IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 9, SEPTEMBER 1987

1027

Cleanroom Sottware Development: An Empirical
Evaluation

RICHARD W. SELBY, MEMBER, IEEE, VICTOR R. BASILI, SENIOR MEMBER, IEEE,
AND F. TERRY BAKER

Abstract—The Cleanroom software development approach is in-
tended to produce highly reliable software by integrating formai meth-
ods for specification and design, nonexecution-based program devel-
opment, and statistically based independent testing. In an empirical
study, 15 three-person teams developed versions of the same software
system (800-2300 source lines); ten teams applied Cleanroom, while
five applied a more traditional approach. This analysis characterizes
the effect of Cleanroom on the delivered product, the software devel-
opment process, and the developers.

The major results of this study are the following. 1) Most of the
developers were able to apply the techniques of Cleanroom effectively
(six of the ten Cleanroom teams delivered at least 91 percent of the
required system functions). 2) The Cleanroom teams’ products met
system requirements more completely and had a higher percentage of
successful operationaily generated test cases. 3) The source code de-
veloped using Cleanroom had more comments and less dense control-
flow complexity. 4) The more successful Cleanroom developers modi-
fied their use of the implementation language; they used more proce-
dure calls and IF statements, used fewer CASE and WHILE state-
ments, and had a lower frequency of variable reuse (average number
of occurrences per variable). 5) All ten Cleanroom teams made all of
their scheduled intermediate product deliveries, while only two of the
five non-Cleanroom teams did. 6) Although 86 percent of the Clean-
room developers indicated that they missed the satisfaction of program
execution to some extent, this had no relation to the product quality
measures of implementation compieteness and successful operational
tests. 7) Eighty-one percent of the Cleanroom developers said that they
would use the approach again.

Index Terms—Empirical study, methodology evaluation, off-line
software review, software development methodology, software man-
agement, software measurement, software testing.

I. INTRODUCTION

HE need for discipline in the software development
process and for high quality software motivates the
Cleanroom software development approach. In addition
to improving the control during development, this ap-
proach is intended to deliver a product that meets several
quality aspects: a system that conforms with the require-

Manuscript received February 28. 1985: revised May 30, 1986. This
work was supported in parnt by the Air Force Office of Scieatific Research
under Contract AFOSR-F49620-80-C-001 to the University of Maryland
and the University of California Faculty Research Fellowship Program.
Computer support was provided in part by the Computer Science Center at
the University of Maryland.

R. W. Selby is with the Department of Information and Computer Sci-
ence, University of California. Irvine, CA 92717.

V. R. Basili and F. T. Baker are with the Department of Computer
Science. University of Maryland. College Park. MD 20742,

IEEE Log Number 3716549,

ments, a system with high operational reliability, and
source code that is easily readable.

Section II describes the Cleanroom approach and Sec-
tion III presents a framework of goals for characterizing
its effect. Section IV describes an empirical study using
the approach. Section V gives the resuits of the analysis
comparing projects developed using Cleanroom with those
of a control group. The overall conclusions appear in Sec-
tion VI.

II. CLEANROOM DEVELOPMENT

The following sections describe the Cleanroom soft-
ware development approach, discuss its introduction to an
environment, describe the relationship of Cleanroom to
software prototyping, and explain the role of software
tools in Cleanroom development.

A. Cleanroom Software Development

The IBM Federal Systems Division (FSD) [23], [19],
{24], [21], [16] presents the Cleanroom software devel-
opment method as a technical and organizational ap-
proach to developing software with certifiable reliability.
The idea is to deny the entry of defects during the devel-
opment of software, hence the term ‘‘Cleanroom.’” The
focus of the method, which is an extension of the FSD
software engineering program [22], is imposing discipline
on the development process by integrating formal meth-
ods for specification and design, nonexecution-based pro-
gram development, and statistically based independent
testing. These components are intended to contribute to a
software product that has a high probability of zero de-
fects and consequently a high measure of operational re-
liability.

1) Software Life Cycle of Executable Increments: In
the Cleanroom approach, software development is orga-
nized around the incremental development of the software
product [16]. Instead of considering software design, im-
plementation. and testing as sequential stages in a soft-
ware life cycle. software development is considered as a
sequence of executable product increments. The incre-
ments accumulate over the development life cycle and re-
sult in a final product with full functionality.

2) Formal Methods for Specification and Design: In
order to support the life cycle of executable increments.
Cleanroom developers utilize *‘structured specifications’”’
to divide the product functionality into deeply nested sub-

0098-5589/87/0900-1027S01.00 © 1987 IEEE

1028

sets that can be developed incrementally. The mathemat-
ically based design methodology in Cleanroom [22] in-
* corporates the use of both structured specifications and
state machine models [26]. A systems engineer introduces
the structured specifications to restate the system require-
ments precisely and organize the complex problems into
manageable parts {41]. The specifications determine the
“‘system architecture’’ of the interconnections and group-
ings of capabilities to which state machine design prac-
tices can be applied. System implementation and test data
formulation can then proceed from the structured speci-
fications independently.

3) Development without Program Execution: The
right-the-first-time programming methods used in Clean-
room are the ideas of functionally based programming in
[38], [32]. The testing process is completely separated
from the development process by not allowing the devel-
opers to test and debug their programs. The developers
focus on the techniques of code reading by stepwise ab-
straction [32], code inspections [25], group walkthroughs
[40], and formal verification {29], [32], [44], [20] to as-
sert the correctness of their implementation. These non-
execution-based methods are referred to as ‘“off-line soft-
ware review techniques’’ in this paper. These constructive
techniques apply throughout all phases of development,
and condense the activities of defect detection and isola-
tion into one operation. Empirical evaluations have sug-
gested that the software review method of code reading
by stepwise abstraction is at least as effective in detecting
faults as execution-based methods [7], [43]. The intention
in Cleanroom is to impose discipline on software devel-
opment so that system correctness results from a coher-
ent, readable design rather than from a reliance on exe-
cution-based testing. The notion that ‘*Well, the software
should always be tested to find the faults’’ is eliminated.

4) Statistically Based, Independent Testing: In the
statistically based testing strategy of Cleanroom, indepen-
dent testers simulate the operational environment of the
system with random testing. This testing process includes
defining the frequency distribution of inputs to the sys-
tem, the frequency distribution of different system states,
and the expanding range of developed system capabili-
ties. Test cases then are chosen randomly and presented
to the series of product increments, while concentrating
on functions most recently delivered and maintaining the
overall composite distribution of inputs. The independent
testers then record observed failures and determine an ob-
Jective measure of product reliability. Since software er-
rors tend to vary widely in how frequently they are man-
ifested as failures (1], operational testing is especially
useful to assess the impact of software errors on product
reliability. In addition to the statistical testing approach.
the independent testers submit a limited number of test
cases to ensure correct system operation for situations in
which a software failure would be catastrophic. It is be-
lieved that the prior knowledge that a system will be eval-
uated by random testing will affect system reliability by
enforcing a new discipline into the system developers.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 9. SEPTEMBER 1987

The independent testing group operationally tests the
software product increments from a perspective of reli-
ability assessment, rather than a perspective of error de-
tection. The responsibility of the test group is, therefore.
to certify the reliability of the increments and final prod-
uct rather than assist the development group in getting the
product to an acceptable level of quality. One approach
for measuring the reliability of the increments is through
the use of a projected mean-time-between-failure
(MTBF). MTBF estimations, based on user representa-
tive testing, provide both development managers and users
with a useful, readily interpretable product reliability
measure. Statistical models for calculating MTBF’s pro-
jections include [34], [39], [33], [45], [15], [27], [16].

B. Introducing Cleanroom into a Development
Environment

Before introducing the Cleanroom methodology into a
software production environment, the developers need to
be educated in the supporting technology areas. The tech-
nology areas consist of the development techniques and
methods outlined in the above sections describing the
components of Cleanroom. Potential Cleanroom users
should also understand the goals of the development ap-
proach and be motivated to deliver high quality software
products. One fundamental aspect of motivating the de-
velopers is to convince them that they can incorporate er-
ror prevention into the software process and actually pro-
duce error-free software. This ‘‘error-free perspective’” is
a departure from a current view that software errors are
always present and error detection is the critical consid-
eration.

C. Cleanroom versus Prototyping

The Cleanroom methodology and software prototyping
are not mutually exclusive methods for developing soft-
ware—the two approaches may be used together. The
starting point for Cleanroom development is a document
that states the user requirements. The production of that
requirement document is an important portion of the soft-
ware development process. Software prototyping is one
approach that may be used to determine or refine the user
requirements, and hence, produce the system require-
ments document {31], [47]. After the production of the
requirements document, the prototype would be discarded
and the Cleanroom methodology could be applied.

D. Tool Use in Cleanroom

Since Cleanroom developers do not execute their source
code, does that mean that Cleanroom prohibits the use of
tools during development? No—software tools can play
an important role in the Cleanroom development ap-
proach. Various software tools can be used to help con-
struct and manipulate the system design and source code.
These tools can also be used to detect several types of
errors that commonly occur in the system design and
source code. The use of such tools facilitates the process
of reviewing the system design and source code prior to

SELBY er al.:. CLEANROOM SOFTWARE DEVELOPMENT

submission for testing by the independent group. Some of
the tools that may assist Cleanroom developers include
various static analyzers, data flow analyzers, syntax
checkers, type checkers, formal verification checkers,
concurrency analyzers, and modeling tools.

ITI. INVESTIGATION GOALS

Some intriguing aspects of the Cleanroom approach in-
clude 1) development without testing and debugging of
programs, 2) independent program testing for quality as-
surance (rather than to find faults or to prove ‘‘correct-
ness’’ [30]), and 3) certification of system reliability be-
fore product delivery. In order to understand the effects
of using Cleanroom, we proposed the following three
goals: 1) characterize the effect of Cleanroom on the de-
livered product, 2) characterize the effect of Cleanroom
on the software development process, and 3) characterize
the effect of Cleanroom on the developers. An application
of the goal /question /metric paradigm [6], [10] lead to
the framework of goals and questions for this study which
appears in Fig. 1. The empirical study executed to pursue
these goals is described in the following section.

IV. EMPIRICAL STUDY UsSING CLEANROOM

This section describes an empirical study comparing
team projects developed using Cleanroom with those using
a more conventional approach.

A. Subjects

Subjects for the empirical study came from the ‘‘Soft-
ware Design and Development’ course taught by F. T.
Baker and V. R. Basili at the University of Maryland in
the Falls of 1982 and 1983. The initial segment of the
course was devoted to the presentation of several software
development methodologies, including top-down design,
modular specification and design, PDL, chief program-
mer teams, program correctness. code reading, walk-
throughs, and functional and structural testing strategies.
For the latter part of the course, the individuals were di-
vided into three-person chief programmer teams for a
group project [2], [37], {3]. We attempted to divide the
teams equally according to professional experience, aca-
demic performance, and implementation language expe-
rience. The subjects had an average of 1.6 years profes-
sional experience and were university computer science
students with graduate, senior, or junior standing. The
subjects’ professional experience predominantly came
from government organizations and private software con-
tractors in the Washington, DC area. Fig. 2 displays the
distribution of the subjects’ professional experience.

B. Project Developed

A requirements document for an electronic message
system (read, send. mailing lists. authorized capabilities.
etc.) was distributed to each of the teams. The project was
to be compieted in six weeks and was expected to be about

1029

1. Characterize the effect of Cleanroom on the delivered product.
A. For intermediate and novice programmers building a small system, what
were the operational properties of the product?
1. Did the product meet the system requirements?
2. How did the operational testing results compare with those of a con- |
trol group?

B. What were the static properties of the product?

1. Were the size properties of the product any different from what
would be observed in a traditional development?

2. Were the readability properties of the product any different?

3. Was the control complexity any different?

4. Was the data usage any different?

5. Was the implementation language used differently?

C. What contribution did programmer background have on the final pro-
duct quality?

IL. Characterize the effect of Cleanroom on the software development process.

A. For intermediate and novice programmers building a small system, what
techniques were used to prepare the developing system for testing
submissions?

B. What role did the computer play in development?

C. Did the developers meet their delivery schedule?

I Characterize the effect of Cleanroom on the developers.
A. When intermediate and novice programmers built a small system, did

the developers miss the satisfaction of executing their own pro-
?

i
|
i
¢
|

1. Did the missing of program execution have any relationship to pro-
grammer background or to aspects of the delivered product?
B. How was the design and coding style of the developers affected by not
being able to test and debug?
C. Would the developers use Cleanroom again?

Fig. 1. Framework of goals and questions for Cleanroom development ap-
proach analysis.

x x
x xXx x

X XXXX x

X XXXXX x x x

X XXXXX X XX XX XX XX XX x x
" ; L ; 4 ; :

t + ~+ + + ; + +
4 1 2 3 4 5 6 7

Fig. 2. Subjects’ professional experience in years.

1500 lines of Simpl-T source code {9].' The development
machine was a Univac 1100 /82 running EXEC VIII, with
1200 baud interactive and remote access available.

C. Cleanroom Development Approach versus
Traditional Approach

The ten teams in the Fall 1982 course applied the
Cleanroom software development approach, while the five
teams in the Fall 1983 course served as a control group
(non-Cleanroom). All other aspects of the developments
were the same. The two groups of teams were not statis-
tically different in terms of professional experience, aca-
demic performance, or implementation language experi-
ence. If there were any bias between the two times the
course was taught, it would be in favor of the 1983 (non-
Cleanroom) group because the modular design portion of
the course was presented earlier. It was also the second
time F. T. Baker had taught the course.

The Cleanroom teams entered their source code on-line,
used a syntax-checker (but did not do automated type-

'Simpl-T is a structured ianguage that supponts several string and file
handling primitives. in addition to the usual control flow constructs avail-
able. for example. in Pascal. If Pascal or Fortran had been chosen. it would
have been very likely that some individuals wouid have had extensive ex-
pertence with the language, and this would have biased the comparison.
Also, restricting access to a compiler that produced executable code would
have been very difficult.

1030

checking across modules), and were not able to execute
their programs. The Cleanroom teams relied on the tech-
" niques of code reading, structured walkthroughs, and in-
* spections to prepare their evolving systems before sub-
mission for independent testing. The non-Cleanroom
teams were able to execute and debug their programs and
applied several modern programming practices: modular
design, top-down development, data abstraction, PDL,
functional testing, design reviews, etc. The non-Clean-
room method was intended to reflect a software develop-
ment approach that is currently in use in several software
development organizations. Note that the non-Cleanroom
method was roughly similar to the ‘‘disciplined team’’ de-
velopment methodology examined in an earlier study [5].
One issue to consider when comparing a ‘‘newer’”’ ap-
proach with an existing one is whether one group will try
harder just because they are using the newer approach.
This effect is referred to as the Hawthorne effect. In order
to combat this potential effect, we decided to have all the
members of one course apply the same development ap-
proach.” In order to diffuse any of the Cleanroom devel-
opers from thinking that they were being compared rela-
tive to a previously applied approach, we decided that
Cleanroom would be used in the earlier (1982) course.
Therefore, there was no obvious competing arrangement
in terms of approaches that were newer versus controlled.

D. Project Milestones

The objective for all teams from both groups was to
develop the full system described in the requirements doc-
ument. The first document every team in either group
turned in contained a system specification, composite de-
sign diagram. and implementation plan. The implemen-
tation plan was a series of milestones chosen by the in-
dividual teams which described when the various
functions within the system would be available. At these
various dates—minimum one week apart. maximum two—
teams from the groups would then submit their systems
for independent testing. Note that both the Cleanroom and
non-Cleanroom teams had the benefit of the independent
testing throughout development. An independent party
would apply statistically based testing to each of the de-
liveries and report to the team members both the success-
ful and unsuccessful test cases. The unsuccessful test
cases would be included in a team’s next test session for
verification. The following section briefly describes the
operationally based testing process applied to all projects
by the independent tester.

E. Operational Testing of Projects

The testing approach used in Cleanroom is to simulate
the developing system’s environment by randomiy select-
ing test data from an ‘‘operational profile."" a trequency
distribution of inputs to the system [46]. [18]. The proj-
ects from both groups were tested interactively by an in-

“This decision also happened to result in the two groups not being as
close in terms of size as they could have been.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-13. NO. 9. SEPTEMBER 1987

dependent party (i.e., R. W. Selby) at the milestones cho-
sen by each team. A distribution of inputs to the system
was obtained by identifying the logical functions in the
system and assigning each a frequency. This frequency
assignment was accomplished by polling eleven well-sea-
soned users of a University of Maryland Vax 11/780
mailing system. Then test data were generated randomly
from this profile and presented to the system. Recording
of failure severity and times between failure took place
during the testing process. The operational statistics re-
ferred to later were calculated from 50 user-session test
cases run on the final system release of each team. For a
complete explanation of the operationally based testing
process applied to the projects, including test data selec-
tion, testing procedure, and failure observation, see [{42].

F. Project Evaluation

All team projects were evaluated on their use of the
particular software development techniques, the indepen-
dent testing results, and a final oral interview. Both groups
of subjects were judged to be highly motivated during the
development of their systems. One reason for their moti-
vation was their being graded based on the evaluation of
their team projects. Information on the team projects was
also collected from a background questionnaire, a post-
development attitude survey, static source code analysis,
and operating system statistics.

V. DATA ANALYSIS AND INTERPRETATION

The analysis and interpretation of the data collected
from the study appear in the following sections, organized
by the goal areas outlined earlier. In order to address the
various questions posed under each of the goals. some
raw data usually will be presented and then interpreted.
Fig. 3 presents the number of source lines. executable
statements. and procedures and functions to give a rough
view of the systems developed.

A. Characterization of the Effect on the Product
Developed

This section characterizes the differences between the
products delivered by the two development groups. Re-
searchers have delineated numerous perspectives of soft-
ware product quality [36], [14], [13], and the following
sections examine aspects of several of these perspectives.
Initially we examine some operational properties of the
products, followed by a comparison of some of their static
properties.

1) Operational System Properties: In order to con-
trast the operational properties of the systems delivered
by the two groups, both completeness of implementation
and operational testing results were examined. A measure
of implementation completeness was calculated by parti-
tioning the required system into 16 logical functions (e.g.,
send mail to an individual. read a piece of mail. respond.
add yourself to a mailing list. . . .). Each function in an
implementation was then assigned a value of two if it
completely met its requirements. a value of one if it par-

SELBY et al.: CLEANROOM SOFTWARE DEVELOPMENT

Team Cleanroom Source Executable Procedures & i

| Lines Statments Functions i

A yes ' 1681 813 f 55 i

B yes 1626 717 | 42 ?
C yes 1118 573 , 42
D yes 1046 477 ; 30
E yes 1087 624 32

F yes 1213 440 35 }
G yes 1196 581 ! 31
H yes 1876 550 i 51
1 yes 1305 608 23
J yes 1052 658 ‘ 24
a no 824 410 i 26
b no 1429 633 ' 18
¢ no 2264 999 ! 46
d no 1629 626 | 67
e no 1310 459] 43

Fig. 3. System statistics.

tially met them, or zero if it was inoperable. The total for
each system was calculated; a maximum score of 32 was
possible. Fig. 4 displays this subjective measure of re-
quirement conformance for the systems. Note that in all
figures presented, the ten teams using Cleanroom are in
upper case and the five teams using a more conventionai
approach are in lower case. A first observation is that six
of the ten Cleanroom teams built very close to the entire
system. While not all of the Cleanroom teams performed
equally well, a majority of them applied the approach ef-
fectively enough to develop nearly the whole product.
More importantly, the Cleanroom teams met the require-
ments of the system more completely than did the non-
Cleanroom teams.

To compare testing resuits among the systems devel-
oped in the two groups, 50 random user-session test cases
were executed on the final release of each system to sim-
ulate its operational environment. If the final release of a
system performed to expectations on a test case, the out-
come was called a ‘‘success;’” if not, the outcome was a
*‘failure.’” If the outcome was a ‘‘failure’’ but the same
failure was observed on an earlier test case run on the final
release, the outcome was termed a ‘‘duplicate failure.”
Fig. 5 shows the percentage of successful test cases when
duplicate failures are not included. The figure displays
that Cleanroom projects had a higher percentage of suc-
cessful test cases at system delivery.® When duplicate
failures are included, however, the better performance of
the Cleanroom systems is not nearly as significant (MW
= 0.134).* This is caused by the Cleanroom projects hav-
ing a relatively higher proportion of duplicate failures,
even though they did better overall. This demonstrates that
while reviewing the code, the Cleanroom developers fo-
cused less than the other group on certain parts of the sys-
tem. The more uniform review of the whole system makes
the performance of the system less sensitive to its opera-
tional profile. Note that operational environments of sys-
tems are usually difficult to define a priori and are subject
to change.

3Although not considered here. various software reliability models have
been proposed to forecast system reliability based on failure data (see Sec-
tion II-A-4).

*To be more succinct, MW will sometimes be used to abbreviate the
significance level of the Mann-Whitney statistic.

1031
l1 D
I FE A BGCH
de b c a
0 16 35
| | | |
22 % 56 % 91 % 100 %

Mann-Whitney 3 signif. = .088
Fig. 4. Requirement conformance of the systems.

» O
W
Q
(o=]

d e b

- y : . n }
U T T T t T

58.0 100
Mann-Whitney signif. = .055

4+ o a

Fig. 5. Percentage of successful test cases during operational testing
(without duplicate failures).

In both of the product quality measures of implemen-
tation completeness and operational testing results, there
was quite a variation in performance.® A wide variation
may have been expected with an unfamiliar development
technique, but the developers using a more traditional ap-
proach had a wider range of performance than did those
using Cleanroom in both of the measures—even with there
being twice as many Cleanroom teams. All of the above
differences are magnified by recalling that the non-Clean-
room teams did not develop their systems in one mono-
lithic step, they (also) had the benefit of periodic opera-
tional testing by independent testers. Since both groups of
teams had independent testing of all their deliveries, the
early testing of deliveries must have revealed most faults
overlooked by the Cleanroom developers.

These comparisons suggest that the non-Cleanroom de-
velopers focused on a ‘‘perspective of the tester,”’ some-
times leaving out classes of functions and causing a less
completely implemented product and more (especially
unique) failures. Off-line software review techniques,
however. are more general and their use contributed to
more complete requirement conformance and fewer fail-
ures in the Cleanroom products. In addition to examining
the operational properties of the product, various static
properties were compared.

2) Static System Properties: The first question in this
goal area concerns the size of the final systems. Fig. 3
showed the number of source lines, executable state-
ments, and procedures and functions for the various sys-
tems. The projects from the two groups were not statis-

“The significance levels for the Mann-Whitney statistics reported are the
probability of Type I error in a one-tailed test.

°An alternate perspective includes only the more successtul projects from
each group in the comparison of operational product quality. When the best
60 percent from each approach are examined (i.e.. removing teams **d,"’
“e,” AU MEST *FL and 1Y), the Mann-Whitney significance level
for companng implementation completeness becomes 0.045 and the sig-
nificance ievel for comparing successful test cases (without duplicate fail-
ures) becomes 0.034. Thus, comparing the best teams trom each approach
increases the evidence in favor of Cleanroom in both of these product qual-
ity measures.

1032

tically different (MW > 0.10) in any of these three size
attributes. Another question in this goal area concerns the
readability of the delivered source code. Although read-
ability is not equivalent to maintainability, modifiability,
or reusability, it is a central component of each of these
software quality aspects. Two aspects of reading and al-
tering source code are the number of comments present
and the density of the ‘‘complexity.’”” In an attempt to
capture the complexity density, syntactic complexity [4]
was calculated and normalized by the number of execut-
able statements. In addition to control-flow complexity,
the syntactic complexity metric considers nesting depth
and prime program decomposition [32]. The developers
using Cleanroom wrote code that was more highly com-
mented (MW = 0.089) and had a lower complexity den-
sity (MW = 0.079) than did those using the traditional
approach. A calculation of either software science effort
[28], cyclomatic complexity [35], or syntactic complexity
without any size normalization, however, produced no
significant differences (MW > 0.10). This seems as ex-
pected because all the systems were built to meet the same
requirements.

Comparing the data usage in the systems, Cleanroom
developers used a greater number of nonlocal data items
(MW = 0.071). Also, Cleanroom projects possessed a
higher percentage of assignment statements (MW =
0.056). These last two observations could be a manifes-
tation of teaching the Cleanroom subjects modular design
later in the course (see Section IV-C), or possibly an in-
dication of using the approach. One interpretation of the
Cleanroom developers’ use of more nonlocal data could
be that the resulting software would be less reusable and
less portable. In fact, however, the increased use of non-
local data by some Cleanroom developers was because of
their use of data abstraction. In order to incorporate data
abstraction into a system implemented in the Simpi-T pro-
gramming language. developers may create indepen-
dently compilable program units that have retained. non-
local data and associated accessing routines.

Some interesting observations surface when the opera-
tional quality measures of just the Cleanroom products are
correlated with the usage of the implementation language.
Both percentage of successful test cases (without dupli-
cate failures) and implementation completeness correlated
with percentage of procedure calls (Spearman R = 0.65,
signif. = 0.044, and R = 0.57, signif. = 0.08, respec-
tively) and with percentage of IF statements (R = 0.62,
signif. = 0.058. and R = 0.55, signif. = 0.10, respec-
tively). However. both of these two product quality mea-
sures correlated negatively with percentage of CASE
statements (R = —0.86, signif. = 0.001. and R =
—0.69, signif. = 0.027. respectively) and with percent-
age of WHILE statements (R = —0.65, signif. = 0.044,
and R = —0.49, signif. = 0.15, respectively). There were
also some negative correlations between the product qual-
ity measures and the average software science effort per
subroutine (R = ~0.52, signif. = 0.12, and R = ~0.74,
signif. = 0.013. respectively) and the average number of
occurrences of a variable (R = —~0.54, signif. = 0.11,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-13, NO. 9, SEPTEMBER 1987

and R = —0.56, signif. = 0.09, respectively). Consid-
ering the products from all teams, both percentage of suc-
cessful test cases (without duplicate failures) and imple-
mentation completeness had some correlation with
percentage of IF statements (R = 0.48, signif. = 0.07,
and R = 0.45, signif. = 0.09, respectively) and some
negative correlation with percentage of CASE statements
(R = —0.48, signif. = 0.07, and R = —0.42, signif. =
0.12, respectively). Neither of the operational product
quality measures correlated with percentage of assign-
ment statements when either all products or just Clean-
room products were considered. These observations sug-
gest that the more successful Cleanroom developers
simplified their use of the implementation language; i.e.,
they used more procedure calls and IF statements, used
fewer CASE and WHILE statements, had a lower fre-
quency of variable reuse, and wrote subroutines requiring
less software science effort to comprehend.

3) Contribution of Programmer Background: When
examining the contribution of the Cleanroom program-
mers’ background to the quality of their final products,
general programming language experience correlated with
percentage of successful operational tests (without dupli-
cate failures: Spearman R = 0.66, signif. = 0.04; with
duplicates: R = 0.70, signif. = 0.03) and with imple-
mentation completeness (R = 0.55; signif. = 0.10). No
relationship appears between either operational testing re-
sults or implementation completeness and either
professional’ or testing experience. These back-

‘ground /quality relations seem consistent with other stud-

ies [17].

4) Summary of the Effect on the Product Devel-
oped: In summary, Cleanroom developers delivered a
product that 1) met system requirements more com-
pletely, 2) had a higher percentage of successful test cases,
3) had more comments and less dense control-flow com-
plexity, and 4) used more nonlocal data items and a higher
percentage of assignment statements. The more success-
ful Cleanroom developers 1) used more procedure calls
and IF statements, 2) used fewer CASE and WHILE
statements, 3) reused variables less frequently, 4) devel-
oped subroutines requiring less software science effort to
comprehend, and 5) had more general programming lan-
guage experience.

B. Characterization of the Effect on the Development
Process

In a postdevelopment attitude survey, the developers
were asked how effectively they felt they applied off-line
software review techniques in testing their projects (see
Fig. 6). This was an attempt to capture some of the in-
formation necessary to answer the first question under this
goal (question II-A). In order to make comparisons at the
team level, the responses from the members of a team are

"In fact. there are very slight negative correlations between vears of
professional experience and both percentage of successful tests (without
duplicate failures: R = —0.46, signif. = 0.18) and impiementation com-
pleteness (R = —0.47, signif. = 0.17).

SELBY er al.: CLEANROOM SOFTWARE DEVELOPMENT

14 — Yes, they were effective for testing ail parts of the program
5.5 — We used them but felt that they were only appropriate for certain parts of the pro-

gram

8.5 — We used them occasionally, but they were not really a major contributing factor to
the development

0 — Did not really use them at all

feeling of effective use of
off-line review techniques: both groups
(team ’e¢’ does not appear because of lack of response)

[--NaR=-1

E
D F A C
b

effective for
all parts

did not use

Mann-Whitney signif. = .065

Fig. 6. Breakdown of responses to the attitude survey question, **Did you
feel that you and your team members effectively used off-line review
techniques in testing your project?’” (Responses are from Cleanroom
teams.)?

composed into an average for the team. The responses to
the question appear on a team basis in a histogram in the
second part of the figure. Of the Cleanroom developers,
teams ‘A7’ ‘D, “E,”” “F,”” and ‘‘I"’ were the least
confident in their use of the off-line review techniques and
these teams also performed the worst in terms of opera-
tional testing results; four of these five teams performed
the worst in terms of implementation completeness. Off-
line review effectiveness correlated with percentage of
successful operational tests (without duplicate failures) for
the Cleanroom teams (Spearman R = 0.74; signif. =
0.014) and for all the teams (R = 0.76; signif. = 0.001);
it correlated with implementation completeness for all the
teams (R = 0.58; signif. = 0.023). Neither professional
nor testing experience correlated with off-line review ef-
fectiveness when either all teams or just Cleanroom teams
were considered.

The histogram in Fig. 6 shows that the Cleanroom de-
velopers felt they applied the off-line review techniques
more effectively than did the non-Cleanroom teams. The
non-Cleanroom developers were asked to give a relative
breakdown of the amount of time spent applying testing
and off-line review techniques. Their aggregate response
was 39 percent off-line review, 52 percent functional test-
ing, and 9 percent structural testing. From this break-
down, we observe that the non-Cleanroom teams primar-
ily relied on functional testing to prepare their systems for
independent testing. Since the Cleanroom teams were un-
able to rely on testing methods, they may have (felt they
had) applied the off-line review techniques more effec-
tively.

Since the role of the computer is more controlled when
using Cleanroom. one would expect a difference in on-
line activity between the two groups. Fig. 7 displays the
amount of connect time that each of the teams cumula-
tively used. A comparison of the cpu-time used by the
teams was less statistically significant (MW = 0.110).
Neither of these measures of on-line activity related to

“There are half-responses because an individual checked both the second
and third choices. The responses total to 28. not 30. because two separate
teams lost a member late in the project. (See Section V-D).

1033

e b e a d

J

4 :
T + T + T T T

0.0 155.0
Mann-Whitney signif. = .089
Fig. 7. Connect time in hours during project development.®

how effectively a team felt they had used the off-line re-
view techniques when either all teams or just Cleanroom
teams were considered. Although non-Cleanroom team
“‘d’’ did a lot of on-line testing and non-Cleanroom team
*‘e”’ did little, both teams performed poorly in the mea-
sures of operational product quality discussed earlier. The
operating system of the development machine captured
these system usage statistics. Note that the time the in-
dependent party spent testing is included.'® These obser-
vations exhibit that Cleanroom developers spent less time
on-line and used fewer computer resources. These results
empirically support the reduced role of the computer in
Cleanroom development.

Schedule slippage continues to be a problem in soft-
ware development. It would be interesting to see whether
the Cleanroom teams demonstrated any more discipline
by maintaining their original schedules. All of the teams
from both groups planned four releases of their evolving
system, except for team ‘‘G’’ which planned five. Recall
that at each delivery an independent party would opera-
tionally test the functions currently available in the sys-
tem, according to the team’s implementation plan. In Fig.
8, we observe that all the teams using Cleanroom kept to
their original schedules by making all planned deliveries:
only two non-Cleanroom teams made all their scheduled
deliveries.

1) Summary of the Effect on the Development Pro-
cess: Summarizing the effect on the development pro-
cess, Cleanroom developers 1) felt they applied off-line
review techniques more effectively, while non-Cleanroom
teams focused on functional testing; 2) spent less time on-
line and used fewer computer resources; and 3) made all
their scheduled deliveries.

C. Characterization of the Effect on the Developers

The first question posed in this goal area is whether the
individuals using Cleanroom missed the satisfaction of
executing their own programs. Fig. 9 presents the re-
sponses to a question inciuded in the postdevelopment at-
titude survey on this issue. As might be expected. almost
all the individuals missed some aspect of program exe-
cution. As might not be expected, however, this missing
of program execution had no relation to either the product
quality measures mentioned earlier or the teams’ profes-
sional or testing experience. Also. missing program exe-
cution did not increase with respect to program size (see
Fig. 10).

°Non-Cleanroom team ““e”* entered a substantial portion of its syvstem
on a remote machine. only using the Univac computer mainly for compi-
lation and execution. Team *"e'* was the only team that used any machine
other than the Univac. (See Section V-D.)

""When the time the independent tester spent is not included. the sig-
nificance levels for the nonparametric statistics do not change.

1034

J
I
H
F
E
D
(o}
B
A G
e c
d a b
0 1 2 3 4 5 6

Mann-Whitney signif. = .006

Fig. 8. Number of system releases.

13 — Yes, | missed the satisfaction of program execution.
11 — I somewhat missed the satisfaction of program execution.
4 — No, I did not miss the satisfaction of program execution.

Fig. 9. Breakdown of responses to the artitude survey question, **Did you
miss the satisfaction of executing your own programs?”’

Fig. 11 displays the replies of the developers when they
were asked how their design and coding style was affected
by not being able to test and debug. At first it would seem
surprising that more people did not modify their devel-
opment style when applying the techniques of Clean-
room. Several persons mentioned, however, that they al-
ready utilized some of the ideas in Cleanroom. Keeping
a simple design supports readability of the product and
facilitates the processes of modification and verification.
Although some of the objective product measures pre-
sented earlier showed differences in development style,
these subjective ones are interesting and lend insight into
actual programmer behavior.

One indicator of the impression that something new
leaves on people is whether they would do it again. Fig.
12 presents the responses of the individuals when they
were asked whether they would choose to use Cleanroom
again as either a software development manager or as a
programmer. Even though these responses were gathered
(immediately) after course completion, subjects desiring
to ‘‘please the instructor’’ may have responded favorably
to this type of question regardless of their true feelings.
Practically everyone indicated a willingness to apply the
approach again. It is interesting to note that a greater
number of persons in a managerial role would choose to
always use it. Of the persons that ranked the reuse of
Cleanroom fairly low in each category, four of the five
were the same people. Of the six people that ranked reuse
low, four were from less successful projects (one from
team ‘‘A,’’ one from team ‘‘E’’ and two from team *‘I""),
but the other two came from reasonably successful devel-
opments (one from team ‘*C’’ and one from team *‘J"").
The particular individuals on teams **E,”” *‘I,”” and *‘J"’
were the four that rated reuse fairly low in both catego-
ries.

1) Summary of the Effect on the Developers: In sum-
mary of the effect on the developers. most Cleanroom de-
velopers 1) partially modified their development style, 2)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-13. NO. 9, SEPTEMBER 1987

10.0 +4
| |
[i
Yes — | E H
| !
+ +
| DJC i !
| I i |
| \ ‘
Missed i G B |
Program + +
Execution | i
! :
Same — | i
| 1
+ F A +
| |
| B |
| |
| i
4.0 + -+
921.0 2001.0
No (3.0) Source Lines
Spearman correlations: ~.85 (signif. = .002) with source lines; —.70 (signif. =
.03) with number separately compilable modules; —.57 (signif. = .09)
with number procedures and functions.

Fig. 10. Relationship of program size versus missing program execution.

2 — Yes, my style was substantially revised.
15 — I modified some of my tendencies.
11 — It did not affect my style at all.
Frequently mentioned responses include
~ kept design simple, attempted nothing fancy
— kept readability of code in mind
— already was a user of off-line review techniques
— very careful scrutiny of code for potential mistakes
— prepared for a larger range of inputs

Fig. 11. Breakdown of responses to the attitude survey question, ‘‘How
was your design and coding style affected by not being able to test and
debug?"’

missed program execution, and 3) indicated that they
would use the approach again.

D. Distinction Among Teams

In spite of efforts to balance the teams according to var-
ious factors (see Section IV-A), a few differences among
the teams were apparent. Two separate Cleanroom teams.
“H'’ and *‘I,”" each lost a member late in the project.
Thus at project completion, there were eight three-person
and two two-person Cleanroom teams. Recall that team
““H"" performed quite well according to requirement con-
formance and testing results, while team **I'” did poorly.
Also, the second group of subjects did not divide evenly
into three-person teams. Since one of those individuals
had extensive professional experience, non-Cleanroom
team ‘e’ consisted of that one highly experienced per-
son. Thus at project completion, there were four three-
person and one one-person non-Cleanroom teams. Al-
though team “‘e’’ wrote over 1300 source lines. this highly
experienced person did not do as well as the other teams
in some respects. This is consistent with another study in
which teams applying a ‘‘disciplined methodology™" in
development outperformed individuals [5]. Appendix A
contains the significance levels for the results of the anal-
ysis presented when team “"e.”’ when teams "‘H' and
1.7 and when teams *‘e.”’ **H.”’ und *‘I'" are removed
from the analysis. Removing teams "*H'’ and *‘I'" has

SELBY er al.: CLEANROOM SOFTWARE DEVELOPMENT

As a software development manager?
8 ~ Yes, at all times
14 — Yes, but only for certain projects
5 — Not at all
As a programmer?
4 — Yes, for all projects
18 — Yes, but not all the time
5 — Only if I had to
0 — I would leave if I had to

Fig. 12. Breakdown of responses to the attitude survey question. **Would
you use Cleanroom again?’’ (One person did not respond to this ques-
tion.)

little effect on the significance levels, while the removal
of team ‘‘e’’ causes a decrease in all of the significance
levels except for executable statements. software science
effort, cyclomatic complexity, syntactic complexity. con-
nect-time, and cpu-time.

VI. CoNCLUSIONS

This paper describes ‘‘Cleanroom’’ software develop-
ment—an approach intended to produce highly reliable
software by integrating formal methods for specification
and design, nonexecution-based program development.
and statistically based independent testing. The goal
structure, experimental approach, data analysis. and con-
clusions are presented for a replicated-project study ex-
amining the Cleanroom approach. This is the first inves-
tigation known to the authors that applied Cleanroom and
characterized its effect relative to a more traditional de-
velopment approach.

The data analysis presented and the testimony provided
by the developers suggest that the major results of this
study are the following. 1) Most of the developers were
able to apply the techniques of Cleanroom effectively (six
of the ten Cleanroom teams delivered at least 91 percent
of the required system functions). 2) The Cleanroom
teams’ products met system requirements more com-
pletely and had a higher percentage of successful opera-
tionally generated test cases. 3) The source code devel-
oped using Cleanroom had more comments and less dense
control-flow complexity. 4) The more successful Clean-
room developers modified their use of the implementation
language; they used more procedure calls and IF state-
ments, used fewer CASE and WHILE statements, and had
a lower frequency of variable reuse (average number of
occurrences per variable). 5) All ten Cleanroom teams
made all of their scheduled intermediate product deliver-
ies, while only two of the five non-Cleanroom teams did.
6) Although 86 percent of the Cleanroom developers in-
dicated that they missed the satisfaction of program exe-
cution to some extent. this had no relation to the product
quality measures of implementation completeness and
successful operational tests. 7) Eighty-one percent of the
Cleanroom developers said that they would use the ap-
proach again.

Based on the experience of applying Cleanroom in this
study, some potential areas for improving the methodol-
ogy are as follows. 1) As mentioned above, several
Cleanroom developers tended to miss the satisfaction of
program execution. In order to circumvent a potential

1035

long-term psychological effect. a method for providing
such satisfaction to the developers would be useful. One
suggestion would be for developers to witness, but not
influence, program execution by the independent testers.
2) Several of the persons applying the Cleanroom ap-
proach mentioned that they had some difficulty visualiz-
ing the user interface, and hence, felt that the systems
suffered in terms of ‘‘user-friendliness.’’ One suggestion
would be to prototype the user interfaces as part of the
requirement determination phase, and then describe the
interfaces in the requirements document, possibly using
an interactive display specification language [11]. 3) A
few of the Cleanroom developers said that they did not
feel subjected to a ‘‘full test.”” Recall that the reliability
certification component of the Cleanroom approach stands
on the premise that operationally-based testing is suffi-
cient to assess system reliability. One suggestion may be
to augment the testing process with methods that enforce
increased coverage of the system requirements, design,
and implementation and / or methods that utilize frequent
error profiles.

Overall, it seems that the ideas in Cleanroom help at-
tain the goals of producing high quality software and in-
creasing the discipline in the software development pro-
cess. The complete separation of development from
testing appears to cause a modification in the developers’
behavior, resulting in increased process control and in
more effective use of methods for software specification.
design, off-line review, and verification. It seems that
system modification and maintenance would be more eas-
ily done on a product developed in the Cleanroom method.
because of the product’s thoroughly conceived design and
higher readability. Facilitating the software modification
and maintenance tasks results in a corresponding reduc-
tion in associated costs to users. The amount of devel-
opment effort required by the Cleanroom approach was
not gathered in this study because its purpose was to ex-
amine the feasibility of Cleanroom and to characterize its
effect. However, even if using Cleanroom required addi-
tional development effort, it seems that the potential re-
duction in maintenance and enhancement costs may result
in an overall decrease in software life cycle cost. Thus,
achieving high requirement conformance and high oper-
ational reliability coupled with low maintenance costs
would help reduce overall costs, satisfy the user com-
munity, and support a long product lifetime.

Other studies which have compared software develop-
ment methodologies include [5] and [12].'" In [5] three
software development approaches were compared: a dis-
ciplined-methodology team approach. an ad hoc team ap-
proach, and an ad hoc individual approach. The devel-
opment approaches were applied by advanced university
students comprising seven three-person teams. six three-
person teams, and six individuals. respectively. They sep-
arately built a small (600-2200 line) compiler. The dis-

""For a survey of controiled. empirical studies that have been conducted
in software engineering. see {8].

1036

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-13. NO. 9, SEPTEMBER 1987

Measure Average Mann-Whitney
significance levels
Clean- Non- All With- With- With-
room Clean- Teams out out out
Teams room Team | Teams Teams
Teams e H.I e HI
Source lines 1320.0 1491.2 .196 .240 .153 198
Executable stmts 604.1 625.4 .500 .286 442 367
Procedures &
functions 36.5 40.0 357 .500 .330 .500
%Implementation
completeness 82.5 60.0 .088 197 .093 196
%Successful tests (w/o
duplicate failures) 92.5 80.8 .055 .128 .053 .116
%Successful tests (w/
duplicate failures) 78.7 59.2 .134 .285 .151 .304
Comments 1949 1222 089 .102 .190 198
Syntactic complexity/
executable stmts 1.5 1.6 079 179 .082 175
Software Science E 6728.6e3 7355.4e3 451 .240 442 248
Cyclomatic complexity 196.8 212.2 .250 .198 255 248
Syntactic complexity 917.5 1017.0 .500 .286 .500 .305
Non-local data items 37.6 24.2 071 .129 .053 117
%Assignment stmts 34.2 26.6 .056 129 .040 .087
Off-line effectiveness 3.2 2.5 .065 065 .098 .098
Connect-time (hr.) 41.0 713 .089 .012 121 .021
Cpu-time (min.) 1.7 136.1 110 017 072 .009
Deliveries 4.1 ! 2.6 .006 015 .010 .022
|
Fig. 13. Summary of measure averages and significance levels.
ciplined-methodology team approach significantly re- APPENDIX A

duced the development costs as reflected in program
changes and runs. The resulting designs from the disci-
plined-methodology teams and the ad hoc individuals were
more coherent than the disjointed designs developed by
the ad hoc teams. In [12] two software development ap-
proaches were compared: prototyping and specifying.
Seven two- and three-person teams, consisting of univer-
sity graduate students, developed separate versions of the
same (2000-4000 line) application program. The systems
developed by prototyping were smaller, required less de-
velopment effort, and were easier to use. The systems de-
veloped by specifying had more coherent designs, more
complete functionality, and software that was easier to
integrate.

Future possible research directions include 1) assess-
ment of the applicability of Cleanroom to larger software
developments (note that aspects of the Cleanroom ap-
proach are being used in a 30 000 source line project {21],
[16]); 2) empirical evaluation of the effect of Cleanroom
from additional software quality perspectives, including
reusability and modifiability; and 3) further characteriza-
tion of the number and types of errors that occur when
Cleanroom is or is not used.

This empirical study is intended to advance the under-
standing of the relationship between introducing disci-
pline into the development process, as in Cleanroom, and
several aspects of product quality: conformance with re-
quirements, high operational reliability, and easily read-
able source code. The results given were calculated from
a set of teams applying Cleanroom development on a rel-
atively small project—the direct extrapolation of the find-
ings to other projects and development environments is
not implied.

Fig. 13 presents the measure averages and the signifi-
cance levels for the above comparisons when team *‘e,”’
when teams ‘*H’’ and ‘‘I,’’ and when teams ‘‘e,”’ “‘H,”’
and “‘I’’ are removed. The significance levels for the
Mann-Whitney statistics reported are the probability of
Type I error in a one-tailed test.

ACKNOWLEDGMENT

The authors are grateful to D. H. Hutchens and R. W.
Reiter for the use of their static analysis program in this
study.

REFERENCES

[1] E. N. Adams, **Optimizing preventive service of software products,
IBM J. Res. Develop., vol. 28, no. i, pp. 2-14, Jan. 1984.

[2] F. T. Baker, *‘Chief programmer team management of production
programming,’” [BM Syst. J., vol. 11, no. 1, pp. 131-149, 1972,

(3] —, *‘Chief programmer teams,’" in Tutorial on Structured Pro-
gramming: Integrated Practices. V. R. Basili and F. T. Baker, Eds.
New York: IEEE, 1981.

[4] V. R. Basili and D. H. Hutchens. **An empirical study of a syntactic
metric family,"' /EEE Trans. Software Eng. , voi. SE-9, pp. 664-672,
Nov. 1983,

[5] V. R. Basili and R. W. Reiter. ‘A controlled experiment quantita-
tively comparing software development approaches,’’ IEEE Trans.
Software Eng., vol. SE-7, May 1981.

{6] V. R. Basili and R. W. Selby. **Data collection and analysis in soft-
ware research and management,'’ in Proc. Amer. Statist. Ass. and
Biometric Sov. Joint Statist. Meetings, Phitadelphia, PA, August 13-
16, 1984,

[7] —, "*Comparing the effectiveness of software testing strategies,"’
Dep. Comput. Sci.. Univ. Maryland, College Park. Tech. Rep. TR-
1501. May 198S: to appear in /EEE Trans. Software Eng.

(8] V. R. Basili, R. W. Selby, and D. H. Hutchens, **Expenmentation
in software engineering,”’ /EEE Trans. Software Eng., vol. SE-12,
pp. 733-743, July 1986.

[9] V. R. Basili and A. J. Turner. SIMPL-T: A Structured Programming
Language. Geneva, IL: Paladin House, 1976.

SELBY et al.: CLEANROOM SOFTWARE DEVELOPMENT

[10] V. R. Basili and D. M. Weiss, *‘A methodology for collecting valid
software engineering data.’’ /[EEE Trans. Software-Eng., vol. SE-10,
pp.- 728-738, Nov. 1984.

[11] L. J. Bass, ‘‘An approach to user specification of interactive display
interfaces,”’ IEEE Trans. Software Eng., vol. SE-11, pp. 686-698,
Aug. 1985. -

{12] B. W. Boehm, T. E. Gray, and T. Seewaldt. ‘‘Prototyping versus
specifying: A multiproject experiment,’’ IEEE Trans. Software Eng. ,
vol. SE-10, pp. 290-303, May 1984.

[13] T. P. Bowen, G. B. Wigle, and J. T. Tsai, ‘‘Specification of software
quality attributes,’* Rome Air Development Center, Griffiss Air Force
Base, NY, Tech. Rep. RADC-TR-85-37 (3 volumes), Feb. 1985.

[14] J. P. Cavano and J. A. McCall, ‘*A framework for the measurement
of software quality,’’ in Proc. Software Quality and Assurance Work-
shop, San Diego, CA, Nov. 1978, pp. 133-139.

[15] P. A. Currit, ‘‘Cleanroom certification model,”’ in Proc. 8th Annu.
Software Eng. Workshop, NASA/GSFC, Greenbelt, MD, Nov. 1983.

[(16] P. A. Currit, M. Dyer, and H. D. Mills, ‘‘Centifying the reliability
of software,’’ IEEE Trans. Sofiware Eng., vol. SE-12, pp. 3-11, Jan.
1986. .

[17] B. Curtis, ‘*Cognitive science of programming,’” in Sixth Minnow-
brook Workshop Software Performance Evaluation, Blue Mountain
Lake, NY, July 19-22, 1983.)

(18] J. W. Duran and S. Ntafos, ‘A report on random testing*,”” in Proc.
Fifth Int. Conf. Software Eng., San Diego, CA, Mar. 9-12, 1981,
pp. 179-183.

[19] M. Dyer, ‘‘Cleanroom software development method,’” IBM Federal
Systems Division, Bethesda. MD. Oct. 14, 1982.

[20] —, **Software validation in the Cleanroom development method,’’
IBM-FSD Tech. Rep. 86.0003. Aug. 19, 1983. .
[21] —, ‘‘Software development under statistical guality controi,’’ in

Proc. NATO Advanced Study Institute: The Challenge of Advanced
Computing Technology 10 System Design Methods, Durham, UK, July
29-Aug. 10, 1985.

{22] M. Dyer, R. C. Linger, H. D. Mills, D. O’Neill, and R. E. Quinnan,
*“The management of software engineering,’’ /BM Syst. J., vol. 19,
no. 4, 1980.

[23] M. Dyer and H. D. Mills, *‘The Cleanroom approach to reliable soft-
ware development,’’ in Proc. Validation Methods Research for Fauls-
Tolerant Avionics and Control Systems Sub-Working-Group Meeting:
Production of Reliable Flight-Crucial Software, Research Triangle
Institute, NC, Nov. 2-4, 1981.

[24] —, **Developing electronic systems with certifiable reliability,"” in
Proc. NATO Conf., Summer 1982.

[25] M. E. Fagan, '‘Design and code inspections to reduce errors in pro-
gram development,”’ IBM Syst. J., vol. 15, no. 3, pp. 182-211, 1976.

[26] A. B. Ferrentino and H. D. Mills, **State machines and their seman-
tics in software engineening,’’ in Proc. IEEE COMPSAC, 1977.

[271 A. L. Goel. ‘‘A guidebook for software reliability assessment.”’ Dep.
Industrial Eng. and Oper. Res., Syracuse Univ., New York, Tech.
Rep. 83-11, Apr. 1983.

[28] M. H. Halstead. Elements of Software Science.
Holland, 1977.

[29] C. A. R. Hoare, ‘‘An axiomatic basis for computer programming,’’
Commun. ACM, vol. 12, no. 10, pp. 576-583, Oct. 1969.

[30] W. E. Howden, ‘‘Reliability of the path analysis testing strategy,”’
IEEE Trans. Software Eng., vol. SE-2, no. 3, Sept. 1976.

[31] P. Kerola and P. Freeman. **A comparison of lifecycle models,'’ in
Proc. 5th Int. Conf. Software Eng., Mar. 1981, pp. 90-99,

{32} R. C. Linger, H. D. Mills, and B. 1. Witt, Structured Programming:
Theory and Practice. Reading, MA: Addison-Wesley, 1979.

[33] B. Littlewood, ‘‘Stochastic reliability growth: A model for fault ren-
ovation computer programs and hardware designs."’ IEEE Trans. Rel.,
vol. R-30, Oct. 1981.

{34] B. Littlewood and J. L. Verrail. **A Bayesian reliability growth model
for computer software, * Appl. Statist.. vol. 22, no. 3,1973.

[35] T.J. McCabe, "*A compiexity measure. ’ IEEE Trans. Software Eng.,
vol. SE-2, pp. 308-320. Dec. 1976.

[36] J. A. McCall. P. Richards, and G. Walters. **Factors in software
quality,”” Rome Air Development Center, Griffiss Air Force Base,
NY, Tech. Rep. RADC-TR-77-369. Nov. 1977.

[37] H. D. Mills, *“*Chief programmer teams: Principies and procedures.”’
IBM Corp., Gaithersburg. MD. Rep. FSC 71-6012. 1972.

{38] —. **Mathematical foundations for structural programming,”” IBM
Rep. FSL 72-6021. 1972.

{391 J. D. Musa. "*A theory of software reliability and its application.”
IEEE Trans. Software Eng.. vol. SE-1. no. 3. pp. 312-327, 1975.

New- York: North-

1037

[40) G. J. Myers, Software Reliabiliry: Principles & Practices.
York: Wiley, 1976. .

[41] D. L. Parnas, ‘‘On the criteria to be used in decomposing systems
into modules,” Commun. ACM, vol. 15, no. 12, pp. 1053-1058,
1972.

[42] R. W. Selby, ‘‘Evaluations of software technologies: Testing,
CLEANROOM, and metrics,”’ Ph.D. dissertation, Dep. Comput.
Sci., Univ. Maryland, College Park, Tech. Rep. TR-1500, 1985.

[43) —, *‘Combining software testing strategies: An empiricai evalua-
tion,” in Proc. Workshop Software Testing, Banff, Alta., Canada,
July 15-17, 1986, pp. 82-91.

[44] K. S. Shankar, ‘A functional approach to module verification,”’ IEEE
Trans. Software Eng., vol. SE-8, Mar. 1982.

{45] J. G. Shanthikumar, ‘‘A statistical time dependent error occurrence
rate software reliability model with imperfect debugging,’* in Proc.

. 1981 Nat. Comput. Conf., June 1981.

[46] R. A. Thayer, M. Lipow, and E. C. Nelson, Software Reliability.
Amsterdam, The Netherlands: North-Holland, 1978. ’

{47) M. V. Zelkowitz and M. Branstad. in Proc. ACM SIGSOFT Rapid
Prototyping Symp., Apr. 1982.

New

Richard W. Selby (S°83-M’85) received the B.A.
degree in mathematics and computer science from
Saint Olaf College, Northfield, MN, in 1981 and
the M.S. and Ph.D. degrees in computer science
from the University of Maryland, College Park,
in 1983 and 1985, respectively.
A He is an Assistant Professor of Information and
S . Computer Science at the University of California,
’ Irvine. His research interests inciude methodolo-
b\ A gies for developing and testing software, tech-
- niques for empiricaily evaluating software meth-
odologies, and software environments.
Dr. Selby is a member of the Association for Computing Machinery and
the IEEE Computer Society.

Victor R. Basili (M’83-SM*84) is Professor and
Chairman of the Computer Science Department at
the University of Maryland, College Park. He was
involved in the design and development of several
software projects, including the SIMPL famiiy of
programming languages. He is currently measur-
ing and evaluating software development in in-
dustrial settings and has consulted with many
agencies and organizations, including IBM, GE,
CSC. GTE, MCC, AT&T Bell Laboratories,
NRL, NSWC. and NASA. He is one of the foun-
ders and principals in the Software Engineering Laboratory, a joint venture
established in 1976 between NASA/Goddard Space Flight Center, the Uni-
versity of Maryland, and Computer Sciences Corporation. In this context
he has worked closely with CSE in developing models and metrics for the
software development process and product. He has authored over 70 pub-
lished papers on the methodology, the quantitative analysis, and the evai-
uation of the software development process and product. In 1982 he re-
ceived the Outstanding Paper Award from the IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING for his paper on the evaluation of methodologies.

Dr. Basili was Program Chairman for the 6th International Conference
on Software Engineering, and the First ACM SIGSOFT Software Engi-
neering Symposium on Tools and Methodology Evaluation. He serves on
the editorial boards of the Journal of Systems and Software and the IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING. He is a member of the Asso-
ciation for Computing Machinery and the Executive Committee of the
Technical Committee on Software Engineering, and is a senior member of
the IEEE Computer Society.

F. Terry Baker, photograph and biography not available at the time of
publication.

