IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 4, JULY/AUGUST 2009 551

Maturing Software Engineering Knowledge
through Classifications:
A Case Study on Unit Testing Techniques

Sira Vegas, Natalia Juristo, and Victor R. Basili

Abstract—Classification makes a significant contribution to advancing knowledge in both science and engineering. It is a way of
investigating the relationships between the objects to be classified and identifies gaps in knowledge. Classification in engineering also
has a practical application; it supports object selection. They can help mature Software Engineering knowledge, as classifications
constitute an organized structure of knowledge items. Till date, there have been few attempts at classifying in Software Engineering. In
this research, we examine how useful classifications in Software Engineering are for advancing knowledge by trying to classify testing
techniques. The paper presents a preliminary classification of a set of unit testing techniques. To obtain this classification, we enacted
a generic process for developing useful Software Engineering classifications. The proposed classification has been proven useful for
maturing knowledge about testing techniques, and therefore, SE, as it helps to: 1) provide a systematic description of the techniques,
2) understand testing techniques by studying the relationships among techniques (measured in terms of differences and similarities),
3) identify potentially useful techniques that do not yet exist by analyzing gaps in the classification, and 4) support practitioners in
testing technique selection by matching technique characteristics to project characteristics.

Index Terms—Classification, software engineering, software testing, test design techniques, testing techniques, unit testing

techniques.

1 INTRODUCTION

SOFTWARE Engineering (SE) has aspects that disqualify it
as a genuine engineering discipline [8], [11]. A promi-
nent point is the immaturity of the theoretical knowledge in
some areas of SE [1], [15], [19]. In science and engineering,
knowledge matures as the investigated objects are classi-
fied. Mature knowledge is not a sequential heap of pieces of
knowledge, but an organized structure of knowledge items,
where each piece smoothly and elegantly fits into place, as
in a puzzle. Classification groups similar objects to form an
organization. Examples are the classification of living
beings in the natural sciences, diseases in medicine,
elements in chemistry, architectural styles in architecture,
materials in civil engineering, etc.

Classifications have advanced knowledge in three ways
as the following:

e By providing a set of unifying constructs. Such
constructs systematically characterize the area of
research [28]. To facilitate knowledge sharing,

e S. Vegas and N. Juristo are with the DLSIIS, Facultad de Informatica,
Universidad Politecnica de Madrid, Campus de Montegancedo, 28660,
Boadilla del Monte, Madrid, Spain. E-mail: {svegas, natalia)@fi.upm.es.

e V.R. Basili is with the Department of Computer Science, University of
Maryland, 4111 A.V. Williams Building, College Park, MD 20742, and
the Fraunhofer Center for Experimental Software Engineering-Maryland,
Fraunhofer USA, Inc., 5825 University Research Court, Suite 1300,
College Park, MD 20740-3823.

E-mail: basili@cs.umd.edu, basili@fc-md.umd.edu.

Manuscript received 25 Feb. 2008; revised 2 Jan. 2009; accepted 13 Jan. 2009;
published online 29 Jan. 2009.

Recommended for acceptance by A. Bertolino.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2008-02-0086.
Digital Object Identifier no. 10.1109/TSE.2009.13.

0098-5589/09/$25.00 © 2009 IEEE

disciplines typically develop classifications. These
classifications then provide a common terminology
for communication.

e By understanding interrelationships [18], [22]. For
example, the periodic table of elements that
Mendeleyev built in the 1860s had a profound
impact on the understanding of the structure of the
atom. On the contrary, it is hard to pigeonhole
bacteria within the classification of living beings
because relatively little is known about them [30].

e By identifying knowledge gaps. For instance, the
gaps in the classification of chemical elements
prompted a search for further knowledge. Properties
of elements like gallium and germanium were
predicted before they were discovered years later [13].

However, classifications can serve other purposes apart
from providing a useful organization of knowledge. In
medicine, for example, the classification of diseases has
two main aims: prediction (separating diseases that
require different treatments) and provision of a basis for
research into the causes of different types of disease. In the
case of engineering, this other purpose is usually decision
making support.

We believe that classifications can help mature SE
knowledge in the same way as classifications further
knowledge in other fields of science and engineering.
Classifications structure a body of knowledge within a
field, enabling researchers and practitioners to generalize,
communicate, and apply the findings [28]. The information
organized as a classification is a step higher on the
knowledge maturity ladder than separate pieces of in-
formation, as it can be more easily understood and more
efficiently retrieved. More to the point, SE can benefit from

Published by the IEEE Computer Society

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on August 19, 2009 at 09:39 from IEEE Xplore. Restrictions apply.

552 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 4, JULY/AUGUST 2009

classifications because, today, the information about the
different elements making up SE (techniques, methods, and
processes) is unconnected. At best, you can pick up separate
pieces of information from books and research papers. In
other cases, the information is in the shape of experience (of
the people who have used these elements). At worst, there
is no information at all. This means that, at present, there is
nothing (a classification would be a good place to start)
offering a consistent description of the SE elements
according to standard parameters. So, it is not easy to
create a good picture of the relationships between the
separate elements, identify what information is missing,
and make systematic selections.

A number of different objects have already been
classified in the field of SE. Noteworthy is Bass et al.’s
classification of architectural styles [2]. This classification
was designed to unify software system architecture
descriptions, provide developers with information about a
particular style, and offer guidance for selecting the styles
that are to dictate the design of a software system. Maiden
and Rugg [16] present a classification of requirement
elicitation methods to ease the selection of methods and
help developers set up an acquisition program. Glass et al.,
[9], [10], Ramesh et al. [20], and Vessey et al. [28] outline a
classification of the state of research in the fields of
Computer Science, Software Engineering, and Information
Systems. Chillarege [5] describes a classification of defects
aimed at rapidly capturing the semantics of each software
defect. Finally, the SWEBOK [12] is a classification of the
knowledge now available in the field of SE. The SWEBOK
was designed to provide a consensually validated char-
acterization of the bounds of the discipline and topical
access to the underlying body of knowledge.

However, populating a classification is a community
effort, as the classification of living beings in the natural
sciences is. Linneaus began the current classification of
living beings in the late 18th century. The original classifica-
tion was and is being added to and reorganized, due to
inputs from thousands of researchers who have contributed,
are contributing, and will contribute to its apparently
unlimited growth [24]. The same applies to other classifica-
tions like the periodic table of elements in chemistry [13].

Due to the breadth of SE knowledge, any attempt at
classifying all knowledge would be an immense under-
taking for just one research group. It is really something that
should be undertaken as a community effort like the
SWEBOK project [12]. We have confined our effort to one
SE topic, testing technique technology. We use this topic to
exercise our approach for building SE knowledge classifica-
tions. The testing area can benefit from a testing techniques
classification. Today, there is a multitude and diversity of
items to be classified, and testing techniques meet the
conditions that illustrate the difficulties and benefits of
classification in SE.

We propose an initial classification of testing techniques
using a set of the unit testing techniques available today.
Note, however, that, although directly applicable to testing
techniques, the approach we have followed in this research
can be applied to other classifications of SE objects.

There are a few classifications of testing techniques [4],
[7], [31], but they were not built for the same purpose as
ours. There are actually different ways of classifying

things depending on the purpose of the classification.
Hence, there is no one universally correct classification for a
set of knowledge; the classification depends on what the
knowledge is being classified for.

The remainder of the paper is organized as follows:
Section 2 reviews some of the existing testing technique
classifications. Section 3 presents the proposed testing
technique classification and the steps used to create it. This
is a generic process and can be applied to generate other SE
classifications. Section 4 shows how the proposed testing
technique classification gives a detailed systematic char-
acterization of testing techniques, and how to use the
classification: to get a better understanding of the relation-
ships between the classified techniques, to detect missing
knowledge, and for the purposes of selection. Finally,
Section 5 sets out some conclusions.

2 CURRENT TESTING TECHNIQUE CLASSIFICATIONS

Three testing technique classifications have been proposed
to date: one by Bertolino for the SWEBOK [4], another by
Glass [7] (both covering all testing stages), and the third one
by Zhu et al. [31] (covering unit testing only). Strictly
speaking, there is a fourth classification: the classical
classification used in testing textbooks. It is based on
whether or not implementation knowledge is needed to
apply the technique. When no implementation knowledge
is used, the technique is black box; when implementation
knowledge is required, the technique is white box.

Bertolino’s classification, shown in Table 1, considers just
one criterion. It accounts for how the technique generates
test cases and has six possible values: testers’ insight and
experience, specification, code structure, faults to be
discovered, field usage, and application type.

Glass’ classification, shown in Table 2, also considers a
single criterion. It is related to the goal of the techniques
(testing all requirements, testing the structure of the
program, etc.). It takes four different values: requirements-
driven, structure-driven, statistics-driven, and risk-driven.

Zhu et al.’s classification, shown in Table 3, classifies
the techniques according to two criteria. The first criterion
is based on the source of information used to generate test
cases (similar to Glass’ goal). This criterion can take four
different values (which can be traced back to the
traditional black/white box classes): use of specifications,
use of interface, use of the program, or use of a
combination of the program and its specifications. The
second criterion is based on the underlying testing
approach (similar to how Bertolino’s tests are generated)
and has three possible values: based on code structure,
based on program faults, and based on programmer errors.
Note that, after classification, one of the groups (interface-
based techniques) is empty.

Note that, though these classifications agree on some
criteria, their values are different. This leads to different
testing technique classifications. Additionally, Bertolino’s
and Zhu et al.’s classifications list types of testing
techniques, not actual testing techniques. A type or group
of testing techniques covers a set of techniques that have
some features in common.

These classifications are valuable contributions to the
testing field, as they provided the groundwork for testing

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on August 19, 2009 at 09:39 from IEEE Xplore. Restrictions apply.

VEGAS ET AL.: MATURING SOFTWARE ENGINEERING KNOWLEDGE THROUGH CLASSIFICATIONS: A CASE STUDY ON UNIT TESTING...

- RELAY model

TABLE 1
Bertolino’s Classification of Testing Techniques
CRITERION CRITERION VALUE TECHNIQUES
BASED ON TESTER’S INSIGHT — Ad hoc testing
AND EXPERIENCE — Exploratory testing
— Equivalence partitioning
— Boundary-value analysis
— Decision table
SPECIFICATION-BASED . .
— Finite-state machine-based
— Testing from formal specifications
— Random testing
— Control-flow-based criteria
CODE-BASED — Data-flow-based criteria
How TESTS — Reference models for code-based testing
CASES ARE FAULT-BASED — Error guessing
GENERATED — Mutation testing
— Operational profile
USAGE-BASED — Software Reliability Engineered Testing
— Object-oriented testing
— Component-based testing
— Web-based testing
BASED ON APPLICATION TYPE B GUI. testing
— Testing of concurrent programs
— Protocol conformance testing
— Testing of distributed systems
— Testing of real-time systems
TABLE 2
Glass’ Classification of Testing Techniques
CRITERION CRITERION VALUE TECHNIQUES
Equivalence classes
REQUIREMENTS-DRIVEN Cause-effect graphing .
Boundary-value analysis
Error guessing
GOAL Statement testing
STRUCTURE-DRIVEN Branch testing
Path testing
STATISTICS-DRIVEN Operational profile
RISK-DRIVEN Risk assessment
TABLE 3
Zhu et al.’s Classification of Unit Testing Techniques
RITERIA SOURCE OF INFORMATION USED TO GENERATE TEST CASES
CRITERIA SPEC&PROGRAM- INTERFACE-
PROGRAM- BASED SPECIFICATION-BASED
VALUE BASED BASED
- Control flow - Model-based
STRUCTURAL | - Data flow .
- Property-oriented
- Dependence coverage
UNDERLYING - Mutation
TESTING - Error seeding - Specification-mutation
FAULT-BASED . : . .
APPROACH - Perturbation testing - Perturbation testing

ERROR-BASED

- Domain analysis

- Functional
- Random

technique research. This paper extends what they started by
adding more criteria to take into account other knowledge
about the technique, like when to use it, who can use it,
where it can be used, etc., and imitating the classifications of

553

chemical elements and living beings, by having a single
item at the end of each classification.

Robillard distinguishes two types of knowledge [21]:

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on August 19, 2009 at 09:39 from IEEE Xplore. Restrictions apply.

topic (dealing with the meaning of concepts) and episodic

554 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 4, JULY/AUGUST 2009

(dealing with the experience using the knowledge). As
engineering classifications deal with practical matters, it is
reasonable to expect an SE classification to contain both
topic and episodic knowledge.

3 A CLASSIFICATION FOR SOFTWARE TESTING
TECHNIQUES

To get a classification that fulfills the four targeted
purposes, we enacted a three-step process: 1) identify the
underlying classification criteria; 2) search and analyze the
sources of information required to give value to the
classification criteria for each technique; and 3) instantiate
and accordingly order the classification criteria for the
techniques that are being classified. The output of this
process is the classification of the selected techniques.

The first step is of vital importance, as the success of the
classification depends on the selected set of classification
criteria. We took an iterative and empirical approach to this,
which led us to a useful set of classification criteria. The
process is described in more detail in Section 3.1.

When a set of classification criteria has been decided on,
the information required to give value to the criteria for
each technique to be classified has to be gathered. This
search for information will also refine the set of classifica-
tion criteria. Criteria about which no information is yet
available or for which the pinpointed information is
unreliable will be removed from the set. This step is
detailed in Section 3.2.

Finally, the classification itself is put together. This
includes instantiating each criterion of the set of classifica-
tion criteria for the techniques being classified and establish-
ing an order within the set. Instantiation also allows criteria
refiltering by deleting any that are not discriminatory (i.e.,
all of the techniques belong to just one group) or are
redundant (i.e., classify the techniques identically). Criteria
ordering involves studying the selectivity of each single
criterion. Partial classifications of techniques for each
criterion are then combined to get an overall classification
arranging the criteria in order. This step is detailed in
Section 3.3.

This is a generic process insofar as it can be used to
classify any SE object and not just testing techniques, as can
be seen throughout the section.

3.1 Development of the Classification Scheme

The most straightforward technique for generating a
classification scheme (a set of criteria on which a classifica-
tion is based) is to examine a significant number (a number
that is large, disparate, and yet similar enough to guarantee
a relatively stable classification scheme) of the objects for
classification and look at the similarities and differences
between them. This is actually how the criteria in the
classifications discussed in Sections 1 and 2 were put
together and provided a guideline for our approach.

Here, we provide some details and justification of our
approach to make this paper self-contained. Further details
can be found in [25] and [27]. Our approach began with a
literature review in search of knowledge (theoretical and
empirical) about testing techniques. Based on an extensive
literature search in SE, testing and empirical journals and
conferences, we identified 69 relevant papers corresponding
to 47 studies (13 theoretical, 32 empirical, and two simula-

tions). The studies were grouped into five categories: eight
studies on relationships between structural techniques, five
studies on data flow techniques, nine studies comparing
random and partition techniques, four studies comparing
functional and structural techniques, four studies on muta-
tion techniques, 11 studies on regression techniques, two
studies on minimization techniques, and four other studies.
We found the following;:

e The studies covered a limited universe of testing
techniques and did not identify all the characteristics
of interest about those testing techniques, e.g.,
information about the effectiveness of the techniques
was missing in many cases.

e There were few characteristics of pragmatic use to
developers, e.g., there was little or no discussion of
cost of application. Comparing objects by observa-
tion only detects the criteria that cause the most
prominent differences, whereas others are missed.

This approach could also lead to a classification that
researchers think is useful for supporting practitioner
decision making, but which practitioners would regard as
not really interesting because it does not take into
consideration episodic information.

In an attempt to find a pragmatic solution for the above
shortcomings, we decided to use other methods to supple-
ment the literature review. The next step was to seek out the
opinions of researchers and practitioners in the testing area.
This generated a second scheme. This scheme was built
after holding a series of interviews to find out what the
interviewed subjects are likely to need to know about a
testing technique for selection purposes. The scheme was
developed incrementally, i.e., the criteria of researchers and
practitioners were gradually added. If the meaning of a
criterion suggested by the interviewee was in any way
ambiguous, we asked the subject to give a better explana-
tion or some examples.

A key issue at this stage was to determine how many
individuals needed to be interviewed as well as what
characteristics they should have. This is equivalent to
the sampling problem in statistics. Of the different types
of sampling [14], we opted for nonprobabilistic judgment
sampling. This way, subjects were not chosen at random.

As the potential subjects are busy people, we targeted
subjects that were willing to cooperate. Because we applied
judgment sampling, sample representativeness was achieved
by interviewing “typical” subjects. We defined typical
subjects from the profiles of people working in testing using
the following attributes: employer, job, education, SE, and
testing and job experience.

To maximize the representativeness of the sample for the
population, we chose 17 subjects from different employers
(three from universities, two from university-associated
research centers, and 12 from software companies of
different sizes), holding different positions (three profes-
sors, five software department managers, two project
managers, six developers, and one scientist), with varying
levels of job experience and expertise in software testing
issues. Experience varied in terms of planning to execution
of the test processes across various test techniques;
qualifications ranged from bachelor’s to doctorate degrees
in computer science, physics, and electrical engineering;
and software development experience ranged from 3 to
22 years, the mean being 12 years.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on August 19, 2009 at 09:39 from IEEE Xplore. Restrictions apply.

VEGAS ET AL.: MATURING SOFTWARE ENGINEERING KNOWLEDGE THROUGH CLASSIFICATIONS: A CASE STUDY ON UNIT TESTING... 555

TABLE 4
Classification Scheme for Testing Techniques

PERSP ASPECT CRITERION DESCRIPTION AND VALUES SOURCE KNOWLEDGE
MATURITY
COMPREHENSIBILITY Whether or not the technique is easy to understand (high, medium, low) R,P Reliable
APPLICATION COST How much effort it takes to apply the technique (high, medium, low) R,P Reliable
INPUTS Inputs required to apply the technique (requirements, code, design, etc.) R,P Reliable
ADEQUACY CRITERION ‘Whether the technique can be used as adequacy criterion (yes, no) R,P Reliable
TECHNIQUE TEST DATA COST Cost of identifying the test data (high, medium, low) P Reliable
Relationships of one technique with another (two values: [technique] and dependency type—should be R,P .
DEPENDENCIES applied befrr))re, after, shoulgnever be used W(ith, etc.) { el ’ P ’ Unreliable
REPEATABILITY Whether two people generate the same test cases (yes, n0) R,P Unreliable
SOURCES OF INFORMATION Where to find information about the technique (a person, a book, an article, an experiment, etc.) R,P Reliable
COMPLETENESS Coverage provided by the set of cases (percentage) R Unknown
PRECISION How many repeated test cases the technique generates (percentage) R,P Unknown
NUMBER OF GENERATED CASES | Number of cases generated per software size unit (formula) R Unreliable
j TEST CASES EFFECTIVENESS What capability the set of cases should have to detect defects (percentage) RP gnrchab}c
z on-gth1vale111
) TYPE OF DEFECTS Defect types detected in the system (control, assignation, initialization, etc.) RpP Unrc]lab!c
= Non-equivalent
é S OFTWARE YRR Type of software thvat can be .lcstcd using the technique (scientific/engineering, information systems, R,P Reliable
= systems programming, real-time, web-based, etc.)
=] OBJECT PROGRAMMINGLANGUAGE z::%ramming language with which it can be used (structured, functional, logical, real time, concurrent, R,P Reliable
SIZE Size that the software should have to be able to use the technique (number in KLOC) P Reliable
ELEMENT Elements of the system on which test acts (function, procedure, system, subsystem, etc.) R,P Reliable
IDENTIFIER Name of the tool and the manufacturer (two values: [tool name] and [company name]) R,P Reliable
AUTOMATION Part of the technique automated by the tool (flow chart, mutant generation, test case generation, etc.) P Reliable
Cost of tool purchase, usage, and maintenance (three values: [purchase cost], [high, medium, low], and P .
TOOLS Cos1 [maintenance]) Relizble
D e e T e e (s s 50— | 7| e
SUPPORT Support provided by the tool manufacturer (24-hour hotline, technical assistance, etc.) P Reliable
AGENTS EXPERIENCE Theoretical knowledge required to apply the technique (cyclomatic complexity, flow charts, etc.) R,P Reliable
KNOWLEDGE Practical knowledge required to apply the technique (tool understa.nding, etc.) R,P Reliable
REFERENCE PROJECTS Earlier projects in which the technique has been used (project name) P Unavailable
j PROJECT TOOLS USED Tools used in earlier projects (tool name) P Unavailable
< PERSONNEL Personnel who worked on earlier projects (people's names) P Unavailable
§ OPINION Gt:.ne.ral)opinion about the technique after having used it (sentence or paragraph explaining the P Unavailable
g opinion
é SR BENEFITS Benefits of using the technique (sentence or paragraph explaining the benefits of the technique) P Unavailable
PROBLEMS Problems with using the technique (sentence or paragraph explaining the drawbacks of the technique) P Unavailable

To determine if our sample size was sufficient for the
results to be representative, we conducted a stability
analysis of the classification scheme generated throughout
the interview process. This second scheme reached 50 per-
cent of its final size with the first interviewed subject, rising
to 80 percent after the second. The scheme reached
100 percent after the 10th respondent, so the last six subjects
interviewed (37.5 percent of the total) added no new
information to the scheme. At this point, the scheme was
considered as stable and interviewing stopped. This
supported sample sufficiency.

The criteria of most interest to the interviewed subjects in
descending order were the existence of tools (identifier), the
application cost of the technique, the inputs of the technique,
and the knowledge required to apply the technique.

After interviewing subjects, we merged our literature-
derived scheme with the researchers’ and practitioners’
opinions to create a single scheme.' The scheme built after
synthesis was sent to a series of experts® in the testing area
(out of 12 requests, only four replied) along with a

1. The fact that the scheme we generated did not contain an attribute that
appeared in the scheme after interviewing researchers and practitioners (or
vice versa) does not necessarily mean that this attribute is unimportant or
unnecessary. The omission could be a mistake or oversight. Likewise, there
is no way of knowing which attributes are not necessary (we did not ask for
this information).

2. An expert is a person of high international repute in the area of testing,
with lengthy experience in both the theory and practice of the testing
process and knowledge of the people involved in this process. They have
experience mainly as researchers, although some are also experienced
developers.

questionnaire. This step helped identify redundancies and
interdependencies between criteria and let to a compaction
of the scheme.

The approach used to obtain the classification scheme is
iterative and generic. It can be enacted by other SE
researchers interested in building classification schemes
containing useful criteria. Table 4 shows the resulting
classification scheme.

To make our classification scheme easier to understand,
we arranged the criteria around two perspectives related
to the type of information they represent. The first group
of classification criteria—operational—is linked to how the
technique works, whereas the second group—historical—
refers to experience in using the technique. The classifica-
tion criteria were further grouped by aspects. The aspects
make it easier to locate any criterion within the scheme, as
they represent the concept that each criterion refers to. The
operational criteria were grouped around five aspects that
refer to the features of the technique, the results of applying
the technique (test cases), the software (object) on which to
apply the technique, the tools available for using the
technique, and the subjects (agents) considered qualified to
use the technique. The criteria related to experience using
the technique or historical criteria were grouped around
two aspects: earlier projects in which the technique has
been used and the satisfaction that the technique merits
among people who have used it before. The perspectives,
aspects, and criteria are listed in the first three columns of
Table 4, respectively.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on August 19, 2009 at 09:39 from IEEE Xplore. Restrictions apply.

556

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 4, JULY/AUGUST 2009

TABLE 5

Classified Techniques

Group Technique Description
Several test cases are generated for each equivalence class, one that
Specification- Boundary value analysis belor}gg to the insidp of the class and as many as necessary to cover
b d the limits (boundaries) of the class
ase . Test cases are generated at random according to the input domain
Random testing . . .
defined in the specification
. Test cases are generated to assure that all program statements are
Statement testing
executed at least once
Control- Branch (decision) Test cases are generated to assure that all program decisions
flow-based testing (all-edges) (branches) take the value true and false
criteria Path testing Test cases are generated to execute all program paths
. Test cases are generated to assure that all threads are executed at
Thread testing .
least once in an OO program
All-cuses Test cases are generated to assure that there is at least one path of
Code-based each variable definition to each use of the variable in a computation
Test cases are generated to assure that there is at least one path of
All-p-uses 5 i :) A
each variable definition to each use of the variable in a predicate
Data-flow- -
based All-uses Test cases are generated so that there is at least one path of each
o variable definition to each use of the definition
criteria -
All-du-paths Test cases are generated to execute all possible paths of each
P definition of each variable to each use of the definition
. Test cases are generated to cover at all rendezvous in the labeled
All-possible rendezvous - .
transition system of a task in a concurrent program
Strong (standard) Test cases are generated to cover all mutants generated by applying
Fault-based Mutation mutation all the mutation operators
aur-base testing Selective (constrained) | Test cases are generated to cover all mutants generated by applying
mutation some of the mutation operators

The grouping of classification criteria around perspec-
tives and aspects is generic too. Any SE classification can be
arranged hierarchically as perspectives and aspects,
although they will not necessarily be the same as the ones
listed here.

Finally, we took into account the meaning and implica-
tions of the classification criteria as well as the information
now available about the different testing technique metrics
in order to choose the metrics to rate each criterion. The
description and values column of Table 4 contains the
meaning of each criterion and its possible values.

The source column in Table 4 traces each criterion of the
classification scheme back to its source. R represents the
information suggested by the researchers® and P represents
the information suggested by the practitioners. Of the
30 classification criteria identified, 28 (93 percent) were
suggested by the practitioners and 18 (60 percent) were put
forward by the researchers. These results imply that
practitioners are better at identifying episodic criteria. This
is supportive of the original idea about the difference
between topic and episodic knowledge and the importance
of examining the viewpoint of both the researchers and
practitioners to establish an SE classification covering both
types of criteria. A classification based solely on the
viewpoint of the researchers (ourselves included) would
fail to incorporate episodic knowledge. On the other hand, a
classification based solely on the practitioners’ opinions
could leave out topic knowledge.

3. We classed ourselves as an additional researcher.

3.2 Search and Analysis of the Information Needed
Generally speaking, when searching for the information
needed to instantiate a given classification scheme for a
set of SE objects, the maturity level of the information
available on the objects being classified is very likely to
differ (it may range from very mature information to open
research questions). We will only be able to use informa-
tion that has attained a minimum maturity level for
classification purposes.

To try out our proposal, we present a testimonial
classification of a wide-ranging group of 13 testing
techniques rather than an exhaustive classification of all
testing techniques. To reduce the immensity of the task of
classifying all testing techniques, we decided to focus on
unit testing. We disregarded techniques that are not
applicable at the unit testing stage and classified a number
of unit testing techniques. To assure that the exercise would
be useful, the techniques chosen for classification cover the
whole spectrum of unit testing techniques. Based on
Bertolino’s classification, described in Section 2, we selected
a number of technique groups to cover the between-group
variety of techniques and a number of techniques within
each group to cover the within-group variety of techniques.
Additionally, we chose well-known techniques. This gives a
better understanding of how the scheme is instantiated.
Table 5 describes the techniques covered here.

Column 6 of Table 4 characterizes each criterion’s
knowledge maturity for this particular case. The classifica-
tion criteria labeled as reliable refer to criteria whose values
are dependable and can be found in the testing literature.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on August 19, 2009 at 09:39 from IEEE Xplore. Restrictions apply.

VEGAS ET AL.: MATURING SOFTWARE ENGINEERING KNOWLEDGE THROUGH CLASSIFICATIONS: A CASE STUDY ON UNIT TESTING... 557

However, we came up against the following problems
when attempting to assign a value to the other criteria.

Some values are unreliable. In testing books and
research articles, one often comes across inconsistent
(sometimes even contradictory) information on the value
of some techniques for criteria like dependencies, repeatability,
number of generated cases, effectiveness, and type of defects.

Some values are unknown. The completeness and precision
criteria cannot be rated at present. The knowledge regard-
ing these criteria does not exist today, nor is there, to our
knowledge, any ongoing research investigating what their
values could be.

Metrics for assigning values to some criteria are not
equivalent. This applies to the effectiveness and type of defects
criteria. The sources of information provide different
metrics from the ones applied in our classification, and
the results of one metric cannot always be mapped to
another. For example, some studies measure effectiveness
not as a percentage of faults found by a technique (as
required by the proposed classification) but as the like-
lihood of finding one of all the faults in the software.

Some values are not publicly available. The information
contained in the historical perspective represents knowl-
edge gained by organizations after using the techniques in
real projects. However, this experience-related information
is condemned to disappear unless it is recorded. Since most
organizations do not now document this information, it is
difficult to find.

For classification purpose, only mature criteria (listed as
reliable in Table 4) can be taken into consideration in our
analysis. Therefore:

e The historical perspective criteria have been re-
moved because the values are unavailable.

e All the criteria of the test cases aspect as well as the
dependencies and repeatability criteria have also been
removed, because they are listed in Table 4 as
unknown or unreliable.

Additionally, we have omitted any criteria that, although
mature, are informational rather than classification: sources
of information, adequacy criterion, tool automation, cost, and
environment. Finally, we left out the element criterion,
because the value for all the techniques in this exercise
would be unit testing (although some techniques could also
have another value as they are not used exclusively for unit
testing). So, there are mature criteria that can be removed
from the classification schema because they are considered
as informational.

3.3 Instantiation of the Classification Schema

This section describes the steps used to complete the final
classification for unit testing techniques. First, we instan-
tiated each classification scheme criterion for the objects
being classified according to the information identified in
the previous step. Then, we looked at how each separate
criterion classified objects. This was designed to filter out
possibly superfluous criteria (i.e., that do not discriminate
techniques) or redundant criteria (i.e., that classify techni-
ques in the same manner). Finally, we combined the criteria
to arrange them in ascending order of discrimination and
put together the final classification.

To assure that the instantiation of the 13 selected
techniques for the classification criteria reflected the current
knowledge about the techniques as closely as possible, we
used the same bibliography as in the literature review
described in Section 3.1. This included reviewing current
knowledge about the testing techniques provided in
theoretical and empirical studies as well as simulations.
Fig. 1 shows the results of instantiating and grouping the
techniques by criterion. Column 1 shows the resulting
groups for the four technique aspect criteria. The groups for
the three object aspect criteria are shown in column 2.
Column 3 shows the groups for the two agents and tools
aspect criteria.

The classifications shown in Fig. 1 illustrate some
interesting points. First, we found that almost all the
criteria classify the set of techniques differently. This means
that almost all the criteria provide relevant information
about the techniques. The exceptions are the inputs, size, and
test data cost criteria. They classify the techniques identically
(the random and boundary value analysis techniques in one
group and the others in another). This might lead us to
think that two of these three criteria are redundant or
perhaps the three represent the same thing. As we are only
classifying a subset of testing techniques rather than the
whole universe, we will not venture to delete any criterion
in this case.

We use the cluster analysis technique [6] to establish an
order of priority among the different classification criteria
depending on how selective they are. Numerical classifi-
cation techniques like clustering originated primarily in
the natural sciences, like biology and zoology, in an effort
to rid taxonomy of its traditional subjectivity. Using
clustering, the instantiated testing techniques are classified
based on their similarities (expressed as distances).* To
calculate the distances between techniques, we assumed
that all the criteria have the same weight. We have no
objective reason to believe that some criteria are more
important (and thus, have a greater weight) than others.
The fact that a person failed to suggest a criterion during
the interviews is more likely to be due to an oversight
than objective unimportance.

Fig. 2 shows the final classification for the 13 techniques.
It shows a hierarchical tree-shaped diagram of the results of
the clustering analysis. The items to be classified are
arranged at the bottom of the graph. The unions between
the items are represented by the meeting of two lines at the
level specified by the distance between them, where 1.0 is
the maximum permitted by the defined metric. It provides
information about how selective the classification criteria
are. The criteria are arranged along the vertical axis of the
diagram, the least selective criterion appearing at the top
and the most selective at the bottom. Note that more than
one criterion may appear at any one decision point. This
applies, for example, to the inputs, size, and test data cost
criteria in this case, and is because they classify techniques
in the same way (a point discovered in Fig. 1). Also, some

4. To do a cluster analysis, the distance between the items to be classified
needs to be defined and the cluster strategy selected. The distance we used
was the number of criteria with different values for two techniques over the
total number of criteria. We used the complete linkage or farthest neighbor
clustering strategy.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on August 19, 2009 at 09:39 from IEEE Xplore. Restrictions apply.

558

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 4, JULY/AUGUST 2009

TECHNIQUE

chium
T7
\'@
8 \
.
T9

T

il

\\ T.l o Low

Comprehensibility

.
T13

.
_ 11 .
C, Java, Pascal, T10

FORTRAN

D
TI2\

Application cost

SPCCiﬂcation’
a .
1

T13
1

.
b} o
T4
.
Ts
.
v) .
Ti

Inputs

T8

.
T10

OBJECT

Software type

™ = Concurs
Any {T1 7

T4

Programming language

AGENTS
—

Errors people
make (e
T1

o N Concurrent

None

.
T10

Reachability
(aphs

rent
Interaction
00 @ diagrams
Control Flo
graphs

Data flow
graphs

Knowledge

TOOLS

Legend
e T1

« T10: All-uses

« T12: Mutation

Test data cost

Fig. 1. Classifications of techniques by a single criterion.

classification criteria may never appear. This would be the
case for criteria that are not selective, as they have the same
value for all the items being classified (this is out of the
question in this case, as this type of criteria would have
been deleted in the study of single-criterion classifications).

Ranked in ascending order criteria selectivity is: inputs/
test data cost/size (all three at the same level), availability,
support, comprehensibility, software type/programming lan-
guage/knowledge (all three at the same level), experience,
and application cost.

4 CHECKING THE PROPERTIES OF THE
CLASSIFICATION

Our aim was to produce a classification that helps to mature
and, therefore, advance SE knowledge. Such a classification

: Random testing

« T2: Boundary value analysis
« T3: Statement testing

« T4: Branch testing

« T5: Path testing

« T6: Thread testing

« T7: All-possible rendezvous
« T8: All-c-uses

« T9: All-p-uses

« T11: All-du-paths

« T13: Selective mutation

should systematically characterize the objects being classi-
fied, help to understand the relationships among these
objects, identify knowledge gaps, and support practitioner
decision making. This section discusses how SE can benefit
from the proposed testing technique classification. Sec-
tion 4.1 examines the terms in which the techniques are
described. Section 4.2 describes how classifications give an
understanding of the relationships among the objects being
classified. Section 4.3 analyzes how classifications can be
used to predict knowledge gaps by pinpointing where
information has been found to be missing from our testing
technique classification. Finally, Section 4.4 discusses how
classifications can be used for decision making purposes
and presents some examples using the classification
presented here.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on August 19, 2009 at 09:39 from IEEE Xplore. Restrictions apply.

VEGAS ET AL.: MATURING SOFTWARE ENGINEERING KNOWLEDGE THROUGH CLASSIFICATIONS: A CASE STUDY ON UNIT TESTING...

559

Testing Techniques
TECHNIQUE: Inputs, ™~ 7777777777777 e Qe 0.7
Test data cost Code, high, Specification,
OBJECT:Size oo medium g =7 N %A 0.6
TOOLS:
Availability e N 0.5
TOOLS:Support ~~ No_~ Ys N |No 0.4
TECHNIQUE:
Comprehensibility
__ 0.3

OBJECT: Sw. type, Any, C, Java, PASCAL|
Progr.lang FORTRAN, No Any,any, o,
AGENTS: Knowledge ™~ [¥es™ T T Yes T TTTTTTTTTUTTT 00, T pes T T T T /NO T ’
AGENTS: Experience No 01
TECHNIQUE:
Application cost ____/Medium\High ~/High \Medium /TLow_JIMedium\ High IMedium JMedium [Low M edium ()

T8 T10 T12 T13 T3 T4 T5 T6 T7 T1 T2

T9 T11

Legend: *T5: Path testing

« T1: Random testing

» T2: Boundary value analysis
» T3: Statement testing

¢ T4: Branch testing

*T6: Thread testing

*T8: All-c-uses
*T9: All-p-uses

Fig. 2. Classification of testing techniques.

Although the discussion presented here deals with the
unit testing technique classification, this reasoning is
extendible to any SE classification developed using the
process defined in Section 3.

4.1 A Detailed Systematic Characterization of

Testing Techniques

This section looks at whether we have built a classification
that provides as detailed as possible a systematic char-
acterization of unit testing techniques, covering and
extending existing classifications. To check this point, we
analyze the equivalences between the white/black box,
Bertolino’s, Glass’s, and Zhu et al.’s classifications and
those proposed here.

Bertolino’s and Zhu et al.’s classifications share the test
case generation criterion. Their suggested values are differ-
ent, but all are covered by four of our criteria. This means
that our classification discriminates between features whose
effect was confounded by Bertolino’s and Zhu et al.’s
classifications. Bertolino’s classification based on tester’s
insight and experience value and Zhu et al.’s error-based value
are related to the knowledge and experience criteria of our
classification. Bertolino’s specification-based, code-based, fault-
based, and usage-based values, and Zhu et al.’s structural and
fault-based values are covered by our inputs criterion.
Finally, Bertolino’s based on application-type value is linked
to our software-type criterion.

Zhu et al.’s, Glass’s, and the white/black box classifica-
tions share the source of information criterion, although they
also provide different values but all are covered by three of
our criteria. Again, our classification discriminates between
features whose effect was confounded by Glass’s, the

*T7: All-possible rendezvous

*T10: All-uses

*T11: All-du-paths
*T12: Mutation

*T13: Selective mutation

traditional, and Zhu et al.’s classifications. Our classification
suggests that techniques differ not only as regards the input
criterion but also as to the test data cost, and the size criteria.
Additionally, experience and knowledge are also important.

The implication of all this is that the fest case generation
and the source of information criteria are not the only features
determining technique membership of the same class. These
features (the most striking) actually designate the value of
many other features. This is a commonplace occurrence in
classifications. Consider the classical division between men
and women. According to Needham [17], the usefulness of
this classification does not begin and end with all that can
strictly be inferred from it (a statement about sexual
organs). It is a very useful classification because classifying
a person as a man or woman conveys a great deal more
information about probable relative size, strength, endur-
ance, certain types of dexterity, and so on. Similarly, the
testing technique division associated with the inputs
required to apply the technique actually implies many
more features. These are primarily fest data cost and
software size, but also, to a lesser extent (because they place
some that would traditionally be white box techniques into
the black box category), tool availability, or the need for
specific knowledge to apply the technique. And the same
applies to the division based on tfest case generation. It
implies more features: knowledge, experience, inputs, and
software type.

The existing classifications might appear to be simpler
than and just as effective as a classification based on the
equivalent criteria in our classification. But the fact is that,
in classifying by one aspect only (technique inputs or test

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on August 19, 2009 at 09:39 from IEEE Xplore. Restrictions apply.

560 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 4, JULY/AUGUST 2009

Legend:
« T1: Random testing
* T2: Boundary value analysis
+ T3: Statement testing
 T4: Branch testing

I: specification
S: any
TDC: low

I: code
S: medium
TDC: high

*T5: Path testing

*T6: Thread testing

*T7: All-possible rendezvous
*T8: All-c-uses

*T9: All-p-uses

*T10: All-uses

*T11: All-du-paths
*T12: Mutation

*T13: Selective mutation

Inputs Test data cost Size Availability Support Comprehensibility
Gl code high medium yes no low
G2 code high medium yes no high
G3 code high medium yes yes high
G4 code high medium no no medium
G5 spec low any no no high

Fig. 3. Groups of testing techniques.

case generation), there is a risk of key information being
missed due to oversimplification. If the other criteria are
removed, that information is no longer available for
describing and, of course, comparing the techniques.

Finally, one of our aims was to produce a selective
classification, i.e., ending in a single technique. Fig. 2 shows
that we have come very close to achieving this goal, as
there are only two cases in which two techniques (T8 and
T9—all-p-uses and all-c-uses—and T10 and T1l—all-uses
and all-du-paths) are classified identically. It is our belief
that this is because we used only mature knowledge on
testing techniques for the purpose of classification. We
think that if we had been able to use all the proposed
classification criteria (i.e., if the current knowledge on
testing techniques were more mature), we would have
discriminated between all techniques.

4.2 Understanding Testing Techniques

This section describes the relationships among testing
techniques and testing technique groups by investigating
the proximity and distance between the techniques and
reaching conclusions about the distribution of the techni-
ques and their rationale.

If we draw a horizontal line through Fig. 2 at a given
distance level, we will get as many groups as lines we cut
through. The resulting groups will be clusters whose
elements are nearer together than the chosen distance. The
groups that are formed will be identified by the values of
those criteria that are above the cutoff line. The goal is to
find the cut that makes more sense for the data you have
(termed the best cut in clustering analysis).

There are many ways of selecting the best cut. Everitt
et al. [6] list around 10 different methods. Also they suggest
that, given the lack of consensus about which rule to apply,
the best thing to do is to follow Baxter’s advice [3]:
“informal and subjective criteria, based on subject expertise,
are likely to remain the most common approach.”

We used two indicators to get the best cut: 1) large
distances in Fig. 2 (changes in fusion levels) and 2) multi-
dimensional scaling (MDS) [23], as it provides a usable
graphical display of the objects in a two-dimensional space.
Superimposing both indicators encloses objects within closed
boundaries, providing more insight into testing technique
relationships. The result of applying this strategy led us to
draw the cutoff line between 0.2 and 0.3 in Fig. 2. Fig. 3
illustrates this partition.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on August 19, 2009 at 09:39 from IEEE Xplore. Restrictions apply.

VEGAS ET AL.: MATURING SOFTWARE ENGINEERING KNOWLEDGE THROUGH CLASSIFICATIONS: A CASE STUDY ON UNIT TESTING... 561

The points in the space represent the techniques. They
are arranged so that the distances between the points in
the space resemble the original differences or similarities
as closely as possible. Each set boundary represents the
cluster generated by each classification criterion. The
classification criteria are arranged in order of selectivity:
The least selective criterion is on the outermost set
boundary and the most selective on the innermost. The
shaded areas represent the five groups of techniques that
we established. The groups that are inside the shaded
areas (reflected by a dotted line in Fig. 3) match criteria
that are not selective (criteria that are under the cutoff line
in Fig. 2). The groups are defined by the inputs, test data
cost, size, availability, support, and comprehensibility criteria.
This means that the criteria that best describe a unit testing
technique are the ones that indicate the inputs required to
apply the technique, the size of the software the technique
can test, the tool market availability and support, and how
easy it is to understand the technique.

Group 1 (all-c-uses, all-p-uses, all-uses, and all-du-paths)
is formed by techniques whose values are Code for inputs,
High for test data cost, Medium for size, Yes for availability,
No for support, and Low for comprehensibility. Group 2
(mutation and selective mutation) is formed by techniques
whose values are Code for inputs, High for test data cost,
Medium for size, Yes for availability, No for support, and
High for comprehensibility. Group 3 (statement testing,
branch testing, and path testing) has techniques whose
values are Code for inputs, High for test data cost, Medium
for size, Yes for availability, No for support, and High for
comprehensibility. Group 4 (thread testing and all-possible-
rendezvous) is formed by techniques whose values are
Code for inputs, High for test data cost, Medium for size, No
for availability, No for support, and Medium for comprehen-
sibility. Group 5 (random testing and boundary value
analysis) is formed by techniques whose values are
Specification for inputs, Low for test data cost, Any for size,
No for availability, No for support, and High for comprehen-
sibility. These five groups are not all the same distance
apart. The closest are G1 and G2, followed by G3, then G4,
and, finally, the group furthest away of all is G5.

A more detailed analysis of the resulting classification
shows us that for some techniques, this result is at odds with
what one might have expected according to the already
existing classifications. On one hand, groups G1, G2, and G3
match what Bertolino and Zhu et al., respectively, call data
flow, mutation testing, and control-flow criteria. However,
according to the classifications by these authors, we
expected the techniques in G4 (thread testing and all-
possible rendezvous) to be members of G3 (control-flow
techniques) and G1 (data-flow techniques), respectively.

Likewise, according to Bertolino’s classification, there
would be three equidistant groups: one composed of our
groups G1, G3, and G4, another matching our G2, and a
third equivalent to our G5. In other words, G2 should be
further away from the G1, G3, and G4 conglomerates, and
these three should be much closer to each other. The reason
is that of the four criteria in our scheme into which
Bertolino’s classification would be divided (inputs, software
type, knowledge, and experience), only one (inputs) is among

the most selective criteria of our classification. In other
words, Bertolino’s classification does not take into account
aspects, like test data cost, software size, tool availability, and
support, and technique comprehensibility, that we have found
to be important for classification purpose.

On the other hand, we find that Zhu et al.’s classification
is slightly closer to ours than Bertolino’s. Zhu et al. also
classify techniques into the same three groups as Bertolino’s
classification: one would be composed of our G1, G3, and
G4, another would match our G2, and the third would
correspond to our G5. And G5 would be a little further
away from the other two groups. In other words, the only
difference is that G1, G3, and G4 would be much closer
together. However, we get the same results as in the above
comparison. According to our classification, the same three
criteria as in Bertolino’s case turned out to be relevant and
Zhu et al.’s classification does not take them into account.

Finally, the white/black box and Glass’s classifications
envisaged two groups: one composed of our G1, G2, G3,
and G4 and the other of our G5, so the distance between G1,
G2, G3, and G4 should be zero. Here, as in the case of
Bertolino’s classification, only one of the six criteria that
turned out to be relevant for our classification (inputs)
matched the white/black box classification.

Finally, let us see if our classification is able to explain
real facts and how it does explain them. Let us focus, for
example, on the success rate of the classified techniques. The
techniques most used in practice by the practitioners today
are the members of G5, followed by G3. The techniques in
groups G1, G2, and G4 are hardly used at all. This means
that practitioners are generally likely to opt for the cheaper
(simple test data generation), easier (high comprehensibil-
ity), and more versatile (useful for any software size)
techniques, even if there are no available tools (group G5).
They are also prepared to use more costly and less versatile
techniques, provided simple and commercial tools are
available to automate their use. In summary, the explana-
tion that our classification gives for the success of the
techniques is that practitioners appear to prefer techniques
that are easier to use. None of the other three classifications
examined above give an explanation for this. One objection
might be that this is not a new finding. The point here is that
research has ratified a belief that was widely held, but a
belief nonetheless. Arriving at the same conclusion via
different routes raises the confidence in a finding.

4.3 Analysis of Knowledge Gaps

This section illustrates that an SE knowledge classification is
useful for detecting knowledge gaps. Having identified the
gaps the proposed classification reveals, we need to study
whether or not they really are gaps. For every real gap
detected, we identify the missing item. Finally, we look at
how important every gap is.

First of all, it is necessary to expand the classification tree
by considering all the possible values for each classification
criterion. Each tree node represents a possible value for the
classification criterion at the respective level, irrespective of
whether or not there are techniques with this value. Each
tree node with no associated technique at the end of a path
is a gap. The result of expanding the tree, shown in Fig. 2, is
illustrated in Fig. 4, where we have circled the gaps in the

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on August 19, 2009 at 09:39 from IEEE Xplore. Restrictions apply.

562 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 4, JULY/AUGUST 2009

Testing Techniques

TECHNIQUE: Inputs

TECHNIQUE:
Test data cost

OBJECT: Size

TOOLS: Availability

TOOLS: Support

TECHNIQUE: L
Comprehensibility

OBJECT: Sw. type

OBJECT: Progr.
language

AGENTS: Knowledge

AGENTS: Experience

TECHNIQUE:
Application cost LoV,

T4 TS

T3
T9 T11

Legend:

+ T1: Random testing

* T2: Boundary value analysis
 T3: Statement testing

¢ T4: Branch testing
» T5: Path testing
» T6: Thread testing

Fig. 4. Expanded classification of testing techniques.

classification, i.e., nodes without any associated technique.
Note that the classification presented here is incomplete, as
we have considered only 13 of the whole spectrum of
testing techniques. The results of the gaps analysis reported
in this section then are not conclusive because some of the
existing techniques not considered in the preliminary
classification presented here could fill these gaps.

Before moving on to the gap analysis, let us consider
whether all the gaps identified are potentially useful.
Chemical and biological classifications organize things that
already exist in nature and are waiting to be discovered.
However, in SE, we are concerned with human creations
designed to solve a specific problem (technological rather
than scientific research [29]). They are things created on
demand rather than things that exist. One might think, in
principle, that some nodes in Fig. 4 should not be filled, as
they are techniques that nobody would want, e.g., a
technique that can be applied to software code, at a high
test data cost, and is applicable to small programs, if there is
already a technique that works for medium-sized programs.
However, a technique with one (or all) of the above-
mentioned features could have some very specialized
feature that made it useful (e.g., a technique that can be
applied to software code, at a high test data cost, is
applicable to small programs and has a very low applica-
tion cost). Therefore, in principle, all nodes will be
considered as missing knowledge.

Y ediu \High

O+

T13 Ti12

Concugrent

Other

Low igh Lo

T6 T7 T2 T1

e T10: All-uses

*T7: All-possible rendezvous ¢ T11: All-du-paths
*T8: All-c-uses * T12: Mutation

*T9: All-p-uses e T13: Selective mutation

A distinction can even be made between the gaps that
should be filled. We have found that there are some gaps
that are critical for testing because they stop certain
software from being tested. These gaps correspond to the
object aspect and are the criteria that characterize what
software the techniques can test (size, software type, and
programming language). These gaps are highlighted in black
in Fig. 4. The existence of these gaps alerts us to the need for
urgent improvements in testing. For example, the fact that
there are no techniques for testing some types of large-sized
software (size criterion value: any) is something that should
be urgently remedied.

The other gaps, shaded gray in Fig. 4, are important but
less critical, as they refer to the improvement of some
technique features to make them easier and more straight-
forward for testers to use. These are gaps in the technique,
tools, and agents aspects. The gaps associated with these
aspects are not as critical as the others, because they do not
prevent the technique from being applied. For example, the
fact that there are no tools for some sorts of techniques is
something that should be put right.

Finally, as techniques are added to the classification, new
classification criteria values could materialize, and as yet
nonexistent, gaps could be discovered. For example, imagine
that we added a technique to the classification whose input
is interface (like the value suggested by Zhu et al.). In this

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on August 19, 2009 at 09:39 from IEEE Xplore. Restrictions apply.

VEGAS ET AL.: MATURING SOFTWARE ENGINEERING KNOWLEDGE THROUGH CLASSIFICATIONS: A CASE STUDY ON UNIT TESTING...

Sw. type
= yp
@]
B < Size
[=-]
] ;
Prog.language
AGENTS o _krloylgd_g.:li _______
A
TOOLS _commercial ’:‘,_’__ ______ esearch
[Testd i
est data cost : :high hlgh
m | i A
2) ... spec
S | Inputs 9991_6_'_'(5 _________ code
z ' 4
5 Comprehensibility | pigh
=y T K Y «
&= - I I
lAppllcatlon cost_me g _"._lgw_"' high_med _
T4 T3 T5 T8 TI10
T9 Ti11
Legend:

T1: Random testing
T2: Boundary value analysis
T3: Statement testing

e T4: Branch testing
e T5: Path testing
» T6: Thread testing

Fig. 5. Decision tree for selecting testing techniques.

case, all of the branches of the classification tree would have
to be expanded to cover the new value of the inputs criterion.
As a result, new gaps would open up.

4.4 Classification Use for Selection Purposes

A key goal of engineering classifications is to support
decision making. So, the classification proposed here should
help testers to select what techniques to use in a particular
project. Practitioners can use a decision tree for selection
purpose. In some cases, the decision tree can exactly be the
same as the classification tree, but in other cases, there could
be differences in the order in which the classification criteria
appear. This rearrangement can occur in any SE classifica-
tion. A practitioner uses this tree to evaluate which of the
alternatives best suit the project circumstances at each
decision point. After going through all the decisions, the
leaf node tells the practitioner which technique (or
techniques) is the best for his or her project.

Fig. 5 shows the decision tree we have generated for
practitioners. Note that this tree is not exactly the same as
the diagram in Fig. 4, as the criteria have been rearranged in
Fig. 5 to serve the purpose of selection. In our case, the
decision tree has been arranged depending on what leeway
a practitioner is likely to have for changing a criterion value
during selection. The most restrictive criteria (context-
dependent criteria that cannot be changed) have been
placed at the top of the tree. The more flexible a criterion is,
the lower down it appears in the tree. The features of the
software object to be tested appear at the top, followed by
the characteristics of the available testers, then the proper-
ties of the test cases to be generated, available tools, and
finally, the actual technique.

563

Testing Techniques

concurrent

FORTRAN
nothing _ _

T10: All-uses

T11: All-du-paths

T12: Mutation

T13: Selective mutation

*T7: All-possible rendezvous
*T8: All-c-uses
*T9: All-p-uses

To study the usefulness (completeness, effectiveness,
efficiency, usability, and user satisfaction) of this type of
classifications, we ran an experiment with final-year
students from the School of Computing of the Universidad
Politécnica de Madrid. The experiment involved each
individual subject selecting unit testing techniques for use
in two software projects. We provide the main points of the
experiment to make this paper self-contained. Further
details can be found in [26].

With respect to classification efficiency, the experiment
showed that the learning and selection time is shorter using
the classification and the time spent consulting the
classification can be considered negligible against the
learning and selection time. As regards classification
usability, the subjects had fewer problems using the
classification, and the problem frequency is lower with
the classification. With regard to classification complete-
ness, the main finding was that it should include all the
criteria that originally appeared in the classification scheme
for it to be useful to practitioners. For classification
effectiveness, we found that the set of techniques from
which the selection is made is smaller for the classification.
Also it varies from subject to subject and subjects using the
classification select fewer techniques. With respect to user
satisfaction, the subjects can be said to like the classification
and would be prepared to use it if given the opportunity

Finally, let us clarify, by means of an example, how a
classification like this can be used for selection purposes.
Suppose that a practitioner needs a technique to unit test
software developed according to a structured paradigm
with medium-sized units written in C. For this project, there
are people available who have knowledge of and accredited

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on August 19, 2009 at 09:39 from IEEE Xplore. Restrictions apply.

564 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 4, JULY/AUGUST 2009

experience in using the techniques under consideration. The
client specifically asked for a commercial testing tool to be
used and specified that the technique should have a low
application cost. Going through the decision tree along the
path marked by the dashed line in Fig. 5 (software type: any,
size: medium, programming language: any, agents: knowl-
edge, tools: yes, test data cost: high, inputs: code, comprehen-
sibility: high, and application cost: low), the best technique
appears to be T3 (statement testing).

But what if not enough constraints had been set and there
were a lot of preselected techniques? If the constraint on the
technique’s application cost in our original example were
relaxed, there would be three candidates: T3, T4, and T5
(statement testing, branch testing, and path testing, respec-
tively). This is illustrated by the path marked by the dotted
line in Fig. 5 (software type: any, size: medium, programming
language: any, agents: knowledge, tools: yes, test data cost:
high, inputs: high, comprehensibility: high, and application
cost: high/medium/low). This is not a serious problem and
would be solved either by selecting the technique that we
like best, about which we have the best references on points
not covered by the classification,” or even describing the
project and its constraints in more detail.

The opposite can also be true, i.e., if a lot of constraints
are placed on the target technique, the result of applying the
selection process may be empty. Imagine that we added a
constraint to the last example, namely that source code
cannot be used to apply the technique. Clearly, the path
marked by the thick line in Fig. 5 (software type: any, size:
medium, programming language: any, agents: knowledge,
tools: yes, test data cost: high, and inputs: specification) does
not lead to any testing technique with the required features.
This is evidently a more serious problem. But it is a result of
the variety of testing techniques there are at present rather
than of the classification itself. The solution to this problem
is to relax the project constraints, and thus, increase the
possibilities of finding a candidate to fit the bill.

Relaxation of CASE tool use, for example, would take us
along the path marked by the dotted and dashed lines in
Fig. 5 (software type: any, size: any, programming language:
any, agents: experience, tools: no, test data cost: low, inputs:
specification, comprehensibility: high, and application cost:
medium), ending in T1.

5 CONCLUSIONS

Classifications serve three purposes: to provide a set of
criteria that are able to systematically describe the objects
being classified, to understand the relationships between
the classified objects because they further clarify their
features, and to identify knowledge gaps to suggest new
lines of research. Additionally, they provide support for
selecting the classified items in engineering fields.

In this paper, we suggest a classification for unit testing
techniques that has the characteristics mentioned above. We
also present a process for building SE classifications. The
process consists of three steps: 1) identify the classification
criteria, 2) analyze the information needed to classify the

5. The informational criteria that have been omitted from the classifica-
tion scheme could be used here.

objects, and 3) instantiate the set of classification criteria for
each object and order the set. We have followed this process
to classify 13 unit testing techniques according to the
criteria associated with knowledge that is available and
mature at present.

This process has been proven to be helpful for putting
together a classification that covers and enriches unit testing
technique classifications proposed by other authors in the
past. Additionally, we discovered that some of the criteria
proposed by other classifications have implications for
other testing technique characteristics beyond what the
criteria represent.

From the classification of techniques, we were able to
discover how powerful classifications are for understanding
techniques and their relationships. This way, we found that
the classification presented here gives a plausible explanation
of the success of testing techniques today. This explanation
can be useful for researchers creating new techniques.

We also examined what gaps there are in the testing
techniques classification. This study shows that gaps do
exist, although not all potential gaps are useful. We
disregarded those gaps that might not be real voids and
highlighted the most critical gaps.

Finally, regarding the support that the classification
provides for selection, we show how to use the classifica-
tion for selection purposes. Although the proposed classi-
fication improves selection, the tester is still responsible for
decision making.

ACKNOWLEDGMENTS

The authors would like to thank June Amillo, Alessandro
Sarcia, Santiago Grafia, and the TSE reviewers for their
thorough and insightful comments on this paper. They have
all unquestionably helped to improve this work.

REFERENCES

[1] V.R. Basili, F. Shull, and F. Lanubile, “Using Experiments to Build
a Body of Knowledge,” Proc. Third Int’l Performance Studies Int’l
Conf., pp. 265-282, July 1999.

[2] L.Bass, P. Clements, R. Kazman, and K. Bass, Software Architecture
in Practice. Addison-Wesley, 1998.

[3] M.J. Baxter, Exploratory Multivariate Analysis in Archaeology.
Edinburgh Univ. Press, 1994.

[4] A. Bertolino, SWEBOK: Guide to the Software Engineering Body of
Knowledge, Guide to the Knowledge Area of Software Testing, 2004
version, chapter 5. IEEE CS, 2004.

[5] R. Chillarege, “Orthogonal Defect Classification,” Handbook of
Software Reliability Eng., chapter 9, Mc Graw-Hill, 1996.

[6] B.S. Everitt, S. Landau, and M. Leese, Cluster Analysis, fourth ed.
Arnold, 2001.

[71 R.L. Glass, Building Quality Software. Prentice Hall, 1992.

[8] R.L. Glass, “Questioning the Software Engineering Unquestion-
ables,” IEEE Software, pp. 119-120, May /June 2003.

[9] R.L.Glass, V. Ramesh, and I. Vessey, “An Analysis of Research in
Computing Disciplines,” Comm. ACM, vol. 47, no. 6, pp. 89-94,
2004.

[10] RL. Glass, I. Vessey, and V. Ramesh, “Research in Software
Engineering: An Analysis of the Literature,” Information and
Software Technology, vol. 44, no. 8, pp. 491-506, 2002.

[11] F. Hayes, “True Engineering,” Computerworld, Aug. 2001.

[12] SWEBOK: Guide to the Software Engineering Body of Knowledge, 2004
version, IEEE CS, 2004.

[13] M. Knight, “Ideas in Chemistry,” A History of the Science, Athlone
Press, 1992.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on August 19, 2009 at 09:39 from IEEE Xplore. Restrictions apply.

VEGAS ET AL.: MATURING SOFTWARE ENGINEERING KNOWLEDGE THROUGH CLASSIFICATIONS: A CASE STUDY ON UNIT TESTING... 565

[14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]
(22]
(23]

[24]
(23]

(26]

(27]

(28]

[29]
(30]

(31]

PS. Levy and S. Lemeshow, Sampling of Populations: Methods and
Applications, third ed. 1999.

T.S.E. Maibaum, “Mathematical Foundations of Software
Engineering: A Roadmap,” Proc. Conf. Future of Software Eng.,
pp. 161-172, May 2000.

N.A.M. Maiden and G. Rugg, “ACRE: Selecting Methods for
Requirements Acquisition,” Software Eng. |., vol. 11, no. 3, pp. 183-
192, 1996.

R.M. Needham, “Computer Methods for Classification and
Grouping,” The Use of Computers in Anthropology, 1. Hymes, ed.,
pp- 345-356, Mouton, 1965.

J.D. Novak, Learning, Creating and Using Knowledge: Concept Maps
as Facilitative Tools in Schools and Corporations. Lawrence Erlbaum
Assoc., 1998.

D.E. Perry, A.A. Porter, and L.G. Votta, “Empirical Studies of
Software Engineering: A Roadmap,” Proc. Conf. Future of Software
Eng., pp. 345-355, May 2000.

V. Ramesh, R.L. Glass, and I. Vessey, “Research in Computer
Science: An Empirical Study,”]. Systems and Software, vol. 70,
nos. 1/2, pp. 165-176, 2004.

P.N Robillard, “The Role of Knowledge in Software Develop-
ment,” Comm. ACM, vol. 42, no. 1, pp. 87-92, Jan. 1998.

A. Rosenberg, The Philosophy of Science: A Contemporary Introduc-
tion. Routledge, 2000.

R.N. Shepard, “Representation of Structure in Similarity Data:
Problems and Prospects,” Psychometrika, vol. 39, pp. 373-421, 1974.
C. Tudge, The Variety of Life. Oxford Univ. Press, 2000.

S. Vegas, “A Characterisation Schema for Selecting Software
Testing Techniques.” PhD thesis, Facultad de Informéatica, Uni-
versidad Politécnica de Madrid, http://grise.ls.fi.upm.es/docs/
Sira_Vegas_PhD_Dissertation.zip, Feb. 2002.

S. Vegas and V.R. Basili, “A Characterization Schema for Software
Testing Techniques,” Empirical Software Eng., vol. 10, pp. 437-466,
2005.

S. Vegas, N. Juristo, and V.R. Basili, “A Process for Identifying
Relevant Information for a Repository: A Case Study for Testing
Techniques,” Managing Software Engineering Knowledge, chapter 10,
pp- 199-230, Springer-Verlag, 2003.

I. Vessey, V. Ramesh, and R.L. Glass, “A Unified Classification
System for Research in the Computing Disciplines,” Information
and Software Technology, vol. 47, no. 4, pp. 245-255, 2005.

W.G. Vincenti, What Engineers Know and How They Know It. The
Johns Hopkins Univ. Press, 1990.

C.R. Woese, “Bacterial Evolution,” Microbiological Rev., vol. 51,
pp- 221-271, 1987.

H. Zhu, P.AV. Hall, and JH.R. May, “Software Unit Test
Coverage and Adequacy,” ACM Computing Surveys, vol. 29,
no. 4, pp. 366-427, Dec. 1997.

Sira Vegas received the BS and PhD degrees in
computing from the Universidad Politécnica de
Madrid, Spain. She is an associate professor of
software engineering in the Computing School at
Universidad Politécnica de Madrid. Her research
interests include empirical software engineering
and software testing.

Natalia Juristo received the BS and PhD
degrees in computing from the Universidad
Politécnica de Madrid, Spain. She is a full
professor of software engineering in the Com-
puting School at the Universidad Politécnica de
Madrid. She has been the director of the UPM
MSc in Software Engineering Program for
10 years. Her research areas include software
usability, empirical software engineering, re-
quirements engineering, and software process.

Victor R. Basili received the PhD degree in
computer science from the University of Texas in
1970 and the honorary degrees from the
University of Sannio, ltaly, in 2004, and the
University of Kaiserslautern, Germany, in 2005.
He is a professor emeritus at the University of
Maryland and chief scientist at the Fraunhofer
Center-Maryland, where he was the founding
director. He was the director of the Software
Engineering Laboratory (SEL) at NASA/GSFC.
He has worked on measuring, evaluating, and improving the software
development process and product. Methods for improving software
quality include the Goal Question Metric (GQM) Approach, the Quality
Improvement Paradigm (QIP), and the Experience Factory (EF)
organization.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on August 19, 2009 at 09:39 from IEEE Xplore. Restrictions apply.

