664

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.-SE-9, NO..6, NOVEMBER 1983

An Empirical Study of a Syntactic Complexity
Famlly

VICTOR R. BASILI MEMBER, IEEE, AND DAVID H. HUTCHENS

Abstract—A family of syntactic complexity metrics is defined that
generates several metrics commonly occurring in the literature. The
paper uses the family to answer some questions about the relationship
of these metrics to error-proneness and to-each other. Two. derived
metrics are applied; slope which measures the relative skills of program-
mers at handling a given level of complexity and r square which is in-
directly related to the consistency of performance of the programmer
or team. The study suggests that individual differences have a large
effect on the significance of results where many individuals are used.
When an individual is isolated, better results are obtainable. The

metrics can also be used to differentiate between projectk on which a

methodology was used and those on which it was not.

Index Terms—Control structure metrics, development methods, pro-
gram changes, software experiments, software metrics, structural com-
plexity, syntactic complexity.

I. INTRODUCTION

S COMPUTER scientists attempt to understand the soft-

ware process and product, it is natural to try to measure
those aspects of software that scem to affect cost. A major
problem in computer science is the intellectual control of
design that is directly related to the complexity of the prod-
uct.
puter programs have been made [2], [8], [10], [13], [15],
[18]. A good complexity metric could be used as.a quality
assurance test by software developers and even as a contrac-
tual obligation. Current complexity metrics may be roughly
divided into two basic groups: 1) static metrics that are mea-
sures of the product at one particular point in time and
2) history metrics that are measures of the product and pro-
cess taken over time. Static complexity metrics are based on
the physical attributes of a software product.- These fall into
three basic categories: volume, control organization, and data
organization. Each of these categories will be discussed briefly
below. This paper will deal predominately with the volume
and control subclasses of static complexity metrics.

Some volume metrics are measures of the size of a product:
the number of lines of code, the number of statements, or the
number of operators and operands [15]. The software science
volume metric is in this group. Even cyclomatic complexity
[18] can be placed in this category since it is the number of

Manuscript received October 3, 1981; revised July 14, 1983. This
work was supported in part by the U.S. Air Force Office of Scientific
Research under Contract AFOSR-I'49620-80-C-001. Computer ‘sup-
port was provided in part by the Computer Science Center at the
University of Maryland.

V. R. Basili is with the Department of Computer Science, Umvcrslty
of Maryland, College Park, MD 20742.

D. H. Hutchens was with the Department of Computer Science, Uni-
versity of Maryland, College Park, MD 20742. He is now with the De-
partment of Computer Science, Clemson University, Clemson, SC
29631.

Many attempts at quantifying the complexity of com-

decisions plus one. The number of procedures, the average
length of procedures, and the number of variables are exam-
ples of volume metrics. The number of input/output formats
[7] and other abstraction metrics are volume metrics as well.
Note that these latter metrics are measures of the logical size,
rather than just the physmal size, of a program.

Control organization metrics are measures -of the compre-
hensibility .of control structures. Thus cyclomatic complexity,
when. viewed as the number of control paths, is also a control
metric. Knots [24] and Maximal Intersection Number [8]
attempt to measure the control complexity by visual proper-
ties .of program control, either. as it is written (in a computer
language) or as it would appear in a planer flow graph. Aver-
age nesting level has been shown to be a useful control orga-
nization metric [11]. Essential complexity [18] falls in this
category as well. Control organization metrics may also in-
clude interprocedural metrics such as calling level and distinct
calls [6].

Data organization metrics are measures’ of data use and visi-
bility as well as the interactions between data within a pro-
gram. Data binding [4],[21].is an example of a module inter-
action-metric. = A span-[14] is an attempt to measure the
proximity of references to each dataitem, As such it qualifies
as -a_data organization metric. - Slicing [23] can also be con-
sidered a data organization metric.. A slice is that (not neces-
sarily -consecutive): portion of code that is necessary to pro-
duce some:prescribed partial output from the program.

As'seen above, it is not always clear which category a partic-
ular metric belongs to. For example, we may view cyclomatic
complexity as a volume or a control metric depending upon
the desired emphasis:

II. DEFINITION OF A STRUCTURAL METRIC FAMILY

The above metrics have failed to gain full acceptance as valid
measures of program complexity for at least two reasons.
First, there is a lack of experimental evidence to determine

~what -aspects of the system life cycle the metric explains.

While a metric could correlate well with debugging time, it
might still ‘be a poor predictor of the effort required to do
maintenance. . We need experimental evidence that is focused
on the expected uses of the metrics. Second, existing metrics
are not parameterized and thus cannot be tuned to the results
of exploratory analysis.

A complete development of the structural family of com-
plexity metrics may be found in [1]. The structural family
includes many metrics from the volume and control organiza-
tion groups. The data organization group is a subject for other

0098-5589/83/1100-0664501.00 © 1983 IEEE

BASILI AND HUTCHENS: SYNTACTIC COMPLEXITY FAMILY

If the family is to include many of the metrics in the litera-
ture it must incorporate length, nesting level, control paths;
types of control structures, and decomposition simplicity.
The family should transcend languages (although specific
members may not). The various members may relate to many
aspects of software development and maintenance although
any one metric may only be useful in a limited way.

Length can be measured by lines of code, with or without
comments. However, in a free format language this measure
can be altered by cosmetic revisions of the code, so the num-
ber of statements seems to be a more consistent measure.
Nesting level might be included explicitly or as a factor to be
multiplied with the -complexity of the lower levels. Control
paths and types of control structures are c]bsely related and
are handled in a varicty of ways by current metrics, so the
family must allow a general mechanism for these concepts.
Decomposition simplicity is intended to measure the natural-
ness with which the intended function is broken into smaller
functions. \

‘With these concepts in mind, a recursive definition of a
family of control structure complexity metrics (¢) could be
given by '

c(p)=b }L: c(piy+fu.lev.t,s)

i=1

where p is a program that is decomposed in some fashion into-

k components pl, p2;«- -, pk. The parameter b generates the
multiplier. for nesting level. The function f, the key to the
metric, has four arguments: », the number of decisions in pro-
gram p that arc not part of any subcomponent pi: lev, the
nesting level of component p: ¢, the type of structure instanti-
ated by p: and s, the structural “niceness” of p. The range of
Jis the positive real numbers.

Some discussion of, and restrictions on, the parameters will
clarify their meaning. b is intended to penalize nesting so
b 2 1, where, of course, b =1 just removes it from the formula.
Since- an increase in the number of decisions should not
decrease the complexity, f should be a nondecreasing function
of n. At first glance. one might be tempted to place a non-
decreasing condition on f with respect to the level lev. How-
ever, there is reason to believe that a concave up function (one
that falls at first and later rises) of lev may be better [11]. An
example may be found in [1].

[t should be noted that b is superfluous for the metric

c(p)=>b }A‘_‘ c(pi)+f(nlev, t.5)

i=1
K ,
=> c(piy+f'(n.lev.t,s)
i=1
where
f'(nlev, t,s)=b'""f(n,lev. 1.s).

In this example, b is reduced to a constant in the function .
The use of the constant b makes the penalties more explicit
than does hiding that information in the function. Indeed,
many instantiations may use b instead of lev.

665

The values of ¢ normally range over syntactic entities, such
as assignment, while, case, and if statements. The parameter
s -describes whether the control structure is “structured” or
“rionstructured.”

The control flow of a program may be described by a

~digraph. A program (equating the program and its digraph)

is called a proper program if it has a single entry and a single
exit, and every node of the program lies on some path from
the entry to the exit. A proper program is called a prime pro-
gram if it contains no proper subprograms with two or miore
nodes. The usual while do od and if then else fi are examples
of common prime programs. A prime decomposition is found
by continually replacing prime subprograms by function nodes
(a node with a single entry and a single exit). A proper pro-
gram has a unique prime decomposition if successive sequences
are treated as a unit [17].

By letting the parameter s have the two values 1) proper and
2) not proper, the resulting (sub)family is given by

f(n, lev, 1),
g(n, lev, t);

k
c(P)=b Y c(pi)+ P propet

=1 p not proper.
Both f and g are functions from (INTEGER X INTEGER X
VOCABULARY) to REAL, where VOCABULARY is that of the
grammar for the language.. ‘This restricted family will be used
throughout the rest of this paper. If one assumes that proper
programs are less complex than nonproper programs then
f(n,lev,t) < g(n, lev, t) for all n, lev, and t. The restricted
family might reasonably be called a syntactic complexity
family since it is based on the syntactic decompositions of
the program. ‘

The syntactic complexity family covers:most of the volume

metrics and some of the control flow metrics in the literature.
It does not contain any aspects of data organization.

II1. SOME MEMBERS OF THE FAMILY

One major benefit of basing the decomposition on the
syntactic structure is the ease with which a compiler can be
changed into an automatic metric tool. As a simple example,
consider the decomposition of programs into statements (and
statements into substatements) where

1. p astatement

(=3 e(pi+ |
i=1

0. otherwise. |

Note that this uses the ¢ parameter of the family. The resul-
tant measure is nothing more than a count of the executable
statements (STMT), a member of the volume subfamily of
metrics.

The call count (CALL), the number of calls to any pro-
cedure or function whether user defined or language prede-
fined, is easily produced as another member of the volume
subfamily as follows:

k . 1; pafunc or proc call
c(p)=3 c(pi)+ {
i=1

0; otherwise.

Likewise, the decision statement count (DecS) is another

666

volume metric.

@ k (pi)+ {1; D an IF, WHILE, or CASE
c(p)=) c(pi
b ,; P 0; otherwise.

Cyclomatic complexity (v(G)) may be generated by adding
the number of decisions to the number of segments [18]. The

measure is

p a segment

k 1;
<(p) ,; clpiy+ {n; otherwise.
Eventually each decision will be counted exactly once. There-
fore, the member is just the cyclomatic number of the pro-
gram, a member of the control organization subfamily of
metrics. Note that this formulation uses predominately the
n parameter.
For a final example, consider this more complex member of
the family: ‘

¢(p)= 113 e(pi)

i=1

. l+log2(m+1); pproperstmt

2x(1+log2(n+1)); pnot proper stmt.

()

This member exhibits some of the flexibility of the family.
The b value of 1.1 penalizes nesting by counting each state-
ment 10 percent more than it would be at the next outer level.
Furthermore, poorly structured code is penalized twice as
much as well structured code. Each statement must con-
tribute at least 1 to the measure since 1 is added in each of the
functions fand g. The use of the logarithm encourages the use
of case statements. Thus, this metric includes consideration of
nesting level, length (statement. count), structured program-
ming practices, and bonuses for use of an organizing construct
(the case statement). This metric, which we will call Syntactic
Complexity (SynC), is a hybrid of volume and control organi-
zation families. .

Several other members of the family, including. essential
complexity and the software science count of total operators
and operands, are derived in [1].

IV. EXPERIMENTATION

This research focuses on the ability of product metrics to
explain the number of program changes madé during develop-
ment as well as the differences in the metrics caused by
different development strategies. Given the above family of
syntactic metrics one would like to 1) evaluate their use in
specific environments and 2) analyze and compare members of
the various subfamilies. :

In the first case a set of questions to be asked might include
the following. Are the metrics useful in measuring or predict-
ing the error proneness of programs? Are they effective in pre-
dicting the effort that goes into program development? Are
they useful in characterizing methodological approaches? Are

IEEE TRANSACTIONS ON SOETWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

they useful in evaluating the software development process
and product?

Questions generated by the second concern include the
following, "Are there any differences in these subfamilies? Are
they all measuring the same thing? Is one member of a sub-
family better than others under some set of conditions? Are
the instances of anomalies between measures an indication of
error proneness or extra effort? Which are useful in evaluating
and characterizing methodological approaches? Does one have
to go outside this family to find metrics which capture dif-
ferent aspects of complexity?

It is impossible’ to-answer all of these questions within the
scope.-of this paper and on a single database of small pro-
grams. ‘However, this paper will present experimental evidence
for evaluating and classifying metrics.

In order to investigate the error proneness, the program
changes made during the development of the projects have
been counted. A program change [12] is defined to be either
a textual change to one or more adjacent lines of source code,
or the insertion of one or more lines of source code with the
following exceptions. . An insertion together with an adjacent
changed line .of code is. considered to be only one program
change. ' The insertion of output statements is not considered
a program change as this activity is usually concerned with
temporary debug code. The deletion of code is not considered
a program change as the code is usually either moved (in which
case the insertion is counted) or the code is debug code being
removed after it is no longer needed. Changes and insertions
of comments are not counted. as program changes. Program
changes have been shown to be closely related to the number
of errors made during development [12].

The syntactic complexity family has been implemented in
the. SIMPL-T compiler [5]. SIMPL-T is a2 GoTo-less nonblock
structured language that allows statement nesting. Loops may
be abnormally exited using the EXIT statement and RETURNS
are allowed at any point. SIMPL-T is used in many courses at
the University of Maryland; therefore, the experiment partici-
pants were fairly familiar with the language.

The research reported in this paper uses a database of 19
compilers written by upperclassmen and graduate students,
The compilers were written under three different development
methodologies: ‘ad hoc individuals (Al), ad hoc teams (AT),
and disciplined teams (DT). Each team consisted of three
students. The ad hoc individuals and ad hoc teams were not
given any' particular methodologies or techniqies to be used in
the implementation. - They were free to organize their work
in any way they desired. The disciplined teams were required
to use a list of methodologies and techniques that were taught
in their class. These methodologies included chief programmer
teams, walkthroughs, .and top down design with PDL, among
others. Several metrics have already been tested to see if they
detect the differences among the groups [2], [3]. -

The results reported ‘here deal with the metric’ defined in
(1) (SynC), statement count (STMT), call count (CALL),
cyclomatic-complexity (v(G)), and decision. statement count
(DecS). We will focus on the relationship between these
metrics and the program changes made during the project
development.

BASILI AND HUTCHENS: SYNTACTIC COMPLEXITY FAMILY

. TABLE |
CORRELATION MATRIX FOR THE PRODUCT METRICS
STMT SynC CALL u(G) DecS
STMT 1.000 ‘
SynC 0.975 1.000
CALL 0.845 0.770 1.000
v(G) 0.879 0.893 0.747 1.000

DecS - 0.873 0.939 0.617 0.832 1.000

A. The Effects of Individuals

In attempting to validate the various metrics as useful pre-
dictors of error-proneness, we compared each metric against

the number of program changes for each project.. That is,

the number of program changes for each project was deter-
mined, and the metrics were computed on each segment (pro-
cedure or function) in each project. The complexities of the
individual segments were combined into a project complex-
ity in several different ways. These included summing the
complexity of each segment as well as summing only the most
complex segments (such as the top 10 or 20 percent). All
these attempts at correlating the number of program changes
to the complexity of the project were unsuccessful, i.e., no
significant correlation was found.

The five metrics considered here are highly correlated as
may be seen in the correlation matrix in Table I. Thus, multi-
ple regression equations tended to be erratic, with .the coeffi-
cients changing greatly with the addition of new variables,
while producing minimal increases in r square. Therefore, the
rest-of this paper deals only with simple regression equations.

A second, more detailed analysis was made of the error-
proneness of the metrics. Each of the complexities of the
individual segments in one project was correlated to the
number of program changes made in that particular segment.
Appendix 1 contains the coefficients of determination (r

square) and the slope of the lines for each of the projects and .

each of the metrics using simple regression analysis [19] on
the metrics with the dependent variable program changes.

Examining only the six projects that were developed by. ad
hoc individuals, the coefficient of determination (r square) for
SynC as a predictor of program changes ranged between 0.475
and 0.866. The other metrics had slightly lower values but a
similar spread (see Appendix I). Therefore, when an individual
is isolated, it appears that these metrics do ccrrelate well with
the number of program changes. For an example plot, see
Fig. 1.

It is somewhat surprising that a linear fit. does better for
almost all cases with respect to both r square and the distribu-
tion of the residuals than a regression based on log-log trans-
formations which yields an exponential curve in the original
data. Many have argued that segments should be made small
to control their complexity. ‘An exponential fit would imply
that the argument is valid, since the sum of the complexities
of several small segments would be much smaller than the
complexity of one larger segment with the same amount of
code. However, a linear fit implies that there is noadvantage
to splitting a large segment into many smaller segments unless
duplication of code could be reduced.

667

45 Ad Hoc -
r Individual

SLOPE » 0.286
351 INTercepTe-0.425
T SQUARE 10.866

ob e | ! | | | |)
0 Q 20 40 60 80 100 120 140
: SynC

Fig. 1.

The 19 projects did fit linearly for all five metrics. Only a
couple of projects yielded minor improvement using log-log
transformations (exponential fits). The straight lines intersect
close to the origins; therefore, the poor fit of the exponential
is not caused by -missing the low valued points due to forcing
the curve through the origin.

It is possible that the linear model appears to fit best because

the segments are so small (the average “maximum segment

size” for the 19 projects is 66 statements). The exponential
tail might appear if there were larger (more complex) seg-
ments. It is also possible that programmers naturally limit
themselves to smaller segments where they can handle the
complexity level.

More interesting, however, is that the slopes of the fitted
lines varied from 0.16 to 0.73 for SynC (see Fig. 2). Similar
variation exists for the slopes of the other metrics. The slope
of the line -may be viewed as a measure of a programmer’s
ability to cope with complexity since it estimates the number
of program changes he makes in developing a program for each
unit-of complexity. This interpretation is possible because the
intercepts of the regression lines are close to zero. It is the
variation in the slopes that accounts for the lack of results
using several projects produced by different people.

Experimentation that combines the work of different people
is likely to contain a large amount of noise resulting from indi-
vidual differences among participants. This phenomenon
alone may be the cause of many failed experiments.

B. Slope Metrics

In general, the slope of the regression line is not sufficient to
determine which -of two results is better. The intercept may
also play a role. For example, if one individual has a high
slope but a low intercept, he may still have produced code
while making fewer program changes than a person with an
average slope but a much higher intercept. In the data for this
study - the intercepts were all close to zero, and what little
variation did exist tended to be in the same direction as the
differences in slope. -

Using the slope to indicate a programmer’s ability to cope
with complexity gives-hope of producing an experiment that

—

668
0= Ad Hoc Individual
' Regression Lines
80 t—
70—
60 |~
50 |-
il
Q
g
S 40 (-
=
(&)
30
20—
10 —
o | | I] |
0 20 40 60 80 100 120 140 160 180
SynC
Fig. 2.

can quantify a programmer’s limitations with respect to the
complexity of various applications. The results might be used
for management decisions such as assignment of tasks to
different programmers.

The results presented here, however, do not give a total pic-
ture of the individual’s ability to cope with complexity. One
complexity metric is not powerful enough to represent the
difficulty of the task.

Since a single complexity metric is unlikely to cover all
aspects of complexity, it may be possible for a programmer
to shift the difficulty of development to unmeasured aspects
of the program, i.e., to the data structure if the metric is a
volume metric. A vector of metrics (and corresponding slopes)
might give a better indication of the ability of the programmer
to cope with complexity. . Such a vector may be -useful in
determining how to allocate the available programmer re-
sources so that each is working on problems where the com-
plexity is expected to be of the type that he is most capable
of handling. ,

One advantage of a slope metric is its independence of the

specification (as long as the specification is not changing

during development). Note that in this experiment, the spec-
ification for each of the segments in a given product is dif-
ferent. It therefore might be possible to take measurements

. from the regular work of the programmers over a long period

of time and avoid -the construction of a special experiment.
Thus the programmers will not need to be specifically aware
of the experiment so their performance would not be affected
by any reactions to the experimental situation,

The benefit of a derived metric like slope, might still be
realizable even if the fits are nonlinear. For example, if the
relationship is exponential, the value of the exponent might
provide a measure of the programmer’s limitations. The use
of metrics in the evaluation of programmer’s. ability to copy
with complexity is an area that warrants considerable research
attention.

C. Comparison of Methodologies

The five metrics were used to compare the different groups
of teams. This part of the study uses the Kruskal-Wallis test

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

18 — Disciplined
Team
16 |~
14 |— stLoPE +0.239
INTERCEPT20.382
T SQUARE =0,358
12—
10 -
w
Q
[~
S 81—
=
(8]
6 —
4 b
2 -
o
o | l i]] i | |
0 5 0. 15 20 25 30 35 40 45
STMT
I'ig. 3.

and the Mann-Whitney U test [20] to determine if a particular
group appears to have a better slope and/or coefficient of
determination than another. For an example of the difference,
compare Fig. 1 with Fig. 3. Note that the slope of the line has
units of changes per unit of complexity. Thus the larger the
slope, the more changes made in the face of a given level of
complexity and (supposedly) the less effective in handling
complexity the methodology or programmer that produced it.
Statistically, the coefficient of determination is a measure of
the amount of variation in the dependent variable (program
changes) that may be explained by the variation in the inde-
pendent variable (the product metric). That is, a high coeffi-
cient of determination leaves less variability to be accounted
for by other factors; individual differences in particular. Thus
we would expect them to be higher for ad hoc individuals
than for teams.

It also acts as a measure of uniformity in team efforts.
Under the hypothesis that methodology makes a group act
more like an individual with respect to consistency, one would
expect that disciplined teams would have a coefficient of
determination that is slightly lower (less consistent) than ad
hoc individuals but larger (more consistent) than ad hoc teams.
The results appear in Tables Il and 11I. The CALL metric does

‘not appear in-these tables because none of the statistics are

significant with regard to it. Appendix II shows the raw data
sorted and displayed to illustrate the contribution of each group.

The Kruskal-Wallis test yields a significance level of between
0.02 and 0.05 (depending on the metric) in favor of there
being some difference among the slopes of the groups.

As may be seen in Table II, the slope of the line is larger for
ad hoc indi_viduals than for disciplined teams. This means
that disciplined teams do a better job (by requiring fewer pro-
gram changes) for a given amount of complexity than ad hoc
individuals. Dlsmplmed teams appear better than ad hoc teams
for the v(G) metric. The ad hoc teams appear to have done
better than the ad hoc individuals.by the DecS metric.

It should be noted that there is no statistically significant
differences -among the intercepts of the three groups with
respect to any of the metrics except STMT. The Kruskal-
Wallis test for STMT yields a significance level of 0.05. The

BASILI AND HUTCHENS: SYNTACTIC COMPLEXITY FAMILY

TABLE 11
METHODOLOGY COMPARISONS USING THE
MANN=-WHITNEY U TEST ON SLOPES

SynC
Kruskal-Wallis at 0.05 level .
Mann-Whitney AI = AT
Al > DT at 0.014 level
AT = DT
STMT
Kruskal-Wallis at 0.05 level
Mann-Whitney AI > AT at 0.094 level
Al > DT at 0.014 level
AT =DT
v(G)
Kruskal-Wallis at 0.02 level
Mann-Whitney Al = AT
Al > DT at 0.008 level
AT > DT at 0.074 level
DecS
Kruskal-Wallis at 0.02 level
‘Mann-Whitney AI > AT at 0.026 level
Al > DT at 0.008 level
AT = DT

TABLE I
METHODOLOGY COMPARISONS
(UsING THE MaxN=Wurrney U Test)
ON r SQUARE

SynC
Kruskal-Wallis at 0.03 level
Mann-Whitney Al > AT at 0.016 level
Al =DT .
AT < DT at 0.052 level
STMT
Kruskal-Wallis at 0.10 level
Mann-Whitney AI > AT at 0.026 level
Al = DT
AT < DT at 0.034 level
v(G)
Kruskal-Wallis at 0.10 level
Mann-Whitney Al > AT at 0.016 level
Al = DT
AT = DT
DecS
Kruskal-Wallis at 0.10 level
Mann-Whitney AL > AT at 0.042 level
Al = DT
AT = DT

Mann-Whitney U test shows Al < AT at a 0.026 level of sig-
nificance and DT < AT at a 0.052 level of significance. Note
that this tends to support the claim that disciplined teams
were more able to cope with the complexity. It makes the
distinction between ad hoc individuals and ad hoc teams
less clear. ;
For the coefficient of determination, the Kruskal-Wallis
test gives a significance level of 0.03 to 0.10 in favor of there
being some difference among the groups (see Table 11I). The
ad hoc teams seem to have a lower coefficient of determina-
tion than ad hoc individuals. It is conjectured that this results
from the differing abilities of the members of ad hoc teanis
causing different parts of the system to be assembled with
varying degrees of effectiveness. It is interesting to note that
disciplined teams also have a larger coefficient of determina-
tion than ad hoc teams (for Sync and STMT). This also indi-
cates that a team that works with a set of methodologies tends

669

TABLE IV)
SEGMENTS OF METHODOLOGY REGRESSIONS
(METRICS WITH PROGRAM CHANGES)

b c r square

Call

Al 1.288 0.822 0.337

AT 1.684 0.655 0.275

DT 1.221 0.516 0.253
v(G)

Al 1.562 0.822 0.337

AT 1.761 0.763 0.357

DT 1.680 0.399 0.144
DecS

Al 1.507 1.026 0.359

AT 1.689 0.892 0.366

DT 1.560 0.555 0.163
SynC o

Al 0.575 0.801 0.463

AT 0.911 0.645 0.386

DT 0.672 0.538 0.242
STMT -

Al 0.539 0.921 0473

AT 0.974 0.707 0.400

DT 0.658 0.608 0.257

to be more consistent with respect to uniformly spreading the
errors through the code than a team that does not. The data
indicate that disciplined teams have a lower coefficient of
determination than ad hoc individuals. This would also be
expected given our conjecture. Since both disciplined teams
and ad hoc individuals were more consistent than ad hoc
teams, we may say that the discipline allowed the teams to
perform more like an individual than a group.

D. Regression by Metlzodology

We treated all of the segments developed by all ad hoc
individuals in one regression model for each of the five metrics
to see if there were any consistencies within the group. We did
likewise for the othér two groups, ad hoc teams and disci-
plined teams. Since the projects were known to have a large
variation in the slopes of the regression lines, it was no surprise
that all 15 data plots gave a fan that was close at the origin but
became more spread out as the value of the metric increased.
For this reason, the regression model that gave similar variance
of residuals across the scale of the independent variable was
an exponential model of the form

. changes = b metric®
or
log (changes) = log (b) + P log (metric).

The results of the 15 regressions are given in Table IV.

We note-that 14 of the exponents are less than 1.0 (one was
1.026). This indicates that the larger segments are less costly
in program changes than smaller segments for each unit of
complexity.” There are at least three possible interpretations
of this result, :

1) Larger segments cause less problems (so we should en-
courage larger segments). ,

2) Programmers tend to write larger segments when the
problem is trivial and smaller segments when the problem is
more difficult.

670

TABLE V
METRIC COMPARISONS
(USING THE SIGN TEST)

Friedman yields a 0.02 level
“SynC = STMT” (10/19)
“SynC = v(G)” (13/19)
“SynC > DecS” at 0.063 level (14/19)
“SynC > CALL” at 0.019 level (15/19)
“U(G) < STMT”at0.019 level (4/19)

“v(G) = DecS” (7119
“v(G) =CALL” (10/19)
“DecS = STMT” (7/19)
“DecS = CALL” (11/19)

“CALL < STMT” at 0.063 level (5/19)

3) The less capable programmers felt a need to reduce the
size of their segments in order to maintain control. Thus, the
larger segments were written by the better people.

Because the third interpretation also explains the linear
fits for the single projects, it appears to be the best explana-
tion. More experiments are needed before any definitive con-
clusions can be reached.

A confusing point is that the r square for the DT group'is

lower than for the Al and AT groups. This seems to contra-
dict some of the earlier conclusions. It does suggest that a

disciplined team is less predictable than an ad hoc individual or

team, given data from random individuals or teams of the
appropriate type. However, given history data from the spe-
cific team (i.e., the past performance of the team in dealing
with complexity), a specific disciplined team seems more pre-
dictable than a specific ad hoc team. More experiments are
needed to resolve these points.

V. COMPARISON OF METRICS

We now turn to the second set of questions. The five mem-
bers of the family have been compared to see how well they
predict the number of changes that were made to each seg-
ment. Many other members of the family were investigated
but not reported because they are unfamiliar and yield no new
insights. The results are summarized in Table V.

For each project, the coefficient of determination was com-
pared over the five metrics. Friedman’s test [9] is employed
to determine globally (over all five metrics) whether there is
reason to believe that any of the metrics performs significantly
differently from the others. After concluding that there is a
difference in the metrics at the 0.02 level of significance, a
two-tailed sign test [20] was used pairwise to test the null
hypothesis that the metrics have equal predictive value. If the
level of significance was less than 0.10, the alternative hypoth-
esis (that there is a difference) with the direction of difference
was listed in Table V. Otherwise, the two metrics are listed as
“=”, indicating that we may not reject the null hypothesis.
The last column contains the ratio of the times that the first
listed metric had a better (higher) r square than the second
metric, to the total number of data points in the group.

The results show that STMT does better than v(G) and indi-
cate that it may be better than CALL in explaining the num-
ber of program changes. Moreover, SynC is better than CALL
and there is an indication that it may be better than v(G) or
DecS. There is no distinguishable difference between SynC
and STMT or between CALL, v(G), and DecS.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

Since the statement count is easy to calculate and many
researchers have found that it does a credible job of measuring
the complexity, it ‘must be considered the baseline for com-
parison in studies of this kind. This study has failed to find a
metric that is significantly better than statement count.

VL. ORTHOGONALITY OF THE METRICS

If the complexity of computer programs is to be measured,
it is necessaty to develop metrics that have a degree of orthog-
onality, i.e.;, metrics ‘that measure different aspects of the
complexity. - As was seen in the correlation matrix of Table I,
the metrics: considered so far lack this property. One possible
way to gain some orthogonality is to normalize the metrics.
For example, if-cyclomatic complexity -is normalized with
respect to length (by .computing v(G)/STMT) the resulting
metric-is a measure of decision density in the code. One might
then ask if code with a high decision density requires more
program changes than code with a low decision density. For
our data, the answer is no. Similar results (or lack thereof)
hold for CALL and DecS normalized by STMT.

A mild relationship does seem to eXist-between SynC/ STMT
and program changes, but little predictive value is gained. The
normalized metrics were also tried in multiple regression equa-
tions with all of the ‘original ‘metrics, using incremental regres-
sion techniques [19]: The normalized metrics proved to yield
little additional information in the equations.

Another approach, more closely resembling [22], is to re-
gress a metric [such as v(G)] with STMT and select those
points that are sufficiently far from the regression line (e.g.,
1.-or 2 standard errors of estimate). Then, considering the
regression of STMT with program changes, inquire about the
residuals associated with the outliers of the first regression. If
the anomalies have an effect on the residuals (if they tend to
be larger), then the anomalies tend to cause more than their
share of program changes. This approach was tried. None of
the metrics had anomalies where the associated residual popu-
lations have means significantly different from 0. In fact, the
means tended to be very close to 0. Therefore, the anomalies
do not seem to explain program changes in our data.

No orthogonal metrics within this study of syntactic metrics
have been successful at explaining program changes.

We believe that orthogonal metrics may exist outside the
realm of syntactic complexity. Metrics that measure other
properties of programs and program development, specifically
data metrics [4], [11], [14], [16], [21], [23], [25], may
prove orthogonal to the control structure metrics studied here.
We are currently investigating a variety of metric classes.

VII. CONCLUSIONS

A family of syntactic complexity metrics has been defined
that encompasses many of the current metrics. The family has
been. used in comparing different individuals, metrics, and
development methodologies.

It was found that individuals differ widely in the number
of program changes required to implement a program of some
given complexity. This leads to the possibility of measuring a
programmer’s ability to cope with complexity. The concept
of an ability measure should be pursued with complexity
metrics from other groups of metrics (such as data complexity
metrics).

BASILI AND HUTCHENS: SYNTACTIC COMPLEXITY FAMILY

Furthermore, we have some evidence that a disciplined team
acts more capably than an individual as measured by. the slopes
of the fitted regression lines. This lends support to the argu-
ment that even small projects that one person might be able to
do will be done better if more than one person cooperates in
the development (at least when they take actiVe steps, such as
the use of various methodologies to aid in their communica-
tion). This should not be construed to mean that many pro-
grammers should be assigned to the task. Rather; it might be
possible to gain ‘the same advantages:by assigning the project
to one programmer and allowing him. to use other program-
mers in design and code reading in return for providing the
same service to them.

Several metrics in the family have been evaluated with
respect to their suitability in correlating with program changes;

none seems significantly better than statement-count.- Metrics

which count specific parts of the code (such asCALL or DecS)
appear to be less well related to program changes than the
metrics which count more things (such as SynC.and STMT).
This suggests the hypothesis that program changes are distrib-
uted randomly through the code and the closer a metric comes
to counting all of the syntactic attributes of the program the
better the metric will correlate with program changes. One
experiment cannot prove or disprove this hypothesis. As more
data are examined, we may begin to understand: this relation-
ship more fully.

ACKNOWLEDGMENT

We would like to thank H. E. Dunsmore and G. Sutton for

671

Slope and Coefficient of Determination Data

r square

SynC

475
.866
AN
.521
. 739
-592

AI

.h9o
. 322
2170
. 054
.585
.207

AT

.335
.351
724
.660
. 499
. 682
.469

DT

APPENDIX II

STMT

447
.800
.679
469
.838
1638

.504
.287
149
.051
.551
.227

-358
.309
.790
. 725
.558
.625
484

CALL

.104
556
L1487
454
189
.075

.289
.380
.078
024
.533
.319

.257
.312
. 705
.872
. 734
-398
=337

v(G)

.288
«595
525
-396
.683
.627

. 257
S77
.187
.086
.589
.210

.065
.163
.522
.735
321
b9y
. 350

DeeS

.368
.852
«733
<372
.T12
450

-376
.325
.207
042
.515
.232

.302
.382
.80
<531
+336
672
.288

The following tables present the results of the regression

models on each of the 19 compiler projects. The data are

- sorted by the r square or the slope and is divided into three

columns “under the headings Al (ad hoc individual), AT (ad
hoc team), and DT (disciplined team). This is intended to pro-
vide a picture of the statistical results found in the paper by
illustrating ~which groups have higher or lower values for
these measures.

Sorted -Raw. Data
(used by Mann-Whitney U test)

r square

their efforts in counting the program changes in the projects.’
This work would not have been possible without the work

done by R. W. Reiter in developing the experiment.

APPENDIX |

This Appendix contains the values of the slope and coeffi-
cient of determination data for each of the 19 projects.. The
data are presented in groups with each column representing
a given metric. The projects are ordered in the same manner

in each of the two tables.

slope(

SynC STMT CALL. v(G) DecS
L729 1.162 1.411 1,776 4.567
.286 .397 .443 1.013 3.0Uu4d
Al .157 L2717 469 L4430 1,076
.576 .809 1.460 2.121 3.114
. 499 .927 3.859 2.788 2.950
L 437 .68Y .506 1.318 2.77%
.204 .319 547 .531 1.060
.bg2 LT85 1.775 .1.24% 2.908
AT .085 L1210 .118 .289 L6140
<173 244 242 . 799 .84
.U56 L7483 1.736 7 1.992 2.840
.128 .254 .502 .621 .811
. 155 .239 .510 .258 1.035
142 .193 .362 .372 1.078
. 161 .278 .390 .583 .887
DT . .102 . 143 . 181 ;281 .932
.297 .524 .823 .694 1,627
.189 . 320 542 499 1.319
L 141 .210 .323 .43 .812

Slope and Coefficient of Determinatiqn Data

v(G) DecS sync STMT CALL
AI AT DT AI AT DT AI AT DT AI ‘AT DT AT AT DT
.065 1 L0482 1 054 | 051] .024
.086 1 .207 | 170 i 149 I 075
163 | w232 - | 207 | 227 | .078
77 | .288 | 322 I 287 | 104
. 187 | .302 | ©335 | .309 | .257
.210 | +325 | 351 | 358 | 289
.257 ! © 336 1 L1469 | 47 | 312
.288 [.368 - I .475 | 469 [} 319
.321 |7 L3712 | 490 | 48y | .337
«350°1 L3760 .499 | .504 | 380
396 1 382 | .521 o .551 | .398
JH94 1 L350 | .585 b .558 | 45y
.522 | .480 | .592 | .625 | 487
.525 | 515 | o .660 | 638 | 489
.589 | .531 | .682 | 679 | .533
.595 1 6721 .117 | .725 | 556
.627 1112 | L7248 | .790 | .705
.683 1 .733 1 739 1+ .800 I 734
.735 1 .852 | .866 | .838 : .872
| 1 |
sl ope
v(G) DeeS Sync STMT CALL
AI AT BT AT AT DT AI AT DT AT AT DT ALl AT DT
258 | .6u0 1 .085 | J121 1 118
.281 | 811 | 102 | L183 | .181
289 | 812 | 128] © 193 | 242
312 .84 | AR .210 | .323
L4311 .887 | 142) .239 | .362
wuo | .932) L155 | .24y I .390
JH99 10 1.035 1 .157 | .254 | 406
531 | 1.060 | L1610 1 .277 | 443
.583 1 1.076 I L1713 ! .278 1 469
621 ! 1.078 | L189 | .319 | .502
.694 1. 1.319 | L2048 | .320 | .510
.799 | : 1.627 1 .286 . .397 1 .542
1.013 | 2,774 | . - ..297) .524 | 547
1.244 [2840 I .437 1 .684 1 823
1.318 ! 2.904 | .u56 1 .T43 Foraun
1.716 |- 2,950 | .49z ! .185 I 1.460
1.992 I 3.043 1 499 | .809 t 1.736
2.121 13.114 1" .576 Io.927 | 1.775
2.788 | 4,567 ! .729 I 1.162 I 3.859
REFERENCES

[1] V. R. Basili-and D. H. Hutchens, “A study of a family of struc-
tural complexity. metrics,” in Proc. ACM-NBS 19th Annu. Tech.
Symp.: Pathways to System Integrity, Gaithersburg, MD, June

1980, pp.13-15. '

[2] V. R. Basili and R. W. Reiter, “An investigation of human factors

672

(3]

(4]

[5]
[6]

{71

(8]
91
(10]

{11}

[12]

(13]

[14)
{15]
[16)
[17]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

in software development,” IEEE Computer, pp. 21-38, Dec.
1979.

—, “A controlled experiment quantitatively comparing software
development approaches,” IEEE Trans. Software Eng., vol. SE-7,
May 1981.

V. R. Basili and A. J. Turner, “Iterative enhancement: A practical
technique for software development,” IEEE Trans. Software
Eng., vol. SE-1, pp. 390-396, Dec. 1975.

—, SIMPL-T: A Structured Programming Language. Geneva,
IL: Paladin House, 1976.

G. Benyon-Tinker, “Complexity measures in an evolving large
system,” in Proc. IEEE Workshop on Quantitative Software
Models, Kiamesha Lake, NY, Oct. 1979, pp. 117-127.

W. M. Carriere and R. Thibodeau, “Development of a logistics
software cost estimating technique for foreign military sales,”
General Res. Corp., Santa Barbara, CA, June 1979,

E. T. Chen, “Program complexity and programmer productivity,”
IEEE Trans. Software Eng., vol. SE-4, pp. 187-193, May 1978.
W. J. Conover, Practical Nonparametric Statistics. New York:
Wiley, 1971.

B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love,
“Measuring the psychological complexity of software mainte-
nance tasks with the Halstead and McCabe metrics,”” JEEE Trans.
Software Eng., vol. SE-5, pp. 96-104, Mar. 1979.

H. E. Dunsmore, “The influence of programming factors on pro-
gram complexity,” Ph.D. dissertation, Dep. Comput. Sci., Univ.
Maryland, July 1978.

H. E. Dunsmore and J. D. Gannon, “Experimental investigations
of programming complexity,” in Proc. ACM-NBS 16th Annu.
Tech. Symp.: Systems and Software, Washington, DC, June 1977,
pp. 117-225.

H. E. Dunsmore and J. D. Gannon, “Analysis of the effects of
programming factors on programming effort,” J. Syst. Software,
vol. 1, pp. 265-273, 1980.

J. L. Elshoff, ““An analysis of some commercial PL/1 programs;”
IEEE Trans. Software Eng., vol. SE-2, pp. 113-120, June 1976.
M. Halstead, Elements of Software Science. New York: Elsevier
Comput. Sci. Library, 1977.

S. Henry and D. Kafura, “Software quality metrics based on
interconnectivity,” J. Syst. Software, vol. 2, pp. 121-131, 1981.
R. C. Linger, H. D. Mills, and B. L. Witt, Structured Programming:
Theory and Practice. Reading, MA: Addison-Wesley, 1979,

(18]
[19]
[20]
[21]
[22]

(23]
[24]

[25]

T. J. McCabe, “A complexity measure,” IEEE Trans. Software
Eng., vol. 2, pp. 308-320, Dec. 1976.

J. Neter and W. Wasserman, Applied Linear Statistical Models.
Homewood, IL: R. D. Irwin, Inc., 1974.

S. Siegel, Nonparametric Statistics. New York: McGraw-Hill,
1956.

W. P. Stevens, G. J. Myers, and L. L. Constantine, “Structural
design,” IBM Syst. J., vol. 13, no. 2, pp. 115-139, 1974,

T. Sunohara, A. Takano, K. Vehara, and T. Ohkawa, “Program
complexity measure for software development management,” in
Proc. 5th Int. Conf. Software Eng., San Diego, CA, Mar. 9-12,
1981, pp. 100-106.

M. D. Weiser, “Program slicing,” presented at the 5th Int. Conf.
Software Eng., San Diego, CA, 1981.

M. R. Woodward, M. A. Hennell, and D. Hedly, “A measure of
control flow complexity in program text,” IEEE Trans. Software
Eng., vol. SE-5, pp. 45-50, Jan. 1979.

S. 8. Yau and J. S: Collofello, “Some stability measures for soft-
ware maintenance,” JEEE Trans. Software Eng., vol. SE-6, pp.
545-552, Nov. 1980. i

Victor R. Basili (M’83), for a photograph and biography, see this issue,
p. 663.

David H. Hutchens received the B.S. degree in
mathematics from Western Carolina University,
Cullowhee, NC, in 1977, the M.S. degree in
mathematical sciences from Clemson University,
Clemson, SC, in 1979, and the Ph.D. degree in
computer science from the University of Mary-
land, College Park, in 1983.

He is currently an Assistant Professor of Com-
puter Science at- Clemson University. His
research interests include measurement, evalua-
tion, and modeling of the software development
process and its product.

