Fraun-
hofer Center - Maryland
where she provides
expertise to government
programs in program

management, software development, as
well as metrics definition and analysis.

Phone: (301) 403-8967
E-mail: lesker@fc-md.umd.edu

Frank Marotta is a
mathematician at the U.S.
Army Aberdeen Test
Center and has more
than 20 years experience
in software testing of

Army weapon systems, test optimiza-
tion, and software metrics.

E-mail: frank.marotta
@us.army.mil

Ioana Rus is a member
of the Honeywell Aero-
space Software Center
for Excellence. She
works in process model-
ing and simulation,

empirical studies, software dependability,
and measurement.

E-mail: rus.ioana@gmail.com ® Capability Maturity Model is registered in the U.S. Patent
and Trademark Office by Carnegie Mellon University.

