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Abstract

Context. Writing software for the current generation of parallel systems requires
significant programmer effort, and the community is seeking alternatives that reduce
effort while still achieving good performance.

Objective. Measure the effect of parallel programming models (message-passing
vs. PRAM-like) on programmer effort.

Design, Setting, and Subjects. One group of subjects implemented sparse-matrix
dense-vector multiplication using message-passing (MPI), and a second group solved
the same problem using a PRAM-like model (XMTC). The subjects were students
in two graduate-level classes: one class was taught MPI and the other was taught
XMTC.

Main Outcome Measures. Development time, program correctness.

Results. Mean XMTC development time was 4.8 hours less than mean MPI devel-
opment time (95% confidence interval, 2.0-7.7), a 46% reduction. XMTC programs
were more likely to be correct, but the difference in correctness rates was not sta-
tistically significant (p=.16).

Conclusions. XMTC solutions for this particular problem required less effort than
MPI equivalents, but further studies are necessary which examine different types of
problems and different levels of programmer experience.
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1 Introduction

While desktop computers today are very powerful, there remain many com-
putational tasks of interest that conventional computers cannot complete in
a reasonable time. Such tasks are especially common in the domain of com-
putational science, where physical phenomena (e.g., nuclear reactions, earth-
quakes, planetary weather and climate) are studied through computer simula-
tion. For these problems, scientists must turn to high-performance computing
(HPC) systems. These systems are able to provide more processing power
than conventional systems through parallelism: by connecting many process-
ing units together in parallel, such HPC systems are able to obtain much
greater performance, at least in principle. In practice, it can be difficult to
achieve performance gains on HPC systems because of the complexities in-
volved in implementing efficient parallel programs. While the challenges of
parallel programming have have traditionally been a concern for the HPC
community alone, the rise of multicore architectures is making the parallel
programming challenge increasingly relevant to all programmers[38].

Programmers must specify parallelism explicitly in their source code to take
advantage of HPC machines. Researchers have proposed many different paral-
lel programming models to express parallelism. It is through the program-
ming model that the programmer specifies how the different processes in
a parallel program coordinate to complete a task. Many models have been
proposed, with corresponding implementations as libraries, extensions of se-
quential languages (e.g. C, Fortran), and new parallel languages. These mod-
els include: message-passing[16,37], threaded[15,31,28,34]), partitioned global
address space (PGAS)[9,32,43], data-parallel[5,11], dataflow [17], bulk syn-
chronous parallel (BSP)[22], tuple space[27] and parallel random access mem-
ory (PRAM)[41,26].

The pilot study in this paper addresses the following research question: would a
PRAM-like system offer measurable benefits over alternative parallel systems?
We conducted a study in an academic setting to compare the time required to
solve a particular programming problem using the XMTC[2] extensions to the
C language (which supports a PRAM-like model) versus using the MPI[16]
library (which supports a message-passing model).
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gilbert@cs.ucsb.edu (John Gilbert).
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Fig. 1. Message-passing model of a parallel computer

1.1 Message-passing with MPI

In the message-passing model, the parallel machine is modeled as a set of pro-
cessing elements that each have their own bank of addressable local memory.
The processing elements are connected to each other over a network. Figure 1
depicts this model: boxes labeled P are processing elements and boxes labeled
M are memory banks. Processing elements coordinate to complete tasks by
exchanging messages over the network.

The MPI library is one implementation of the message-passing model with
bindings to languages such as Fortran, C and C++. When an MPI program
runs, a fixed number of processes are launched on the parallel machine, where
each process is typically assigned to a separate processor. Each process has
a unique ID, which can be retrieved with a function call. Programmers use
send and receive function calls to communicate among the different processes.
There are six basic function calls in MPI:

• MPI Init - initialize MPI environment (called at beginning of program)
• MPI Finalize - clean up MPI environment (called at end of program)
• MPI Comm size - returns total number of processes
• MPI Comm rank - returns ID of the current process
• MPI Send - send a message to another process
• MPI Recv - receive a message from another process

While these six calls are sufficient to implement any message-passing program
in MPI, many other functions are provided for convenience and which may
provide better performance than the basic send/receive calls. They include
different types of send/receive calls (buffered vs. unbuffered, blocking vs. non-
blocking), multipoint communications (e.g. broadcast, scatter, gather), reduc-
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Listing 1. MPI code
#include <mpi.h>

#include <stdio.h>

#define N 3

int main (int argc , char *argv []) {

int my_id , num_procs;

int data[N];

MPI_Init (&argc ,&argv);

MPI_Comm_rank(MPI_COMM_WORLD ,&my_id );

MPI_Comm_size(MPI_COMM_WORLD ,& num_procs );

printf("Hello from process %d of %d\n",

my_id , num_procs );

/* Send data from process 0 to process 1 */

if(my_id ==0) {

data [0]=1; data [1]=3; data [2]=5;

MPI_Send(data ,N,MPI_INT ,1,0, MPI_COMM_WORLD );

} else if (my_id ==1) {

MPI_Recv(data ,N,MPI_INT ,0,0,

MPI_COMM_WORLD ,MPI_STATUS_IGNORE );

}

MPI_Finalize ();

return 0;

}

tion operations (e.g. sum, product, maximum), barrier operations, and timing
functions for performance analysis.

Listing 1 shows an example of a simple MPI program that prints out the
process ID of each process and then sends an array of integers from process 0
to process 1.

The great strength of the MPI model is that it maps well to a broad range of
parallel systems in use today. While there are some shared memory systems
where the time to access any memory address is the same for all processors,
most HPC systems are either distributed shared memory machines (where
processors can directly access all memory, but some accesses are faster than
others), clusters (where processors have their own local memory and are con-
nected together over a local area network) or hybrids. Accessing local processor
memory is typically much faster than accessing remote memory or communi-
cating over the network. Because MPI gives the programmer low-level control
of communication, it allows programmers to exploit locality: they can write
programs that minimize communication overhead, thereby avoiding costly re-
mote memory accesses or network communications. Because of its versatility,
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MPI is currently the most widely used parallel programming method on HPC
systems.

While MPI is the most popular parallel programming technology in terms of
number of users, it is not well-liked. MPI is considered difficult to program
compared to serial programming. In particular, MPI forces programmers to
work at a very low-level of abstraction to deal with many of the communication
details. Several reports commissioned by the U.S. government have pointed out
the challenges of programming today’s parallel systems with MPI [4,19,21,25].

1.2 PRAM-like with XMTC

The PRAM model [18] is a generalization of the Random Access Machine
(RAM) model, the basic sequential computing model exposed to programmers
in traditional programming languages. Figure 2 depicts this model; although
only a fixed number of processors is shown, in the PRAM model, the PRAM
theory permits assuming an unbounded collection of RAM processors in a
PRAM algorithm, as this will be readily translated to a fixed number. The
memory can also be assumed to have an unbounded collection of memory cells,
which are accessible to all processors in unit time. The main difference between
a sequential program and a parallel program using the PRAM model is the
existence of parallel for loops, where each iteration of the loop is executed in
parallel on a separate processor. This is typically referred to as a pardo-loop,
short for parallel do.

When executing parallel loops, all processors execute the loop instructions syn-
chronously. The synchronous execution of the processors distinguishes PRAM
from other shared memory models such as POSIX threads[31] or OpenMP[15],
and avoids most problems associated with race conditions. Any reference to the
PRAM model is usually associated with assumptions on the outcome of having
concurrent access to the same memory location. The arbitrary concurrent-read
concurrent-write (CRCW) convention allows concurrent-reads to the same
memory locations; in case, of multiple attempts to write to the same memory
location simultaneously, an one among the attempting write will succeed, but
it is not known in advance which one.

XMTC is an extension of the C programming language that adds parallel di-
rectives to provide a PRAM-like model to the programmer. The main addition
is the spawn directive, which provides support for a PRAM-like pardo loop.
The directive will spawn multiple virtual threads and execute the ensuing code
black in parallel. Within these parallel blocks, each thread is assigned an ID
which can be accessed using the $ symbol. There is also the sspawn directive,
that can be nested, for launching a single additional thread.
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Fig. 2. PRAM model of a parallel computer

Listing 2. XMTC code
#include <xmtc.h>

#include <xmtio.h>

#define N 20

int main() {

int i;

int A[N],B[N],C[N];

/* initialize A,B arrays */

...

spawn(0,N-1) {

if($ % 2 ==0) {

C[$] = A[$] + B[$];

} else {

C[$] = A[$] - B[$];

}

}

for(i=0;i<N;i++) {

printf("%d ",C[i]);

}

}

XMTC implements a CRCW PRAM: if multiple threads attempt to update
the same memory location simultaneously, then an arbitrary one will succeed.
XMTC also provides prefix-sum directives that implement concurrent writes,
among other things.

Listing 2 shows XMTC code where the even elements of arrays B and A are
added, and the odd elements of B are subtracted from odd elements of A.

The Parallel Random Access Machine (PRAM) model [18] has long been ad-
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vocated as a model for designing parallel algorithms [24]. Historically, PRAM
has been criticized because it assumes that processors run synchronously and
interprocessor communication is free [14], assumptions which are severely vi-
olated on currently available HPC systems. It is not possible to program cur-
rent systems using the PRAM model because modern architectures are not
designed to support such a model efficiently. However, because of the recent
trends in semiconductor technology towards multicore processors [38], it may
soon be feasible to build large-scale, fine-grained uniform-memory-access par-
allel machines which could be modeled as PRAMs. For example, the XMT
project at the University of Maryland is conducting research on how to build
chips[42,1] that could efficiently support programs written using a PRAM-like
model [41].

1.3 Context of the study

This study is one of a series of studies being carried out as part of the DARPA
High Productivity Computing Systems 1 project (HPCS), which is investigat-
ing alternative parallel programming models to determine their impact on
productivity relative to existing models such as MPI. All of these studies,
including the one described in this paper, have been carried out by software
engineering researchers (the first two authors of the paper). These researchers
had full control over the results reported in this study (with the exception of
XMTC performance analysis in Section 4.4) and have no vested interest in
any one particular programming model or technology.

2 Related work

Several empirical studies have been previously done to evaluate the impact
of parallel programming technologies on productivity, although we found no
previous studies that focused specifically on PRAM. Szafron and Schaeffer ran
on a study to evaluate the usability of a parallel programming environment
compared to a message-passing library [39]. Browne et al. studied the effect of
a parallel programming environment on defect rates [6]. Rodman and Brors-
son [35] evaluated performance-effort trade-offs in porting a shared-memory
program to use a hybrid shared-memory/message-passing model. Addition-
ally, some studies have been done to evaluate the effect of a parallel language
on effort by analyzing source code metrics [8,10,40].

1 http://www.highproductivity.org
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3 Description of the Study

This section first presents the goals and hypotheses, then gives a description
of the study.

3.1 Goals

Stated in GQM form [3], the goal of this study is to analyze message-passing
and PRAM-like parallel programming models for the purpose of evaluation
with respect to:

• program correctness
• development time

from the viewpoint of the researcher in the context of

• graduate-level parallel programming classes
• solving small programming problems

Note that we use the term development time to refer to the time that the
subjects spend implementing a solution to the programming problem. In the
software engineering literature, this is sometimes referred to as effort [33], and
we use the terms interchangeably.

3.2 Hypotheses

Proponents of the PRAM model claim that it is much simpler than the
message-passing model for implementing parallel algorithms, since program-
mers do not have to deal with issues such as domain decomposition and explicit
communication between processes. We use program correctness and develop-
ment time as outcome variables to measure ease of use.

Based on the above, we consider the following two hypotheses in our study.

• H1: Programs written in XMTC are more likely to be correct than programs
written in MPI.

• H2: Writing XMTC requires less development time than writing MPI pro-
grams.
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3.3 Study Design

To conduct this study, we leveraged existing graduate-level parallel program-
ming courses at two different universities. In one class, the students were given
a parallel programming assignment to implement in MPI, and in the other
class, the students were given the same parallel programming assignment in
XMTC.

This study design is a nonequivalent control group design [7], which is techni-
cally a quasi-experiment since subjects were not randomly assigned to treat-
ment groups.

3.4 Subjects and Groups

The subjects were students in graduate-level parallel programming courses
at the University of California, Santa Barbara (UCSB) and the University of
Maryland (UMD). The focus of the UCSB class was on developing parallel
programs to run on the current generation of architectures, and the course
covered MPI as well as other models (OpenMP[15], Matlab*P[12]). The fo-
cus of the UMD class was parallel algorithms in the PRAM model, and the
students solved parallel programming programs in XMTC.

The students were assigned to treatment groups by class. UCSB students
were given a problem to solve using MPI, and UMD students were given the
identical problem to solve using XMTC. UCSB students could choose to solve
the problem in either C/C++ or Fortran.

3.5 Procedure

The students in each class were given a parallel programming assignment
which they were required to complete as part of their course. This assignment
was one of several assignments in the classes. Students were not required to
participate in the study.

Subjects were given a description of the task to be completed, as well as a
C header file which contained some data structures necessary to complete
the assignment. They were given a deadline of approximately two weeks, and
worked on the assignment in their own time. In each class, the students had
login accounts on a machine which they were to use for compiling and running
their code.
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The professors who taught the course did not have a direct role in either
carrying out the study or in analyzing the data.

3.6 Study Task

The task was to write a function to multiply a sparse matrix with a dense
vector. The subjects were provided with the data structures for representing
the sparse matrix, and these data structures were identical for the MPI and
XMTC groups. The professors tried to ensure that the students were exposed
to the same type of information about the problem.

3.7 Apparatus

Development time data was collected using two different methods: self-reported
and automatically collected. Subjects kept track of their development time
with a self-reported time log. In the XMTC group, subjects used a web-based
form to enter their development time data, and in the MPI group, subjects
used papers forms. We also collected automatic development time data by
instrumenting the compilers. These instrumented compilers recorded a set of
data (including timestamps) at each compile. In both groups, subjects were
required to compile and run their code on a remote machine. In the case of
MPI, this was a departmental Linux cluster. In the case of XMTC, this was the
prototype compiler simulator software that was available on the class server.
From these two sources of data, we were able to come up with three sepa-
rate estimates of development time: one based entirely on self-reported data,
one based entirely on data from the instrumented compiler, and one based
on a combination of the two approaches (more details about our algorithm
for estimating development time based on the instrumented compiles and on
combining the development time measures can be found in [23]).

Performance data for the MPI programs was measured by running the pro-
grams on a parallel machine and calculating the time spent doing matrix-
multiply using the MPI timing functions. Performance data for the XMTC
programs was measured using clock-cycle counts from the simulator.

Background information was collected from the subjects using on-line and
paper-based questionnaires.
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Table 1
Subject participation

Total Consented Completed

UCSB (MPI) 26 21 16

UMD (XMTC) 16 15 14

Table 2
Subject major

CS CE EE ME CS/M Mgmt ?

MPI 13 0 0 2 0 0 1

XMTC 4 4 1 1 1 1 2

4 Data analysis

This section presents a data analysis of the results of the studies. We use a
p-value of .05 in all statistical tests (or, equivalently, a confidence interval of
95%). All statistical tests were performed using the R software environment, 2

version 2.0. Power analyses were performed using Lenth’s Java applets for
power and size [29].

4.1 Characterization of groups

Table 1 shows the number of students in each class, the number of students who
consented to participate in the study, and the number of consenting students
who completed the assignment and submitted a solution (the other students
dropped the class). Table 2 shows a breakdown of the subjects by major (CS:
computer science, CE: computer engineering, EE: electrical engineering, ME:
mechanical engineering, CS/M: computer science & math, Mgmt: management
science, ?: did not specify background).

4.2 Correctness

• H1: Programs written in XMTC are more likely to be correct than programs
written in MPI.

The programs were checked for correctness by running them against a known
input and checking if the program output matched the expected output. A
program that crashed during execution was counted as being incorrect. Table
3 provides a summary of the correctness across classes.

2 http://www.r-project.org
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Table 3
Correctness

Model Number of correct submissions

MPI 7/13 (54%)

XMTC-1 12/14 (86%)

XMTC-2 11/14 (79%)

χ2 p-value p < .05

MPI vs. XMTC-1 1.93 0.16 no

MPI vs. XMTC-2 0.91 0.34 no
Table 4
χ2 test of correctness rates

For MPI correctness, we were only able to evaluate 13 of the 16 submitted
programs. Of the remaining three, two were implemented in Fortran (which
we could not evaluate because of technical reasons), and for the remaining one
the subject had not conformed to the programming interface as given in the
task description.

We wish to investigate whether there is a difference in the probability of
implementing a correct program in MPI vs. XMTC. We use Pearson’s χ2

test [20] with Yates’ continuity correction to check if there is a statistically
significant difference in the frequency of correct solutions. The results of the
tests are shown in Table 4. While the differences appear large in Table 3 (86%
vs. 54%), the results are not statistically significant, and therefore we cannot
claim that H1 is supported by the data.

4.3 Development time

• H2: Writing XMTC requires less development time than writing MPI pro-
grams.

We employ three methods for measuring development time in our analysis:
self-reported, instrumented, and combined. Self-reported measures are based
entirely on time logs, instrumented measures are based entirely on timestamps
from the instrumented compilers, and combined measures are based on com-
piler timestamps when the subject is working on the instrumented machine,
and self-reported time when the subject is working off the instrumented ma-
chine. Figure 3 shows the distribution of development time for the two classes
using our three different development time measures.

We compute 95% confidence intervals for the differences in development time
means to provide some notion of effect size rather than applying a t-test[13].
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Table 5
Limits of development time confidence intervals

Lower limit Upper limit

Reported 4.9h 15.7h

Instrumented 0.7h 7.2h

Combined 2.0h 7.7h

The confidence intervals for the difference in development time means are sum-
marized in Table 5 and depicted in Figure 4. Note that for each measure, the
confidence intervals does not include 0, so we conclude there is a statistically
significant difference between treatment groups at the p < .05 level. Thus,
H2 is supported by all three development time measures.

If we consider MPI to be our reference, we can compute a reduction in mean
development time in using XMTC over MPI, which we define as

R = 1− Exmt

Empi

where Exmt is mean time to implement the problem in XMTC, and Empi is
mean time to implement the problem in MPI. Reduction in mean effort was
59% for reported time, 44% for instrumented time, and 46% for combined
time.
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To evaluate if subject backgrounds had an effect on the development time
score, we ran an analysis of variance based on the responses on the background
questionnaire. We asked subjects about their current major as well as their
experience in various areas, including: general software development, parallel
programming, multithreaded programming, C programming, C++ program-
ming, and sparse matrix methods.

We employed a one-way analysis of variance (ANOVA) to check if these vari-
ables had a statistically significant effect on the combined development time
scores. Table 4.3 shows the ANOVA results. The only factor that exhibited a
statistically significant effect at the p < .05 level was the parallel programming
model.

4.4 A note about performance

A comparison of parallel programming models would not be complete without
some consideration of the performance of the resulting codes. In this case,
direct performance comparisons are not possible because MPI is a mature
implementation that runs on existing systems, and XMTC is a prototype
which runs only on a simulator. In addition, the two models exploit parallelism
differently. XMTC uses a spawn/join model of parallelism, where the number
of active threads varies over the lifetime of the process. In MPI, the number of
processes is fixed over the lifetime of the program. Therefore, the performance
of an MPI program can actually worsen as the number of processes is added
if there is not enough work to distribute efficiently across the processors, so
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Table 6
Analysis of variance

Df Sum Sq Mean Sq F value Pr(>F)

Model 1 158.10 158.10 15.18 0.0025

Current Major 5 126.48 25.30 2.43 0.1022

Software Development Experience 1 0.36 0.36 0.03 0.8557

Parallel Programming Experience 1 0.86 0.86 0.08 0.7795

Thread Programming Experience 1 9.44 9.44 0.91 0.3614

Sparse Matrix Experience 1 2.07 2.07 0.20 0.6643

C Development Experience 1 26.99 26.99 2.59 0.1358

C++ Development Experience 1 14.79 14.79 1.42 0.2586

Residuals 11 114.58 10.42

an MPI program must be evaluated at different processor counts to determine
its peak performance.

Nevertheless, we felt that the paper would be incomplete without some discus-
sion of performance. We use speedup versus a reference serial implementation
(similar to “real speedup” [36]) as a measure of performance, where speedup
is defined as

S =
Tser

Tpar

where Tser is reference serial execution time and Tpar is parallel execution
time. Speedup allows us to make comparisons across different machines. In
the XMTC case, we had an XMTC expert code our reference serial implemen-
tation. For the MPI case, we did not have an implementation from an expert,
so we used the fastest single-processor MPI implementation as the reference
serial implementation.

MPI programs were run on a 24-processor Sun SunFire system (a shared
memory machine), and XMTC programs were run on a simulator with 1024
thread-control units. Although the MPI subjects originally developed their
code for a commodity Linux cluster, we felt that it would be a fairer compar-
ison to measure the MPI performance on a shared memory machine, where
there is less of a performance penalty due to communication among processes.

The MPI programs were timed when multiplying a 50180 × 50180 sparse-
matrix containing 1185124 non-zero elements with a dense vector containing
50180 elements. The XMTC programs were timed when multiplying a 30000×
100 sparse-matrix containing 60130 non-zero elements with a dense vector
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containing 100 elements.

Figure 5 shows the distribution of MPI speedups for a range of different pro-
cessors, up to the limit of 24 processors. The MPI programs scale up to 16
processors, with a median speedup of 11x. However, as processors increase the
performance worsens, and when 24 processors are used, the median speedup
of only 2.2x. (Note that some super-linear speedup occurs at 2,4, and 8 pro-
cessors, most likely due to cache effects).

Figure 6 shows the distribution of XMTC speedups for the implementations
submitted by the subjects. The simulation-based empirical framework for
XMT speedups is taken from [30]. The results were obtained through a cycle-
accurate simulator that was derived from a synthesizable Verilog description
of the XMT architecture. The median speedup for the subjects was 157x, and
the speedup achievable by an expert was 206x.

Note that for the XMTC implementations, the median speedup for the “tuned”
implementations is lower than the one for the more straightforward implemen-
tation. The outcome of a paired t-test [20] (p=.007) confirms that there is a
statistically significant difference between the two implementations, although
in the opposite of what was originally expected.
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5 Threats to Validity

5.1 Internal

Selection. Since we were not able to randomly assign subjects to treatment
groups, the outcome of the study may have been affected by some difference
across treatment groups other than the programming model that was used.
Unfortunately, we did not have the opportunity to administer a pre-test in
this study.

Selection-history interaction. The subjects received different amounts of train-
ing or experience in problem type, programming model, etc. The professors
endeavored to provide the subjects with the same amount of information about
the specific problem. However, the subjects had different amounts of experi-
ence using the programming models within their class. In the MPI class, the
subjects had three previous MPI assignments before the one involved in the
study, whereas in the XMTC class, the subjects had only one previous assign-
ment.

The assignments were very similar, but not exactly the same. The MPI sub-
jects were also asked to implement a conjugate-gradient algorithm in Mat-
lab*P[12] which calls their sparse-matrix multiply function. We did not collect
development time data on this part of the assignment. The XMTC subjects
had to implement the algorithm twice: once using the same sparse-matrix data
structures as the MPI subjects, and a second time using a different sparse-
matrix data structure. We did collect development time data on this part
of the assignment also, so our development time measures for XMTC may
overestimate the total development time.
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The motivations of the students in the two classes may be different, based on
how they expected the assignment to be graded. In the MPI assignment, the
students were told that 50% of the grade would be based on performance. In
the XMTC assignment, the students were not told how performance would
affect their grade.

The general emphasis of the two courses themselves are quite different. The
MPI class focused on existing high performance computing architectures and
practical issues (such as memory hierarchy) that programmers must deal with
to achieve good performance. The XMTC class focused more on the theory of
parallel algorithms in the PRAM model.

5.2 Construct

Mono-operation bias. Solving a small parallel programming problem in a class-
room environment is qualitatively different from implementing a complete ap-
plication. For example, in larger programs, more of the code will be inherently
serial, and so the effect of the parallel programming model will not be as pro-
nounced. On the other hand, in this problem the subjects in the MPI group
were given the domain decomposition for the problem. In a real application,
MPI programmers would have to come up with this decomposition on their
own, whereas XMTC programmers do not have to deal with this issue.

Even for small-scale problems, this single study is not representative of all
of the different types of parallelizable problems. This study focused on one
particular problem: implementing a function to do sparse-matrix dense-vector
multiply. This type of problem was easy to solve in parallel using XMTC (pos-
sibly even as easy or easier than the equivalent serial implementation,although
this was not explicitly investigated here). Other types of problems will be easier
or harder to parallelize using a message-passing model based on their com-
munication patterns (e.g. “embarrassingly parallel” problems such as Monte
Carlo simulations, or “nearest-neighbor” problems such as cellular automata
simulations).

5.3 External

Interaction of selection bias and experimental variables. The results of this
study only apply to novice parallel programmers in MPI and XMTC. These
results cannot be generalized to more experienced parallel programmers work-
ing outside of a classroom environment, and the study may also be capturing
learning effects. However, given that XMTC is currently a research language,
there are no experienced XMTC programmers yet!
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Table 7
Power analysis

β > .5 β > .8

MPI vs. XMTC-1 22 37

MPI vs. XMTC-2 35 63

6 Discussion

6.1 Correctness

We did not find a statistically significant difference in the correctness rates
between the different models. However, we can use the results obtained in
this study to help plan the size of future studies through the use of power
analysis [29]. Using the correctness rates we obtained in this study (MPI:54%,
XMTC-1:86%, XMTC-2: 79%), we can estimate the number of subjects we
would need to detect an effect with power (β) of 50% or 80%. (If the expected
effect size is known in advance, there is little sense in conducting a study with
power less than 50%, since the probability of a statistically significant result is
less than a random coin flip, assuming the effect is real). Table 7 summarizes
the number of subjects required in each group to achieve the desired power.
Note that we would need at least 22 subjects in each group to achieve a power
of 50% in comparing MPI to XMTC-1 (recall that in our study we had 16
subjects in the MPI group and 14 in the XMTC group).

6.2 Effort

To try to understand the differences in effort between MPI and XMTC, we
examined the source code submitted by the subjects. The MPI programs
are much larger than their XMTC counterparts (roughly 7 times larger than
XMTC-1 and 2 times larger than XMTC-2 implementations). This difference
in size is because of the additional source code necessary to handle the com-
munication between the processors. The particular problem of sparse-matrix
dense-vector multiply requires an “all-to-all” pattern of communication among
processes: each process may potentially need data from all of the other pro-
cesses to complete the computation.

MPI supports both point-to-point (send, receive) and collective communi-
cation (e.g. broadcast, scatter, gather, reduce, all-to-all, barrier) operations.
While any MPI program can be written using only the point-to-point func-
tions, use of the collective communication functions may improve performance,
depending on the architecture. There was substantial variation across subjects
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in their use of MPI functions. Only three subject used strictly point-to-point
calls: the other students used at least one collective communication function.
However, the particular collective communication function varied from one
subject to the next. Half of the students used the vector variants of the col-
lective communications calls (Allgatherv, Alltoallv), which are used when the
size of the data being exchanged varies from one process to the other (e.g.
when the number of data elements does not divide evenly by the number of
processes). These calls are more complex than their non-vector counterparts,
and their use may account for increases in effort.

By contrast, the XMTC code requires no explicit communication. For most of
the submissions, the only substantial difference between the XMTC-1 imple-
mentation and the equivalent serial implementation is the use of the XMTC
spawn function to create one thread per matrix row instead of an outer for
loop.

The XMTC-2 implementations are larger than the XMTC-1 implementations
but smaller than the MPI implementations. The extra code in these implemen-
tations is devoted to dividing up the work among a fixed number of threads.

7 Conclusions and future work

We evaluated the claim that a PRAM-like parallel programming model (XMTC)
requires less effort than a message-passing model (MPI), through a quasi-
experiment conducted with students in graduate-level parallel programming
courses.

Our main result is that XMTC programs required about 45% less effort than
MPI programs. There was insufficient power to detect a statistically significant
difference in the rate of correctness between the two models. These results
suggest that if architectures continue to evolve towards fine-grained uniform-
memory access parallel machines, XMTC-like languages are worth pursuing.
However, further studies are necessary to evaluate this claim with respect to
different types of problems, as well as to larger programs.

While the sample size of this study was smaller than we would have liked, ob-
taining subjects for such studies is difficult. The population of programmers
who have training in parallel programming is small, so we rely on available
parallel programming courses for novice subjects. Nevertheless, we feel that
this type of study is a good first step in the continued empirical research of par-
allel programming issues, and provides a basis of comparison for future studies
which may involve more experienced programmers and different programming
tasks.

20



In fact, this study is one of a series of studies we are involved in to explore
the effect of parallel programming model on productivity. We are also in-
vestigating other parallel programming models (e.g. OpenMP [15], UPC [9],
Matlab*P[12]), as well as other types of parallel programming problems. We
are also conducting case studies of existing, larger-scale parallel programming
projects to understand the differences between phenomena that we observe in
the classroom studies and those that occur in actual development projects.
While any single individual study can only provide a small amount of insight,
we hope that by conducting several studies across multiple programming mod-
els, problem types, and problem sizes, we can gain a clearer picture of how
these variables affect productivity.
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A Raw data

Table A.1 shows the raw effort data, in hours, using the three measures: re-
ported effort, instrumented effort and combined effort. Combined effort was
computed by adding the instrumented effort to the fraction of reported effort
that corresponded to work done off the instrumented machine. (When filling
out the effort log, subjects indicated whether or not they were working on the
instrumented machine).

Note that for one of the subjects (subject 3 in XMTC), the subject consented
to participate but did not turn in any reported effort, and only two compiles
were logged for that subject, so no effort data exists. Also note that the subject
numbers are not necessarily sequential, because students who consented to
participate but did not turn in a solution were not considered as part of the
study.
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Table A.1
Development time (effort) data

Model ID Reported Instrumented Combined

mpi 1 13.0 5.7 11.7

mpi 3 6.7 6.7

mpi 4 18.0 6.0 8.0

mpi 6 12.0 2.1 5.1

mpi 7 26.0 18.7 18.7

mpi 8 15.0 11.2 11.2

mpi 10 2.5 7.5 7.5

mpi 12 25.0 8.7 10.7

mpi 13 25.0 13.9 13.9

mpi 14 4.0 8.8 12.8

mpi 15 18.0 4.2 7.2

mpi 16 11.0 12.9 12.9

mpi 17 20.0 6.9 6.9

mpi 18 16.5 13.4 13.4

mpi 20 40.0 11.5 11.5

mpi 21 17.0 5.1 10.1

xmt-c 1 1.4 1.4

xmt-c 2 5.6 5.6 5.6

xmt-c 4 6.4 2.9 3.2

xmt-c 6 3.8 2.6 2.6

xmt-c 7 10.0 5.6 5.8

xmt-c 8 6.3 3.9 6.2

xmt-c 10 6.2 3.2 4.2

xmt-c 11 7.0 4.6 4.6

xmt-c 12 4.8 3.4 6.8

xmt-c 13 13.6 15.1 15.1

xmt-c 14 8.5 6.9 6.9
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