Monitoring Software DeVeIopment Through
Dynamic Variables

CARL W, DOERFLINGER, MEMBER, IEEE, AND VICTOR R. BASILI, SENIOR MEMBER, IEEE

Abstract—This paper describes research conducted by the Software
Engineering Laboratory (SEL) on the use of dynamic variables as a tool
to monitor software development. The intent of the project is to iden-
tify project independent measures which may be used in a management
tool for monitoring software development. This study examines several
Fortran projects with similar profiles. The staff was experienced in
developing these types of projects. The projects developed serve similar
functions. Because these projects are similar we believe some underlying
relationships exist that are invariant between the projects. These rela-
tionships, once well defined, may be used to compare the development
of different projects to determine whether they are evolving the same
way previous projects in this environment evolved,

Index Terms—Database, management tool, measurement, monitoring
software development.

OVERVIEW

THE Software Engineering Laboratory (SEL) is a joint ef-
fort between the National Aeronautics and Space Admin-
istration (NASA), the Computer Sciences Corporation (CSC),
and the University of Maryland established to study the soft-
ware development process. To this end, data have been col-
lected for the last six years. The data were from attitude de-
termination and control software developed by CSC, in For-
tran, for NASA. Additional information on the SEL, the data
collection effort, and some of the studies that have been made
may be found in papers from the Software Engineering Labo-
ratory Series published by the SEL [1]-[3].

The interest in the software development process is motivated
by a desire to predict costs and quality of projects being
planned and developed. For several years, studies have exam-
ined the relationships between variables such as effort, size,
lines of code, and documentation [4], [5]. These studies, for
the most part, used data collected at the end of past projects
to predict the behavior of similar projects in the future. In
1981 the SEL concluded that many of these factors were too
dependent on the environment to be useful for the models
that had been developed [6]. Any model which attempts to
trace these relationships should therefore be calibrated to the
environment being examined. The meta-model proposed by
the SEL is designed for such flexibility [6].

Manuscript received November 7 » 1983. This work was supported by
the National Aeronautics and Space Administration under Grant NSG-
5123 to the University of Maryland. Computer support was provided
in part by the Facilities of NASA/Goddard Space Flight Center.

C. W. Doerflinger was with the Department of Computer Science,
University of Maryland, College Park, MD 20742. Heis now with Texas
Instruments Incorporated, Lewisville, TX 75067.

V. R. Basilj is with the Department of Computer Science, University
of Maryland, College Park, MD 20742,

Another way to isolate out the environment dependent fac-
tors is by comparing two internal factors of a project, thus
ignoring all outside influences. One approach that is used to
monitor software development examines the time gap between
the initial report of software problemsand the complete resolu-
tion of the problem [7]. Comparing two variables is useful
because it also accentuates problem areas as they develop, pro-
viding relative information rather than absolute information.
Relative information is useful to the project manager because
it accentuates trends as the project develops. If project envi-
ronments are similar, then similar values should be expected.

- Because the project environments in the SEL are similar, it

was felt that this approach could be further extended to pro-
vide managers with information about how a set of variables
over the course of a project differed from the same set of vari-
ables on other projects (baselines). The managers could be
alerted to potential problems and use other variable data and
project knowledge to determine whether the project was in
trouble.

This methodology is flexible enough to respond to changing
needs. Every time a project is completed the measures col-
lected during its development may be added in to calculate a
new baseline. In this way, the methodology can incorporate
changes in the environment, as they occur.

Baselines might also be developed to reflect different attri-
butes. For instance, several projects which had good produc-
tivity might be grouped to form a productivity baseline. Once
baselines are established, projects in progress may be compared
against them. All measures falling outside the predetermined
tolerance range are interpreted by the manager.

METHODOLOGY

The implementation of this methodology is dependent on
two factors. The first factor is the availability of measures
that are project independent and can also be collected through-
out a project’s development. Variables like programmer hours
and number of computer runs are project dependent. By com-
paring these variables against each other a set of relative mea-
sures may be generated which is project independent. For in-
stance, the number of software changes may vary from project
to project. The project dependent features shared by each
variable will cancel out when the ratio of software changes per
computer runis taken. The resulting relative measure is project
independent. : :

The second factor is the need for fixed time intervals com-
mon to all projects. To normalize for time, project milestones

0098-5589/85/0900-0978301.00 © 1985 IEEE

’

were used. The time into a project might be 20 percent into
coding instead of 20 weeks into the project, for instance.

When computing the baselines one other factor was consid-
ered. At any given interval during development a variable may
measure either the total number of events that have occurred
from the beginning of development (cumulative) or the number
of of events that have occurred since the last measured interval
(discrete). Since these approaches may convey different infor-
mation it was felt that they both should be used.

For simplicity, the baseline for each relative measure was
defined as the average and standard deviation computed for the
measure at predetermined intervals. A project’s progress may
now be charted by the software manager. At eachinterval in
a project’s development the relative measures are compared to
their respective baseline. Any measures outside a standard
deviation are flagged. These measures are then interpreted by
the project manager to determine how the project is progress-
ing. A flagged measure may indicate that a project is develop-
ing exceptionally well or it may indicate that a problem has
been encountered.

The interpretation of a set of flagged measures is a three step
process. First, the manager must determine the possible inter-
pretations for each flagged relative measure using lists of pos-
sible interpretations developed and verified based on past
projects.'

Second, the union of the lists of possible interpretations of
each flagged measure must be taken. The list formed by this
union contains all the possible interpretations ordered using
the number of times each interpretation is repeated in the dif-
ferent lists. The larger the number of overlaps a possible inter-
pretation has, the greater the probability it is the correct
interpretation.

Third, the manager must analyze the combined list and deter-
mine if a problem exists. Interpretationswith an equal number
of overlaps all have an equal probability of being the correct
interpretation. If none of the possible interpretations for a
given relative measure overlap then the relative measure should
be considered separately.

When analyzing the interpretations, three pieces of informa-
tion must be considered; the measurements, the point in devel-
opment, and the managers knowledge of the project. A rela-
tive measure may indicate different things depending on the
stage of development. For instance, a large amount of com-
puter time per computer run early in the project may indicate
not enough unit testing is being done. Personal knowledge
may also give valuable insight.

A fundamental assumption for using this methodology is
that similar type projects evolve similarly. If a different type
of project were compared to this database, the manager would
have to decide whether the baselines were applicable. Depend-
ing on the type of differences, the established baselines may or
may not be of any value.

Example 1

Forty percent into coding a software manager finds that the
lines of source code per software change is higher than normal.
A list previously developed is examined to determine what the
relative measure might indicate. The possible interpretations

for a large number of lines of source code per software change
might be

1) good code,

2) easily developed code,

3) influx of transported code,

4) near build or milestone date,

5) computer problems,

6) poor testing approach.

If this were the only flagged measure the manager would then
investigate each of the possibilities. If the value for the measure
is close to the norm, less concern is needed than if the value is
further away.

If in addition to lines of source code per software change the
number of computer runs per software change was higher than
normal, the manager would also examine this measure. The
possible interpretations for a large number of computer runs
per software change might be

1) good code,

2) lots of testing,

3) change backlog,

4) poor testing approach.

The union of the possible interpretations of these two measures
indicates that the strongest possible interpretations are 1) good
code and 2) a poor testing approach. The number of possibil-
ities to investigate is smaller because these are the only measures
which overlap. The manager must now examine the testing
plan and decide whether either of these interpretations reflect
what is actually occurring in the project. If these two possible
interpretations do not reflect what is happening on the project,
the manager would then examine the other interpretations.

BASELINE DEVELOPMENT

To develop a baseline one must first have variables whose
measurements were taken weekly for several projects. Five
variables in the SEL database were used. The lines of source
code, number of software changes, and number of computer
runs were collected on: the growth history form. The amount
of computer time and programmer hours were collected on the
resource summary form. Measurement of these variables started
near the beginning of coding. In this study, nine separate proj-
ects were examined whose development was documented,
with sufficient data, in the SEL database. The projects ranged
in size from 51 to 112K lines of source code with an average
of 75K. No examination was done for the requirements or

_design phases.

Once the variables were chosen the average and standard
deviation was computed for each baseline. Some baselines suf-
fered from limited data points during the beginning of the cod-
ing phase. A couple of the projects, in which problems were
known to have existed, were flagged as soon as data on these
projects appeared, but this was 50 percent of the way into
coding. It is not known how much earlier they would have
appeared if data existed at the early intervals.

INTERPRETATION OF RELATIVE MEASURES

Once a set of baselines are established, new projects may be
compared to them and potential problems flagged. To inter-
pret these flagged relative measures a list should be developed

| | | cross reference
type 1 inserpretation | above | below
[| normal | normal

|

|

|

!
| above | | |
| normal | I |
! -low productivity l2 1] |
| -high complexity 1247891 }
| -lots of testing 12 16 7 I
| -removal of code 1234 [!
| (testing or transported) | | |
| -bad specifications 234 | I
| !]
| below | | |
I normal | | |
| -influx of transported code | 1234 |
| -near build or milestone date |6 123489
-little on line testing	12	
being done		
-little executable code	12	
being developed		
-computer problems	13	

Fig. 1. Computer runs per line of source code.

| | | cross reference |
type | interpretation | above | below |
| | | normal [normal |

above | !

normal | |
-high complexity 11 |
-low productivity 11 |
-bad specifications 1

-lots of testing B 67

-unit testing being done 18 5

-code being removed 1

(testing or transported)

|
|
I
below |
normal |
-influx of transported code | 1
-near build or milestone date |6 1
-little on line testing | 1
being done |
~code error prone |
-little executable code I
being written |

789
1

Fig. 2. Computer time per line of source code.

I I | cross reference |
type | interpretation | above | below [
I [

|

[| normal | normal

| above ! |]
| normal 1 |]
| -good testing 16 18 |
1 -error prone code 1456 12 8 9 |
l -bad specifications 124 ! {
| -code being removed 12y 1 |
| (testing or transported) | | !
| | | |
| below 1 ! !
| normal | | |
| =-influx of transported code | [t 24 |
| -near build or milestone date |6 12478
| -good code 18 9 16 |
| ~poor testing program 18 9 16 |
| ~change backlog | 16 I
| ~-low complexity | L} |
| -computer problems | I |

Fig. 3. Software changes per line of source code.

with each measure’s possible interpretations. Each list must
consider the possible interpretations of the relative measure
when it is either above normal or below normal. What each
component variable actually measures should also be con51dered
when the different lists are developed.

A list was developed with possible interpretations for each
relative measure being examined in the context of the SEL
environment (Figs. 1-9). In another environment the interpre-

|
type | interpretation
| |

| cross reference
| above | below
! normal | normal

above ‘
normal
=high complexjity
-error prone code
~bad specifications
-code being removed
(testing or transported)
-changes hard|to isolate
-changes hard|to make
-low productivity

89
2789

LI VRS VY
- wWwon -

N o o

below

normal
-influx of transported code
-near build or milestone date
-low complexity

Wi

NN

W oas =

Fig. 4. Programmer hours per line of source code.

I
type | interpretation
!

| eross reference
| above | below
| normal | normal

above
normal

-system & integration testing |6
|

started early

| | |
i | |
| |]
| | |
| -error prone code 1346 12789 |
| -compute bound |algorithms | | |
| being tested l : I
!
| below | | |
| normal | |]
| -unit testing going on 12 8 | |
I -easy -errors being found | 179 1
Fig. 5. Computer time per computer run.
| | | cross reference |
| type | interpretation | above | below !
! ! | normal | normal |
| above | | |
| normal] 1 |
-good testing	13 189	
-system & integration testing 15		
started early		
-error prone code 1345 12789		
-near build or milestone date	123	
! 1 o 1489		
!		!
below		
normal		
-good code 13 .9		
I ~-lots of testing 112 17 1		
-poor testing program 1389	I	
! -change backlog 13 I		
Fig. 6. Software changes per computer run.		
		cross reference
type	interpretation	above
		normal
above		
‘normal	!	
-high complexity 112489		
] -modifications being made to	19	
recently transported code		t
~changes hard to lisolate 14 9 ! 1		
-changes hard to make 14 1 'l		
! 1		
below		
normal		
-easy errors being fixed	159	
~error prone code 13456 1289]		
-lots of testing 112 16		
Fig. 7. Programmer hours per computer run.

cross reference |

| type I: interpretation | above | below |
. |] | normal | normal |
| above ! 1 |
| normal | | |
| -good code : 139 16 |
| -poor testing program 13 9 16 |
| ~high complexity 12479/ |
I -changes hard to isolate 1479 | |
] -unit testing 12 15 |
| -compute bound algorithms 15 | |
| being tested | l |
| 1 | 1
-1 below | | 1
| normal 1 | 1
| ~near build or milestone date |6 1t2349]
| -good testing 136 9 |
| -error prone code 13456 1279 i

Fig. 8. Computer time per software change.

ZCD DMV MX<-< DIMAHACODIOON

cross reference |

type	interpretation	above	below
!	normal	normal	
above	!		
normal !	I		
-good code 13 8 16 I			
-poor testing program 138 16 I			
I ~changes hard to isolate 478 i |
1 ~-changes hard to make Iy 7 : . :
! |

| below | | |
| normal | | |
i -good testing 136 18 |
| -near build or milestone date |6 112348
{ ~easy changes | 157 I
| -transported code being 17 | I
| modified | 1 |
| -error prone code 13456 (278 |

3NIT3SYB JIdWVS

0.0 o
. ' T RS e S ——— - P r
&, 5 2
& < Z e% % 2.0, S a%
2% X3 2% Q2 %, 2% ¢B% % B
o> G o0 2. 0% Wl T 0% B,
? 3 % S % BB %% B% B9
® © © © © %(* 9%
Q

Fig. 10. Baseline: computer time per run. Method of measurement:
discrete.

tation of these measures might be different. These lists are
subdivided into two categories; above and below normal. The
above normal category contains possible interpretations for
the relative measure when it is outside one standard deviation
from the average in the positive direction. The below normal
category refers to interpretations when the measure is outside
one standard deviation from the meanin the negative direction.

One of the reasons this methodology works is because of the
inplicit interdependencies between different relative measures.
To show these interdependencies more explicitly a cross refer-
ence chart has also been provided (Fig. 10) for each interpreta-
tion to indicate other relative measures that can have the same
interpretation. A number in the cross reference section indi-
cates the list number of a relative measure that can have the
same interpretation. The position of the list number in the
4-quadrant cross reference section indicates whether both inter-
pretations are found with above normal values, both with be-

low normal values, or one with above and the other with below
normal values.

With these lists a set of flagged relative measures may be
evaluated. When a relative measure is flagged, its associated
list is examined for possible interpretations. Overlaps of this
list with the lists of other flagged relative measures form the
new list of what these relative measures together might indicate.
The more overlaps a particular interpretation has, the greater
the chance it is the correct interpretation. Interpretations
with the same number of overlaps must be considered equally.
The more relative measures flagged the more serious the prob-
lem may be. It is up to the manager to determine whether the
deviation is good or bad.

MONITORING A SOFTWARE PROJECT’S DEVELOPMENT

Once the baselines have been developed and the lists of pos-
sible interpretations have been put together a software manager

TABLE 1
' ProJECT TWENTY. METHOD OF MEASUREMENT: (a) CUMULATIVE,
(b) DISCRETE.

| number of standard deviations from norm
1

Istart 20% 40% s0% 608 80% start 50% start end

leode code code code code code sys sys acept

I
|
| relative measures
!

o1
8 15 1.2

1.3 | >1 SD programmer hours/lines of source |
>1 SD runs/lines of source

>1 SD computer time/lines of source |

| 1.1 1.2 1.1 1.1

<1 SD programmer hours/run I

@)

i number of standard deviations from norm
!

Istart 208 40% 508 60% 80% start 50% start end

leode code code code code code 3ys sys acept

|
|
relative measures |
I

1.0 1.1

1.
1.2 1.

o
Py
.« .

1.7

Lo an

-
. o
~N o
NN
.

1.1
1.2 1.3

2.0 2.4

2.0 2.%
2.0

>1 SD programmer hours/lines of source |
>1:5D runs/lines of source |
<1 SD changes/lines of source |
>1 SD changes/lines of source |
>1 SD computer time/lines of source |

| 1.2

<1 SD programmer hours/run |

| 1.2

>1 SD computer time/change |

(b)

may monitor the actual development of a project. Example 1
demonstrated how a single interval may be interpreted. The
following discussion will trace the development of an actual
project. During the actual use of this methodology, influence
would be exerted to correct problems as soon as they are iden-
tified. With this study, we must be content to study a projects
evolution, without hindrance, and see at what points problems
could of been detected.

Project twenty! was chosen for this examination because
data existed throughout the projects development. In most
respects project twenty was an average project. The project
did have a lower than normal productivity rate. The lower
rate may be partially explained by the fact that the manage-
ment was less experienced when compared to other projects.
The project also suffered from some delayed staffing. Changes
in staffing will be noted when the different time intervals are
discussed.

Table I (a) and (b) on the following page shows which relative
measures were flagged when project twenty was compared to
the baselines for each stage of development. The numerical
values represent how many standard deviations each flagged
relative measure was from the baseline. The baseline for each
relative measure was calculated using all nine projects.

Start of Coding

At the start of coding only one relative measure is flagged.
The smaller than normal number of software changes per line
of source code using the discrete approach reflects work done
during the design phase. The lists designed in the previous sec-
tion were directed towards code production and testing and do

! The numbering convention used is an extension of the one first used
by Bailey and Basili [6].

not apply to this time interval when using the discrete approach.
This measure may indicate good specifications or lots of PDL
being generated. The manager might want to examine this
measure later if it constantly repeated. Since it is the only
measure flagged at this time it will be ignored.

20 Percent Coding

The flagged relative measures found using the discrete ap-
proach at this point represent the work done from the start of
coding until 20 percent of the way through coding. The list of
possible interpretations for the flagged relative measures, gen-
erated from the lists made previously for the individual relative
measure, would look as follows.

#Overlaps Interpretation

Bad specifications
Code removed

Low productivity

High complexity

Error prone code

Lots of testing

Good testing

Changes hard to isolate
Changes hard to make
Unit testing being done
Easy errors being found

NN W W

The strongest interpretations are bad specifications and code

- being removed. If the actual history is examined one finds

that during this period there were a lot of specifications being
changed. This resulted in code which was to be modified being
discarded and new code being written. During the early period
a lot of PDL was being produced but very little new executable

code. The list of possible interpretations does show that low
productivity is also a strong possibility.

40 Percent Coding

The flagged relative measures which appear using the cumula-
tive approach, from this time period on, are stronger indicators
than the ones used in the first couple of intervals because the
average is computed using more data points. The use of the
discrete approach for the interval of 20-40 percent is still de-
pendent on three data points. The list of possible interpreta-
tions for this time period is as follows.

#Overlaps Interpretation

Low productivity
High complexity

Error prone code

Bad specifications
Code being removed
Changes hard to isolate
Changes hard to make
Lots of testing

Unit testing being done
Good Testing

Easy errors

[Sy g W G S Wy

The number of possibilities is larger with this set of possible
interpretations. Five interpretations are slightly stronger than
the others. During the actual development, the first release of
the project was made. The amount of code actually written
was also lower than normal during this period. The use of the
discrete approach gives a stronger feeling that code is not being
written. Transported code tends to be installed in large blocks
which can be isolated using the discrete approach.

50 Percent Coding

The relative measures flagged during this period are the same
as the ones flagged at the 20 percent coding interval. The
deviation from the norm for this interval is larger. The larger
deviation may indicate a more serious problem. The problem
may have been just as serious earlier, but without the extra
data points that are now available, it could not be determined.
The possible interpretations may be taken from the list devel-
oped earlier. Bad specifications and code removal were not
factors during this period. The next three highest priority
interpretations were high complexity, error prone code, and
low productivity. In addition to this, the manager shouid be
concerned with the continued appearance of the relative mea-
sure and programmer hours per computer run, as seen using
the cumulative approach. This may indicate a lot of testing
going on. This in conjunction with error prone code as a pos-
sible interpretation may indicate trouble. During actual devel-
opment this period was spent developing code for the second
release. The project manager felt that code was still not being
developed quickly enough during this period.

60 Percent Coding

Only one relative measure is shown at thisinterval. The num-
ber of programmer hours per computer run using the cumula-

tive approach is lower than normal for the third consecutive
time. This should concern the manager because when examin-
ing the list for this measure one finds

1) error prone code,

2) alot of testing, and

3) easy errors being fixed.
Since the occurrence of this measure is persistent, it may indi-
cate that the problem was corrected, but not enough effort
was expended to completely compensate for the past problems.
It might also indicate that the problem still exists. During the
actual project it was found that while a lot of code was written,
it had not been thoroughly tested. Release two was made dur-
ing this period which could explain a heavy test load. Two
additional staff members were added to the project during this
phase to aid in coding and testing.

80 Percent Coding

The 80 percent coding interval does not show any measures
outside the normal bounds. The addition of two staff members
during the 60 percent coding phase, as well as the addition of a
senior staff member during this phase, appears to have adjusted
the project back along the lines of normal development. To
fully compensate for the earlier problems one might expect
some of the measures to swing in the other direction away
from the average. The fact that this over correction did not
occur might explain the problems encountered in the next
section.

Start of System and Integration Testing

The flagged relative measures at this time period reflect the
build up of effort for the third and final release. The list of
possible interpretations for the collective set of flagged mea-
sures looks as follows.

#Overlaps Interpretation

3 High complexity

3 Bad specifications

3 Code being removed

2 Error prone code

2 Low productivity

2 Lots of testing

1 Changes hard to isolate
1 Unit testing being done
1 Good code

1 Poor testing

Changes hard to make
Good testing

Compute bound algorithms being run
Easy errors being fixed

Since the code did have a past history of poor testing, an un-
usually large build-up of testing should be expected. The two
interpretations that apply most to thissituation are lots of test-
ing and error prone code.

50 Percent System and Integration Testing

Only one relative measure is flagged at this interval. This
measure was flagged using the cumulative approach. An exam-

ination of the measure at. the previous interval shows a very
high value. A slow dropoff from this high measure is to be
expected when using the cumulative approach. An examina-
tion of possible interpretations that would apply for this period
of development include

1) high complexity,

2) lots of testing

3) unit testing being done,

4) testing code being removed.
A lot of testing is certainly indicated by past history.

Start Acceptance Testing

The relative measures flagged at this interval reflects the build
up in testing before the start of acceptance testing. The list of
possible interpretations looks as follows.

#Overlaps

3 Bad specifications

3 Code being removed
2 High complexity

2 Low productivity
1
1

Interpretation

Error prone code

Lots of testing
Changes hard to isolate
Changes hard to make
Unit testing being done
Good testing

Since little code was being developed during the testing period,
a large amount of testing with errors being found is the most
reasonable interpretation of these flagged measures. The early
history of poor testing may be seen here with errors being
uncovered late.

End Acceptance T esting

The two flagged relative measures at the end of acceptance
testing reflect the cleanup effort being made on the code. An
average amount of computer time and an average number of
computer runs indicates that the acceptance testing is going
well. The project was behind schedule due to the earlier prob-
lems encountered. Cleanup was done during the acceptance
testing phase in an attempt to get the project out the door as
soon as possible.

As seen in this example, the problems that occur during a
projects development are reflected in the values calculated for
the relative measures. The methodology proposed can be used
to monitor projects. The number of possible interpretations
increases with each new flagged relative measure. The ordering
of the measures by the number of overlaps provides an easy
method of sorting the possible interpretations by priority.
Another method of sorting the possible interpretations could
include a factor that considers both the number of overlaps
and the probability of a given interpretation being the cause at
a given interval. The weighting of interpretations for a given
interval could be calculated using the pattern of occurrence of
the different interpretations which have appeared during the
same interval in past projects.

AN ALTERNATE APPROACH

Flagged relative measures might also be interpreted using a
decision support system. The data for the variousrelative mea-
sures would be stored in a knowledge base along with a set of
production rules. To evaluate a project the values for each
relative measure would be entered into the system. The knowl-
edge base would compare the relative measures to their respec-
tive baselines, determine which relative measures were outside
the norm, and interpret these relative measures using the pro-
duction rules. A list of possible interpretations ordered by
probability would be generated as a result,

The difference between a decision support system and the
approach presented in this paper is the method of interpreting
the flagged relative measures. Each production rule in the
decision support system is the logical disjunction of several
flagged measures which yields a given interpretation. Each
production rule is assigned a confidence rating which is then
used to rate the possible interpretations. The lists for the rela-
tive measures provided earlier in the paper may be easily con-
verted to production rules using the cross reference section.
To develop the production rules for an interpretation one
must generate the various combinations of relative measures
which might reasonably imply the interpretation. Some relative
measures may not imply a particular interpretation unless they
are found in conjunction with another relative measure. Once
the production rules are known and a knowledge base con-
structed a decision support system may be built. For an
example of a domain independent decision support system see
Reggia and Perricone [8].)

SUMMARY

The methodology presented in this paper showed that invari-
ant relationships exist for similar projects. New projects may
be compared to the baselines of these invariant relationships to
determine when projects are getting off track.

The ability of the manager to interpret the measures that fall
outside the norm is dependent on the amount of information
the underlying variables convey. The manager must decide
what attributes are to be measured (e.g., productivity) and
pick variables that are closely related to them and are also
measurable throughout the project. An an example, a variable
like lines of code may be too general when measuring produc-
tivity. Measuring the newly developed code, either source
code or executable code, would be more informative since these
variables are more directly related to effort. How applicable
an interpretation is for the period currently being examined
should also be considered when ordering the list. The variables
the manager finally decides on are then combined to form
relative measures.

One method of interpreting a relative measure is by associat-
ing lists of possible interpretations with it. When a relative
measure appears outside the norm, the list of possible interpre-
tations is considered. If more than one relative measure is out-
side the norm the lists are combined. The more timesa possible
interpretation is repeated in the lists, the greater the probability
it is the cause. How applicable an interpretation is for the

period being examined should also be considered when ordering
the list. The manager must investigate the suggested causes to
determine the real one.

CONCLUSION

The ability to monitor a projects development and detect
problems as they develop may be feasible. The methodology
proposed showed favorable results when examining a past case.

The use of baselines and lists of interpretations for comparing
projects provides an easy method for monitoring software de-
velopment. Both the baselines and the lists of interpretations
may be updated as new projects are developed. Asmore knowl-
edge is gleaned the accuracy of this system should improve and
provide a valuable tool for the manager.

ACKNOWLEDGMENT

The authors would like to thank Dr. J. Page of Computer
Sciences Corporation and F. McGarry of NASA/Goddard Space
Flight Center for their insight and advice. ‘

REFERENCES

{1] D. Card, F. McGarry, J. Page, S. Eslinger, and V. Basili, ““The Soft-
ware Engineering Laboratory,” Software Eng. Lab. Series, Goddard
Space Flight Center, Rep. SEL-81-104, Feb. 1982.

V. Church, D. Card, F. McGarry, J. Page, and V. Basili, “Guide to
data collection,” Software Eng. Lab. Series, Goddard Space Flight
Center, Rep. SEL-81-101, Aug. 1982.

SEL, “Collected software engineering papers: Volume 1,” Soft-
ware Eng, Lab. Series, Goddard Space Flight Center, Rep. SEL-82-
004, July 1982. ‘

C. E. Walston and C. P. Felix, “A method of programming measure-
ment and estimation,” IBM Syst. J., Jan. 1977.

V. R. Basili and K. Freburger, “Programming measurement and
estimation in the software engineering laboratory,” J. Syst. Soft-
ware, 1981.

J. W. Bailey and V. R. Basili, “‘A meta-model for software develop-
ment resource expenditures,” in Proc. Sth Int. Conf, Software
Eng., Sept. 1981.

“The role of measurements in programming technology,” Lecture
presented at University of Maryland, Nov. 15, 1982.

(2]

(31

(4]
(51

(6]

(71

[8] J. Reggia and B. Perricone, Dep. Math., Univ. Maryland, Baltimore
County, KMS Manual, TR-1136, Jan. 1982.

{91 M. L.Minsky, “A framework for the representation of knowledge,”
in The Psychology of Computer Vision. New York: McGraw-Hill,
197s, pp. 211-280.

Carl W. Doerflinger (S’82-M’83) was born in
Fort Sill, OK, on March 17, 1956. He received
the: B.S. degree from the University of North
Carolina, and the M.S. degree from the Univer-
sity of Maryland, College Park.

He is now with Texas Instruments, Lewisville,
TX. His current interests include system man-
agement and performance issues.

Mr. Doerflinger is a member of the Associa-
tion for Computing Machinery.

Victor R. Basili (M’83-SM’84) is Professor and
Chajrman of the Department of Computer Sci-
ence at the University of Maryland, College Park.
He was involved in the design and development
of several software projects, including the SIMPL
family of programming languages. He is cur-
rently measuring and evaluating software devel-
opment in industrial settings and has consulted
with many agencies and organizations, including
IBM, GE, CSC, GTE, MCC, NRL, NSWC, and
‘ NASA. He has authored over 60 published
papers on the methodology, the quantitative analysis, and the evalua-
tion of the software development process and product.

In 1982, Dr. Basili received the Outstanding Paper Award from the IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING. He was Program Chairman for the

* Sixth International Conference on Software Engineering, and the First ACM

SIGSOFT Software Engineering Symposium on Tools and Methodology Eval-
uation. He serves on the editorial boards of the Journal of Systems and Soft-
ware and the IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. He is a mem-
ber of the Association for Computing Machinery and the Executive Committee
of the Technical Committee on Software Engineering, and is a Senior Mem-
ber of the IEEE Computer Society. ‘

