758 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14. NO. 6, JUNE 1988

The TAME Project: Towards Improvement-Oriented
Software Environments

VICTOR R. BASILI, SENIOR MEMBER, IEEE, AND H. DIETER ROMBACH

Abstract—Experience from a dozen years of analyzing software en-
gineering processes and products is summarized as a set of software
engineering and measurement principles that argue for software en-
gineering process models that integrate sound planning and analysis
into the construction process.

In the TAME (Tailoring A Measurement Environment) project at
the University of Maryland we have developed such an improvement-
oriented software engineering process model that uses the goal/ques-
tion/metric paradigm to integrate the constructive and analytic aspects
of software development. The model provides a mechanism for for-
malizing the characterization and planning tasks, contrelling and im-
proving projects based on quantitative analysis, learning in a deeper
and more systematic way about the software process and product, and
feeding the appropriate experience back inte the current and future
projects.

The TAME system is an instantiation of the TAME software engi-
neering process model as an ISEE (Integrated Software Engineering
Environment). The first in a series of TAME system prototypes has
been developed. An assessment of experience with this first limited pro-
totype is presented including a reassessment of its initial architecture.
The long-term goal of this building effort is to develop a better under-
standing of appropriate ISEE architectures that optimaily support the
improvement-oriented TAME software engineering process model.

Index Terms—Characterization, execution, experience, feedback,
formalizing, goal/question/metric paradigm, improvement paradigm,
integrated software engineering environments, integration of construc-
tion and analysis, learning, measurement, planning, quantitative anal-
ysis, software engineering process meodels, tailoring, TAME project,
TAME system.

[. INTRODUCTION

XPERIENCE from a dozen years of analyzing soft-
ware engineering processes and products is summa-
rized as a set of ten software engineering and fourteen
measurement principles. These principles imply the need
for software engineering process models that integrate
sound planning and analysis into the construction process.
Software processes based upon such improvement-ori-
ented software engineering process models need to be tai-
lorable and tractable. The tailorability of a process is the
characteristic that allows it to be altered or adapted to suit

Manuscript received January 15, 1988. This work was supported in part
by NASA under Grant NSG-5123, the Air Force Office of Scientific Re-
search under Grant F49620-87-0130, and the Office of Naval Research un-
der Grant N00014-85-K-0633 to the University of Maryland. Computer
time was provided in part through the facilities of the Computer Science
Center of the University of Maryland.

The authors are with the Department of Computer Science and the In-
stitute for Advanced Computer Studies, University of Maryland, College
Park, MD 20742.

IEEE Log Number 8820962.

a set of special needs or purposes [64]. The software en-
gineering process requires tailorability because the over-
all project execution model (life cycle model), methods
and tools need to be altered or adapted for the specific
project environment and the overall organization. The
tractability of a process is the characteristic that allows it
to be easily planned, taught, managed, executed, or con-
trolled [64]. Each software engineering process requires
tractability because it needs to be planned, the various
planned activities of the process need to be communicated
to the entire project personnel, and the process needs to
be managed, executed, and controlled according to these
plans. Sound tailoring and tracking require top-down
measurement (measurement based upon operationally de-
fined goals). The goal of a software engineering environ-
ment (SEE) should be to support such tailorable and tract-
able software engineering process models by automating
as much of them as possible.

In the TAME (Tailoring A Measurement Environment)
project at the University of Maryland we have developed
an improvement-oriented software engineering process
model. The TAME system is an instantiation of this TAME
software engineering process model as an ISEE (Inte-
grated SEE).

It seems appropriate at this point to clarify some of the
important terms that will be used in this paper. The term
engineering comprises both development and mainte-
nance. A software engineering project is embedded in
some project environment (characterized by personnel,
type of application, etc.) and within some organization
(e.g., NASA, IBM). Software engineering within such a
project environment or organization is conducted accord-
ing to an overall software engineering process model (one
of which will be introduced in Section II-B-3). Each in-
dividual software project in the context of such a software
engineering process model is exeucted according to some
execution model (e.g., waterfall model [28], [58], itera-
tive enhancement model [24], spiral model [30]) supple-
mented by techniques (methods, tools). Each specific in-
stance of (a part of) an execution model together with its
supplementing methods and tools is referred to as execu-
tion process (including the construction as well as the
analysis process). In addition, the term process is fre-
quently used as a generic term for various kinds of activ-
ities. We distinguish between constructive and analytic
methods and tools. Whereas constructive methods and
tools are concerned with building products, analytic

0098-5589/88/0600-0758$01.00 © 1988 IEEE

BASILI AND ROMBACH: THE TAME PROJECT

method and tools are concerned with analyzing the con-
structive process and the resulting products. The body of
experience accumulated within a project environment or
organization is referred to as experience base. There exist
at least three levels of formalism of such experience bases:
database (data being individual products or processes),
information base (information being data viewed through
some superimposed structure), and knowledge base
(knowledge implying the ability to derive new insights via
deduction rules). The project personnel are categorized as
either engineers (e.g., designers, coders, testers) or man-
agers.

This paper is structured into a presentation and discus-
sion of the improvement-oriented software engineering
process model underlying the TAME project (Section II),
its automated support by the TAME system (Section III),
and the first TAME system prototype (Section IV). In the
first part of this paper we list the empirically derived les-
sons learned (Section II-A) in the form of software engi-
neering principles. (Section II-A-1), measurement princi-
ples (Section II-A-2), and motivate the TAME project by
stating several implications derived from those principles
(Section II-A-3). The TAME project (Section II-B) is pre-
sented in terms of the improvement paradigm (Section
II-B-1), the goal/question/metric paradigm as a mecha-
nism for formalizing the improvement paradigm (Section
II-B-2), and the TAME project model as an instantiation
of both paradigms (Section II-B-3). In the second part of
this paper we introduce the TAME system as an approach
to automatically supporting the TAME software engi-
neering process model (Section IIT). The TAME system
is presented in terms of its requirements (Section III-A)
and architecture (Section III-B). In the third part of this
paper, we introduce the first TAME prototype (Section
IV) with respect to its functionality and our first experi-
ences with it.

II. SOFTWARE ENGINEERING PROCESS

Our experience from measuring and evaluating soft-
ware engineering processes and products in a variety of
project environments has been summarized in the form of
lessons learned (Section II-A). Based upon this experi-
ence the TAME project has produced an improvement-
oriented process model (Section 1I-B).

A. Lessons Learned from Past Experience

We have formulated our experience as a set of software
engineering principles (Section II-A-1) and measurement
principles (Section II-A-2). Based upon these principles a
number of implications for sound software engineering
process models have been derived (Section II-A-3).

1) Software Engineering Principles: The first five
software engineering principles address the need for de-
veloping quality a priori by introducing engineering dis-
cipline into the field of software engineering:

(P1) We need to clearly distinguish between the role of
constructive and analytic activities. Only improved con-
struction processes will result in higher quality software.
Quality cannot be tested or inspected into software. An-

759

alytic processes (e.g., quality assurance) cannot serve as
a substitute for constructive processes but will provide
control of the constructive processes {271, [37], [61].

(P2) We need to formalize the planning of the con-
struction process in order to develop quality a priori [3],
[16], [19], [25]. Without such plans the trial and error
approach can hardly be avoided.

(P3) We need to formalize the analysis and improve-
ment of construction processes and products in order to
guarantee an organized approach to software engineering
[3], [25]. '

(P4) Engineering methods require analysis to deter-
mine whether they are being performed appropriately, if
at all. This is especially important because most of these
methods are heuristic rather than formal [42], [49], [66].

(P5) Software engineers and managers need real-time
feedback in order to improve the construction processes
and products of the ongoing project. The organization
needs post-mortem feedback in order to improve the con-
struction processes and products for future projects [66].

The remaining five software engineering principles ad-
dress the need for tailoring of planning and analysis pro-
cesses due to changing needs form project to project and
environment to environment:

(P6) All project environments and products are differ-
ent in some way [2], [6€]. These differences must be made
explicit and taken into account in the software execution
processes and in the product quality goals [3], [16], [19],
[25].

(P7) There are many execution models for software en-
gineering. Each execution model needs to be tailored to
the organization and project needs and characteristics [2],
[13], [16], [66].

(P8) We need to formalize the tailoring of processes
toward the quality and productivity goals of the project
and the characteristics of the project environment and the
organization [16}. It is not easy to apply abstractly defined
methods to specific environments.

(P9) This need for tailoring does not mean starting from
scratch each time. We need to reuse experience, but only
after tailoring it to the project [1], [21, [6], [7], [18], [32].

(P10) Because of the constant need for tailoring, man-
agement control is crucial and must be flexible. Manage-
ment needs must be supported in this software engineer-
ing process.

A more detailed discussion of these software engineer-
ing principles is contained in [17].

2) Software Measurement Principles: The first four
measurement principles address the purpose of the mea-
surement process, i.e., why should we measure, what
should we measure, for whom should we measure:

(M1) Measurement is an ideal mechanism for charac-
terizing, evaluating, predicting, and providing motivation
for the various aspects of software construction processes
and products [3], [4], [9], [16], [21], [25], (48], [56],
[57]. It is a common mechanism for relating these multi-
ple aspects.

(M2) Measurements must be taken on both the soft-

760 |EEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 6, JUNE 1988

ware processes and the various software products {11, [5],
[14], [29], [38], [40], [42]-[44], [47], [54]-[56], [65],
[66]. Improving a product requires understanding both the
product and its construction processes.

(M3) There are a variety of uses for measurement. The
purpose of measurement should be clearly stated. We can
use measurement to examine cos*. effectiveness, reliabil-
ity, correctness, maintainability, efficiency, user friendli-
ness, etc. [8]-[101, (131, [14], [16], [20], [23], [25], [41],
531, [571, [61].

(M4) Measurement needs to be viewed from the appro-
priate perspective. The corporation, the manager, the de-
veloper, the customer’s organization and the user each
view the product and the process from different perspec-
tives. Thus they may want to know different things about
the project and to different levels of detail [3], [16], [19],
[25], [66].

The remaining ten measurement principles address met-
rics and the overall measurement process. The first two
principles address characteristics of metrics (i.e., what
kinds of metrics, how many are needed), while the latter
eight address characteristics of the measurement process
(i.e., what should the measurement process look like, how
do we support characterization, planning, construction,
and learning and feedback):

(M5) Subjective as well as objective metrics are re-
quired. Many process, product and environment aspects
can be characterized by objective metrics (e.g., product
complexity, number of defects or effort related to pro-
cesses). Other aspects cannot be characterized objectively
yet (e.g., experience of personnel, type of application,
understandability of processes and products); but they can
at least be categorized on a quantitative (nominal) scale
to a reasonable degree of accuracy [4], [S], [16], [48],
[56].

(M6) Most aspects of software processes and products
are too complicated to be captured by a single metric. For
both definition and interpretation purposes, a set of met-
rics (a metric vector) that frame the purpose for measure-
ment needs to be defined [9].

(M7) The development and maintenance environments
must be prepared for measurement and analysis. Planning
is required and needs to be carefuily integrated into the
overall software engineering process model. This plan-
ning process must take into account the experimental de-
sign appropriate for the situation 31, [14], [19], [22],
[66].

(M8) We cannot just use models and metrics from other
environments as defined. Because of the differences
among execution models (principle P7), the models and
metrics must be tailored for the environment in which they
will be applied and checked for validity in that environ-
néeént [21, [61-[8], [12], [23], [31], [40], [47], [50], [51],
[62).

(M9) The measurement process must be top-down
rather than bottom-up in order to define a set of opera-
tional goals, specify the appropriate metrics, permit valid

contextual interpretation and analysis, and provide feed-
back for tailorability and tractability [3], [16], [191, [25].

(M10) For each environment there exists a character-
istic set of metrics that provides the needed information
for definition and interpretation purposes [21].

(M11) Muitiple mechanisms are needed for data col-
lection and validation. The nature of the data to be col-
lected (principle M5) determines the appropriate mecha-
nisms [4], [25], [48], e.g., manually via forms or
interviews, or automatically via analyzers.

(M12) In order to evaluate and compare projects and
to develop models we need a historical experience base.
This experience base should characterize the local envi-
ronment [4], [13], [25], [34], [44], [48].

(M13) Metrics must be associated with interpretations,
but these interpretations must be given in context [3], [16],
[19], [25], [34], [56].

(M14) The experience base should evolve from a da-
tabase into a knowledge base (supported by an expert sys-
tem) to formalize the reuse of experience [11], [14].

A more detailed discussion of these measurement prin-
ciples is contained in [17].

3) Implications: Clearly this set of principles is not
complete. However, these principles provide empirically
derived insight into the limitations of traditional process
models. We will give some of the implications of these
principles with respect to the components that need to be
included in software process models, essential character-
istics of these components, the interaction of these com-
ponents, and the needed automated support. Although
there is a relationship between almost all principles and
the derived implications, we have referenced for each im-
plication only those principles that are related most di-
rectly.

Based upon our set of principles it is clear that we need
to better understand the software construction process and
product (e.g., principles P1, P4, P6, M2, M5, M6, M8,
M9, M10, M12). Such an understanding will allow us to
plan what we need to do and improve over our current
practices (e.g., principles P1, P2, P3, P7, P8, M3, M4,
M7, M9, M14). To make those plans operational, we
need to specify how we are going to affect the construc-
tion processes and their analysis (e.g., principles P1, P2,
P3, P4, P7, P8, M7, M8, M9, M14). The execution of
these prescribed plans involves the construction of prod-
ucts and the analysis of the constructive processes and
resulting products (e.g., principles P1, P7).

All these implications need to be integrated in such a
way that they allow for sound learning and feedback so
that we can improve the software execution processes and
products (e.g., principles P1, P3, P4, P5, P9, P10, M3,
M4, M9, M12, M13, M14). This interaction requires the
integration of the constructive and analytic aspects of the
software engineering process model (e.g., principles P2,
M7, M9).

The components and their interactions need to be for-
malized so they can be supported properly by an ISEE

BASILI AND ROMBACH: THE TAME PROJECT

(e.g., principles P2, P3, P8, P9, M9). This formalization
must include a structuring of the body of experience so
that characterization, planning, learning, feedback, and
improvement can take place (e.g., principles P2, P3, P8,
P9, M9). An ideal mechanism for supporting all of these
components and their interactions is quantitative analysis
(e.g., principles P3, P4, M1, M2, M5, M6, M8, M9,
M10, M11, M13).

B. A Process Model: The TAME Project

The TAME (Tailoring A Measurement Environment)
project at the University of Maryland has produced a soft-
ware engineering process model (Section II-B-3) based
upon our empiricaily derived lessons learned. This soft-
ware engineering process model is based upon the im-
provement (Section II-B-1) and goal/question/metric par-
adigms (Section 1I-B-2).

1) Improvement Paradigm: The improvement para-
digm for software engineering processes reflects the im-
plications stated in Section II-A-3. It consists of six major
steps [3]:

(I1) Characterize the current project environment.

(I2) Set up goals and refine them into quantifiable ques-
tions and metrics for successful project performance and
improvement over previous project performances.

(I3) Choose the appropriate software project execution
model for this project and supporting methods and tools.

(I4) Execute the chosen processes and construct the
products, collect the prescribed data, validate it, and pro-
vide feedback in real-time.

(I5) Analyze the data to evaluate the current practices,
determine problems, record the findings, and make rec-
ommendations for improvement.

(I6) Proceed to Step Il to start the next project, armed
with the experience gained from this and previous proj-
ects.

This paradigm is aimed at providing a basis for corpo-
rate learning and improvement. Improvement is only pos-
sible if we a) understand what the current status of our
environment is (step I1), b) state precise improvement
goals for the particular project and quantify them for the
purpose of control (step 12), c) choose the appropriate
process execution models, methods, and tools in order to
achieve these improvement goals (step I3), execute and
monitor the project performance thoroughly (step 14), and
assess it (step 15). Based upon the assessment results we
can provide feedback into the ongoing project or into the
planning step of future projects (steps 15 and 16).

2) Goal/Question/Metric Paradigm: The goal/ques-
tion/metric (GQM) paradigm is intended as a mechanism
for formalizing the characterization, planning, construc-
tion, analysis. learning and feedback tasks. It represents
a systematic approach for setting project goals (tailored
to the specific needs of an organization) and defining them
in an operational and tractable way. Goals are refined into
a set of quantifiable questions that specify metrics. This
paradigm also supports the analysis and integration of

761

metrics in the context of the questions and the original
goal. Feedback and learning are then performed in the
context of the GQM paradigm.

The process of setting goals and refining them into
quantifiable questions is complex and requires experi-
ence. In order to support this process, a set of templates
for setting goals, and a set of guidelines for deriving ques-
tions and metrics has been developed. These templates
and guidelines refiect our experience from having applied
the GQM paradigm in a variety of environments (e.g.,
NASA [4], [17], [48], IBM [60], AT&T, Burroughs [56],
and Motorola). We received additional feedback from
Hewlett Packard where the GQM paradigm has been used
without our direct assistance [39]. It needs to be stressed
that we do not claim that these templates and guidelines
are complete; they will most likely change over time as
our experience grows. Goals are defined in terms of pur-
pose, perspective and environment. Different sets of
guidelines exist for defining product-related and process-
related questions. Product-related questions are formu-
lated for the purpose of defining the product (e.g., phys-
ical attributes, cost, changes, and defects, context), de-
fining the quality perspective of interest (e.g., reliability,
user friendliness), and providing feedback from the par-
ticular quality perspective. Process-related questions are
formulated for the purpcse of defining the process (quality
of use, domain of use), defining the quality perspective
of interest (e.g., reduction of defects, cost effectiveness
of use), and providing feedback from the particular qual-
ity perspective.

¢ Templates/Guidelines for Goal Definition:

Purpose: To (characterize, evaluate, predict, moti-
vate, etc.) the (process, product, model, metric, etc.) in
order to (understand, assess, manage, engineer, learn,
improve, etc.) it.

Example: To evaluate the system testing methodology
in order to improve it.

Perspective: Examine the (cost, effectiveness, cor-
rectness, defects, changes, product metrics, reliability,
etc.) from the point of view of the (developer, manager,
customer, corporate perspective, etc.)

Example: Examine the effectiveness from the devel-
oper’s point of view.

Environment: The environment consists of the fol-
lowing: process factors, people factors, problem factors,
methods, tools, constraints, etc.

Example: The product is an operating system that must
fit on a PC, etc.

® Guidelines for Product-Related Questions:

For each product under study there are three major
subgoals that need to be addressed: 1) definition of the
product, 2) definition of the quality perspectives of inter-
est, and 3) feedback related to the quality perspectives of
interest.

Definition of the product includes questions related to
physical attributes (a quantitative characterization of the
product in terms of physical attributes such as size, com-

762 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14. NO. 6, JUNE 1988

plexity, etc.), cosr (a quantitative characterization of the
resources expended related to this product in terms of ef-
fort, computer time, etc.), changes and defects (a quan-
titative characterization of the errors, faults, failures, ad-
aptations, and enhancements related to this product), and
context {a quantitative characterization of the customer
community using this product and their operational pro-
files).

Qualitv perspectives of interest includes, for each
quality perspective of interest (e.g., reliability, user friend-
liness), questions related to the major model(s) used (a
quantitative specification of the quality perspective of in-
terest), the validity of the model for the particular envi-
ronment (an analysis of the appropriateness of the model
for the particular project environment), the validity of the
data collected (an analysis of the quality of data), the
model effectiveness (a quantitative characterization of the
quality of the results produced according to this model),
and a substantiation of the model (a discussion of whether
the results are reasonable from various perspectives).

Feedback includes questions related to improving the
product relative to the quality perspective of interest (a
quantitative characterization of the product quality, major
problems regarding the quality perspective of interest. and
* suggestions for improvement during the ongoing project
as well as during future projects).

o Guidelines for Process-Related Questions

For each process under study, there are three major
subgoals that need to be addressed: 1) definition of the
process. 2) definition of the quality perspectives of inter-
est, and 3) feedback from using this process relative to
the quality perspective of interest.

Definition of the process includes questions related to
the quality of use (a quantitative characterization of the
process and an assessment of how well it is performed),
and the domain of use (a quantitative characterization of
the object to which the process is applied and an analysis
of the process performer’s knowledge concering this ob-
ject).

Qualiry perspectives of interest foliows a pattern sim-
ilar to the corresponding product-oriented subgoal includ-
ing, for each quality perspective of interest (e.g., reduc-
tion of defects. cost effectiveness), questions related to
the major model(s) used, and validity of the model for the
particular environment, the validity of the data collected,
the model effectiveness and the substantiation of the
model).

Feedback follows a pattern similar to the correspond-
ing product-oriented subgoal.

e Guidelines for Metrics, Data Collection, and
Interpretation:

The choice of metrics is determined by the quantifiable
questions. The guidelines for questions acknowledge the
need for generally more than one metric (principle M6),
for objective and subjective metrics (principle M5), and
for associating interpretations with metrics (principle
M13). The actual GQM models generated from these tem-

plates and guidelines will differ from project to project
and organization to organization (principle M6). This re-
flects their being tailored for the different needs in differ-
ent projects and organizations (principle M4). Depending
on the type of each metric, we choose the appropriate me-
chansims for data collection and validation (principle
M11). As goals, questions and metrics provide for tract-
ability of the (top-down) definitional quantification pro-
cess, they also provide for the interpretation context (bot-
tom-up). This integration of definition with interpretation
allows for the interpretation process to be tailored to the
specific needs of an environment (principle M8).

3) Improvement-Oriented Process Model: The
TAME software engineering process model is an instan-
tiation of the improvement paradigm. The GQM para-
digm provides the necessary integration of the individual
components of this model. The TAME software engi-
neering process model explicitly includes components for
(C1) the characterization of the current status of a project
environment, (C2) the planning for improvement inte-
grated into the execution of projects, (C3) the execution
of the construction and analysis of projects according to
the project plans, and (C4) the recording of experience
into an experience base. The learning and feedback mech-
anism (C5) is distributed throughout the model within and
across the components as information flows from one
component to another. Each of these tasks must be dealt
with from a constructive and analytic perspective. Fig. 1
contains a graphical representation of the improvement-
oriented TAME process model. The relationships (arcs)
among process model components in Fig. 1 represent in-
formation flow.

(C1) Characterization of the current environment is re-
quired to understand the various factors that influence the
current project environment. This task is important in or-
der to define a starting point for improvement. Without
knowing where we are, we will not be able to judge
whether we are improving in our present project. We dis-
tinguish between the constructive and analytic aspects of
the characterization task to emphasize that we not only
state the environmental factors but analyze them to the de-
gree possible based upon data and other forms of infor-
mation from prior projects. This characterization task
needs to be formalized.

(C2) Planning is required to understand the project
goals, execution needs, and project focus for learning and
feedback. This task is essential for disciplined software
project execution (i.e., executing projects according to
precise specifications of processes and products). It pro-
vides the basis for improvement relative to the current sta-
tus determined during characterization. In the planning
task, we distinguish between the constructive and analytic
as well as the ““what’’ and ‘‘how’’ aspects of planning.
Based upon the GQM paradigm all these aspects are highly
interdependent and performed as a single task. The de-
velopment of quantitatively analyzable goals is an itera-
tive process. However, we formulate the four planning as-

BASILI AND ROMBACH: THE TAME PROJECT 763
C2:
ﬂ{k:‘ C1: L nnd Cs3:
Pperspectiv characterising C2.1: what C2.2: how executing
con_. C2.2.1 Cs.a
plan
struc— > =+ >
for construct
tive characterise | set Nl construction
2+ 2 v
ir t > oals lan
ana— eid for analyse
-
analysis
lytie
C2.2.2 Cs.2
A A A A
Y y y v
ol 2 Ly v Y v
S LR PRyl pup O U SRR A >

FEEDBACK LOOPS FOR FUTURE PROJECTS

C4: EXPERIENCE BASE

Fig. 1. The improvement-oriented TAME software process model.

pects as four separate components to emphasize the
differences between creating plans for development and
making those plans analyzable. as well as between stating
what it is you want to accomplish and stating how you
plan to tailor the processes and metrics to do it.

(C2.1) ““What”’ Planning deals with choosing, as-
signing priorities, and operationally defining, to the de-
gree possible, the project goals from the constructive and
analytic perspectives. The actual goal setting is an instan-
tiation of the front-end of the GQM paradigm (the tem-
plates/guidelines for goal definition). The constructive
perspective addresses the definition of project goals such
as on-time delivery, the appropriate functionality to sat-
isfy the user, and the analysis of the execution processes
we are applying. Some of these goals might be stated as
improvement goals over the current state-of-the-practice
as characterized in component C1. These goals should be
prioritized and operationally defined to the extent possible
without having chosen the particular construction models,
methods and tools yet. The analytic perspective addresses
analysis procedures for monitoring and controlling
whether the goals are met. This analytic goal perspective
should prescribe the necessary learning and feedback
paths. It should be operationally defined to the extent al-
lowed by the degree of precision of the constructive goal
perspective.

(C2.2) *““How’’ Planning is based upon the results
from the *‘what’’ planning (providing for the purpose and
perspective of a goal definition according to the GQM
paradigm front-end) and the characterization of the envi-
ronment (providing for the environment part of a goal def-
inition according to the GQM paradigm front-end). The
““how’” planning involves the choice of an appropriately
tailored execution model, methods and tools that permit
the building of the system in such a way that we can ana-
lyze whether we are achieving our stated goals. The par-
ticular choice of construction processes. methods and tools

(component C2.2.1) goes hand in hand with fine-tuning
the analysis procedures derived during the analytic per-
spective of the ‘‘what’’ planning (component C2.2.2).

(C2.2.1) Planning for construction includes choos-
ing the appropriate execution model, methods and tools
to fulfill the project goals. It should be clear that effective
planning for construction depends on well-defined project
goals from both the constructive and analytic perspective
(component C2.1).

(C2.2.2) Planning for analysis addresses the fine-
tuning of the operational definition of the analytic goal
perspective (derived as part of component C2.1) towards
the specific choices made during planning for construc-
tion (C2.2.1). The actual planning for analysis is an in-
stantiation of the back-end of the GQM paradigm; details
need to be filled in (e.g., quantifiable questions, metrics)
based upon the specific methods and tools chosen.

(C3) Execution must integrate the construction (com-
ponent C3.1) with the analysis (component C3.2). Anal-
ysis (including measurement) cannot be an add-on but
must be part of the execution process and drive the con-
struction. The execution plans derived during the plan-
ning task are supposed to provide for the required inte-
gration of construction and analysis.

(C4) The Experience Base includes the entire body of
experience that is actively available to the project. We can
characterize this experience according to the following di-
mensions: a) the degree of precision/detail, and b) the de-
gree to which it is tailored to meet the specific needs of
the project (context). The precision/detail dimension in-
volves the level of detail of the experimental design and
the level and quality of data collected. On one end of the
spectrum we have detailed objective quantitative data that
allows us to build mathematically tractable models. On
the other end of the spectrum we have interviews and
qualitative information that provide guidelines and ‘‘les-
sons learned documents’’, and permit the better formu-

764 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 6. JUNE 1988

lation of goals and questions. The level of precision and
detail affects our level of confidence in the results of the
experiment as well as the cost of the data collection pro-
cess. Clearly priorities play an important role here. The
context dimension involves whether the focus is to learn
about the specific project, projects within a specific ap-
plication domain or general truths about the software pro-
cess or product (requires the incorporation of formalized
experience from prior projects into the experience base).
Movement across the context dimension assumes an abil-
ity to generalize experience to a broader context than the
one studied, or to tailor experience to a specific project.
The better this experience is packaged, the better our un-
derstanding of the environment. Maintaining a body of
experience acquired during a number of projects is one of
the prerequisites for learning and feedback across envi-
ronments.

(C5) Learning and Feedback are integrated into the
TAME process model in various ways. They are based
upon the experimental model for learning consisting of a
set of steps, starting with focused objectives, which are
turned into specific hypotheses, followed by running ex-
periments to validate the hypotheses in the appropriate en-
vironment. The model is iterative; as we learn from ex-
perimentation, we are better able to state our focused
objectives and we change and refine our hypotheses.

This model of learning is incorporated into the GQM
paradigm where the focused objectives are expressed as
goals, the hypotheses are expressed as questions written
to the degree of formalism required, and the experimental
environment is the project, a set of projects in the same
domain, or a corporation representing a general environ-
ment. Clearly the GQM paradigm is also iterative.

The feedback process helps generate the goals to influ-
ence one or more of the components in the process model,
e.g., the characterization of the environment, or the anal-
ysis of the construction processes or products. The level
of confidence we have in feeding back the experience to
a project or a corporate environment depends upon the
precision/detail level of the experience base (component
C4) and the generality of the experimental environment
in which it was gathered.

The learning and feedback process appears in the model
as the integration of all the components and their inter-
actions as they are driven by the improvement and GQM
paradigms. The feedback process can be channeled to the
various components of the current project and to the cor-
porate experience base for use in future projects.

Most traditional software engineering process models
address only a subset of the individual components of this
model; in many cases they cover just the constructive as-
pects of characterization (component C1), ‘‘how’’ plan-
ning (component C2.2.1), and execution (component
C3.1). More recently developed software engineering
process models address the constructive aspect of execu-
tion (component C3.1) in more sophisticated ways (e.g.,
new process models [24],[30], [49], combhine various pro-
cess dimensions such as technical, managerial, contrac-

tual [36], or provide more flexibility as far as the use of
methods and tools is concerned, for example via the au-
tomated generation of tools [45], [63]), or they add meth-
ods and tools for choosing the analytical processes, meth-
ods, and tools (component C3.2.2) as well as actually
performing analysis (component C3.2) [52], [59]. How-
ever, all these process models have in common the lack
of completely integrating all their individual components
in a systematic way that would permit sound learning and
feedback for the purpose of project control and improve-
ment of corporate experience.

III. AUTOMATED SuppORT THROUGH ISEEs: THE
TAME SyYSTEM

The goal of an Integrated Software Engineering Envi-
ronment (ISEE) is to effectively support the improvement-
oriented software engineering process model described in
Section [I-B-3. An ISEE must support all the model com-
ponents (characterization, planning, execution, and the ex-
perience base), all the local interactions between model
components, the integration, and formalization of the
GQM paradigm, and the necessary transitions between the
context and precision/detail dimension boundaries in the
experience base. Supporting the transitions along the ex-
perience base dimensions is needed in order to allow for
sound learning and feedback as outlined in Section 1I-B-3
(component C5).

The TAME system will automate as many of the com-
ponents, interactions between components and supporting
mechanisms of the TAME process model as possible. The
TAME system development activities will concentrate on
all but the construction component (component C3.1) with
the eventual goal of interfacing with constructive SEEs.
In this section we present the requirements and the initial
architecture for the TAME system.

A. Requirements

The requirements for the TAME system can be derived
from Section II-B-3 in a natural way. These requirements
can be divided into external requirements (defined by and
of obvious interest to the TAME system user) and internal
requirements (defined by the TAME design team and re-
quired to support the external requirements properly).

The first five (external) requirements include support
for the characterization and planning components of the
TAME model by automating an instantiation of the GQM
paradigm, for the analysis component by automating data
collection, data validation and analysis, and the learning
and feedback component by automating interpretation and
organizational learning. We will list for each external
TAME system requirement the TAME process model
components of Section II-B-3 from which it has been de-
rived.

External TAME requirements:

(R1) A mechanism for defining the constructive and
analytic aspects of project goals in an operational and
quantifiable way (derived from components Cl1, C2.1,
C2.2.2, C3.2).

We use the GQM paradigm and its templates for defin-

BASILI AND ROMBACH: THE TAME PROJECT

ing goals operationally and refining them into quantifiable
questions and metrics. The selection of the appropriate
GQM model and its tailoring needs to be supported. The
user will either select an existing model or generate a new
one. A new model can be generated from scratch or by
reusing pieces of existing models. The degree to which
the selection, generation, and reuse tasks can be sup-
ported automatically depends largely on the degree to
which the GQM paradigm and its templates can be for-
malized. The user needs to be supported in defining his/
her specific goals according to the goal definition tem-
plate. Based on each goal definition, the TAME system
will search for a model in the experience base. If no ap-
propriate model exists, the user will be guided in devel-
oping one. Based on the tractability of goals into subgoals
and questions the TAME system will identify reusable
pieces of existing models and compose as much of an ini-
tial model as possible. This initial model will be com-
pleted with user interaction. For example, if a user wants
to develop a model for assessing a system test method
used in a particular environment, the system might com-
pose an initial model by reusing pieces from a model as-
sessing a different test method in the same environment,
and from a model for assessing the same system test
method in a different environment. A complete GQM
model includes rules for interpretation of metrics and
guidelines for collecting the prescribed data. The TAME
system will automatically generate as much of this infor-
mation as possible.

(R2) The automatic and manual collection of data and
the validation of manually collected data (derived from
component C3.2).

The collection of all product-related data (e.g., lines of
code, complexity) and certain process-related data (e.g.,
number of compiler runs. number of test runs) will be
completely automated. Automation requires an interface
with construction-oriented SEEs. The collection of many
process-related data (e.g., effort, changes) and subjective
data (e.g., experience of personnel, characteristics of
methods used) cannot be automated. The schedule ac-
cording to which measurement tools are run needs to be
defined as part of the planning activity. It is possible to
collect data whenever they are needed, periodically (e.g.,
always at a particular time of the day), or whenever
changes of products occur (e.g., whenever a new product
version is entered into the experience base all the related
metrics are recomputed). All manually collected data need
to be validated. Validating whether data are within their
defined range, whether all the prescribed data are col-
lected, and whether certain integrity rules among data are
maintained will be automated. Some of the measurement
tools will be developed as part of the TAME system de-
velopment project, others will be imported. The need for
importing measurement tools will require an effective in-
terconnection mechanism (probably an interconnection
language) for integrating tools developed in different lan-
guages.

(R3) A mechanism for controlling measurement and
analysis (derived from component C3.2).

765

A GQM model is used to specify and control the exe-
cution of a particular analysis and feedback session. Ac-
cording to each GQM model, the TAME system must
trigger the execution of measurement tools for data col-
lection, the computation of all metrics and distributions
prescribed, and the application of statistical procedures.
If certain metrics or distributions cannot be computed due
to the lack of data or measurement tools, the TAME sys-
tem must inform the user.

(R4) A mechanism for interpreting analysis results in a
context and providing feedback for the improvement of
the execution model, methods and tools (derived from
components C3.2, C.5).

We use a GQM model to define the rules and context
for interpretation of data and for feedback in order to re-
fine and improve execution models, methods and tools.
The degree to which interpretation can be supported de-
pends on our understanding of the software process and
product, and the degree to which we express this under-
standing as formal rules. Today, interpretation rules exist
only for some of the aspects of interest and are only valid
within a particular project environment or organization.
However, interpretation guided by GQM models will en-
able an evolutionary learning process resulting in better
rules for interpretation in the future. The interpretation
process can be much more effective provided historical
experience is available allowing for the generation of his-
torical baselines. In this case we can at least identify
whether observations made during the current project de-
viate from past experience or not.

(R5) A mechanism for learning in an organization (de-
rived from components C4, C5).

The learning process is supported by iterating the se-
quence of defining focused goals, refining them into hy-
potheses, and running experiments. These experiments
can range from completely controlled experiments to reg-
ular project executions. In each case we apply measure-
ment and analysis procedures to project classes of inter-
est. For each of those classes, a historical experience base
needs to be established concerning the effectiveness of the
candidate execution models, methods and tools. Feed-
back from ongoing projects of the same class, the corre-
sponding execution models, methods and tools can be re-
fined and improved with respect to context and precision/
detail s that we increase our potential to improve future
projects.

The remaining seven (internal) requirements deal with
user interface management, report generation, experience
base, security and access control, configuration manage-
ment control, SEE interface and distribution issues. All
these issues are important in order to support planning,
construction, learning and feedback effectively.

Internal TAME requirements:

(R6) A homogeneous user interface.

We distinguish between the physical and logical user
interface. The physical user interface provides a menu or
command driven interface between the user and the
TAME system. Graphics and window mechansims will be

766 {EEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 6, JUNE 1988

incorporated whenever useful and possible. The logical
user interface reflects the user’s view of measurement and
analysis. Users will not be allowed to directly access data
or run measurement tools. The only way of working with
the TAME system is via a GQM model. TAME will en-
force this top-down approach to measurement via its log-
ical user interface. The acceptance of this kind of user
interface will depend on the effectiveness and ease with
which it can be used. Homogeneity is important for both
the physical and logical user interface.

(R7) An effective mechanism for presenting data, in-
formation, and knowledge.

The presentation of analysis (measurement and inter-
pretation) results via terminal or printer/plotter needs to
be supported. Reports need to be generated for different
purposes. Project managers will be interested in periodi-
cal reports reflecting the current status of their project.
High level managers will be interested in reports indicat-
ing quality and productivity trends of the organization.
The specific interest of each person needs to be defined
by one or more GQM models upon which automatic re-
port generation can be based. A laser printer and multi-
color plotter would allow the appropriate documentation
of tables, histograms, and other kinds of textual and
graphical representations.

(R8) The effective storage and retrieval of all relevant
data, information, and knowledge in an experience base.

All data, information, and knowledge required to sup-
port tailorability and tractability need to be stored in an
experience base. Such an experience base needs to store
GQM models, engineering products and measurement
data. It needs to store data derived from the current proj-
ect as well as historical data from prior projects. The ef-
fectiveness of such an experience base will be improved
for the purpose of learning and feedback if, in addition to
measurement data, interpretations from various analysis
sessions are stored. In the future, the interpretation rules
themselves will become integral part of such an experi-
ence base. The experience base should be implemented as
an abstract data type, accessible through a set of functions
and hiding the actual implementation. This latter require-
ment is especially important due to the fact that current
database technology is not suited to properly support soft-
ware engineering concepts {26]. The implementation of
the experience base as an abstract data type allows us to
use currently available database technology and substitute
more appropriate technology later as it becomes avail-
able. The ideal database would be self-adapting to the
changing needs of a project environment or an organiza-
tion. This would require a specification language for soft-
ware processes and products, and the ability to generate
database schemata from specifications written in such a
language [46].

(R9) Mechanisms allowing for the implementation of
a variety of access control and security strategies.

TAME must control the access of users to the TAME
system itself, to various system functions and to the ex-
perience base. These are typical functions of a security
system. The enforced security strategies depend on the

project organization. It is part of planning a project to
decide who needs to have access to what functions and
pieces of data, information, and knowledge. In addition
to these security functions, more sophisticated data access
control functions need to be performed. The data access
system is expected to ‘‘recommend’’ to a user who is de-
veloping a GQM model the kinds of data that might be
helpful in answering a particular question and support the
process of choosing among similar data based on avail-
ability or other criteria.

(R10) Mechanisms allowing for the implementation of
a variety of configuration management and control strat-

egies.

In the context of the TAME system we need to manage
and control three-dimensional configurations. There is
first the traditional product dimension making sure that
the various product and document versions are consistent.
In addition, each product version needs to be consistent
with its related measurement data and the GQM model
that guided those measurements. TAME must ensure that
a user always knows whether data in the experience base
is consistent with the current product version and was col-
lected and interpretated according to a particular model.
The actual configuration management and control strate-
gies will result from the project planning activity.

(R11) An interface to a construction-oriented SEE.

An interface between the TAME system (which auto-
mates all process model components except for the con-
struction component C3.1 of the TAME process model)
and some external SEE (which automates the construction
component) is necessary for three reasons: a) to enable
the TAME system to collect data (e.g., the number of
activations of a compiler, the number of test runs) directly
from the actual construction process, b) to enable the
TAME system to feed analysis results back into the on-
going construction process, and c¢) to enable the construc-
tion-oriented SEE to store/retrieve products into/from the
experience base of the TAME system. Models for appro-
priate interaction between constructive and analytic pro-
cesses need to be specified. Interfacing with construction-
oriented SEE’s poses the problem of efficiently intercon-
necting systems implemented in different languages and
running on different machines (probably with different op-
erating systems).

(R12) A structure suitable for distribution,

TAME will ultimately run on a distributed system con-
sisting of at least one mainframe computer and a number
of workstations. The mainframes are required to host the
experience base which can be assumed to be very large.
The rest of TAME might be replicated on a number of
workstations.

B. Architecture

Fig. 2 describes our current view of the TAME archi-
tecture in terms of individual architectural components and
their control flow interrelationships. The first prototype
described in Section IV concentrates on the shaded com-
ponents of Fig. 2.

We group the TAME components into five logical lev-

BASILI AND ROMBACH: THE TAME PROJECT

767

PHYSICAL
USER

Al: User Interface Management

INTERFACE

__._______________-_______# _______

A2: GQM Model Selection

Yvwvy

] » LOGICAL
v (GQM-ORIENTED)

" USER
A3: GQM Model
Generstion

1| INTERFACE

LEVEL

AB: GQM

Analysis & Feedback

ANALYSIS

8 FEEDBACK
LEVEL

A6: Measurement

MEASUREMENT

Scheduling

i LEVEL

A8: Report

Generation

A9: Data
Entry & Val

SUPPORT

Al10: TAME

LEVEL

Experience Base -

Fig. 2. The architectural design of the TAME system.

els, the physical user interface, logical user interface,
analysis and feedback, measurement and support level.
Each of these five levels consists of one or more architec-
tural components:

¢ The Physical User Interface Level consists of one
component:

(A1) The User Interface Management component
implements the physical user interface requirement R6. It
provides a choice of menu or command driven access and
supports a window-oriented screen layout.

¢ The Logical (GQM-Oriented) User Interface Level
consists of two components:

(A2) The GQM Model Selection component imple-
ments the homogeneity requirement of the logical user in-
terface (R6). It guarantees that no access to the analysis
and feedback, measurement, or support level is possible
without stating the purpose for access in terms of a spe-
cific GQM model.

(A3) The GQM Model Generation component imple-
ments requirement R1 regarding the operational and
quantifiable definition of GQM models either from scratch
or by modifying existing models.

e The Analysis and Feedback Level consists of two
components:

(A4.1) This first portion of the Construction Inter-
face component implements the feedback interface be-
tween the TAME system and construction-oriented SEEs
(part b) of requirement R11).

(AS) The GQM Analysis and Feedback component
implements requirement R3 regarding execution and con-
trol of an analysis and feedback session, interpretation of

the analysis results, and proper feedback. All these activ-
ities are done in the context of a GQM model created by
A3. The GQM Analysis and Feedback component needs
to have access to the specific authorizations of the user in
order to know which analysis functions this user can per-
form. The GQM Analysis and Feedback component also
provides analysis functions, for example, telling the user
whether certain metrics can be computed based upon the
data currently available in the experience base. This anal-
ysis feature of the subsystem is used for setting and op-
erationally defining goals, questions, and metrics, as well
as actually performing analyses according to those previ-
ously established goals, questions, and metrics.

¢ The Measurement Level consists of three compo-
nents:

(A4.2) This second portion of the Construction In-
terface component implements the measurement interface
between the TAME system and SEE’s (part a) of require-
ment R11) and the SEE’s access to the experience base of
the TAME system (part c) of requirement R11).

(A6) The Measurement Scheduling component im-
plements requirement R2 regarding the definition (and ex-
ecution) of automated data collection strategies. Such
strategies for when to collect data via the measurement
tools may range from collecting data whenever they are
needed for an analysis and feedback session (on-line) to
collecting them periodically during low-load times and
storing them in the experience base (off-line).

(A7) The Measurement Tools component imple-
ments requirement R2 regarding automated data collec-
tion. The component needs to be open-ended in order to

768 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 6, JUNE 1988

allow the inclusion ot new and different measurement tools
as needed.
* The Support Level consists of three components:

(A8) The Report Generation component implements
requirement R7 regarding the production of all kinds of
reports. '

(A9) The Data Entry and Validation component im-
plements requirement R2 regarding the entering of man-
ually collected data and their validation. Validated data
are stored in the experience base component.

(A10) The Experience Base component implements
requirement R8 regarding the effective storage and re-
trieval of all relevant data, information and knowledge.
This includes all kinds of products, analytical data (e.g.,
measurement data, interpretations), and analysis plans
(GQM models). This component provides the infrastruc-
ture for the operation of all other components of the
TAME process model and the necessary interactions
among them. The experience base will also provide mech-
anisms supporting the learning and feedback tasks. These
mechanisms include the proper packaging of experience
along the context and precision/detail dimensions.

In addition, there exist two orthogonal components
which for simplicity reasons are not reflected in Fig. 2:

(A11) The Data Access Control and Security com-
ponent(s) implement requirement R9. There may exist a
number of subcomponents distributed across the logical
architectural levels. They will validate user access to the
TAME system itself and to various functions at the user
interface level. They will also control access to the proj-
ect experience through both the measurement tools and
the experience base.

(A12) The Configuration Management and Control
component implements requirement R10. This compo-
nent can be viewed as part of the interface to the experi-
ence base level. Data can only be entered into or retrieved
from the experience base under configuration manage-
ment control.

IV. FirsT TAME PROTOTYE

The first in a series of prototypes is currently being de-
veloped for supporting measurement in Ada projects [15].
This first prototype will implement only a subset of the
requirements stated in Section III-A because of a) yet un-
solved problems that require research, b) solutions that
require more formalization, and c¢) problems with inte-
grating the individual architectural components into a
consistent whole. Examples of unsolved problems requir-
ing futher research are the appropriate packaging of the
experience along the context and precision/detail dimen-
sion and expert system support for interpretation pur-
poses. Examples of solutions requiring more formaliza-
tion are the GQM templates and the designing of a
software engineering experience base. Examples of inte-
gration problems are the embedding of feedback loops into
the construction process, and the appropriate utilization
of data access control and configuration management con-

trol mechanisms. At this time, the prototype exists in
pieces that have not been fully integrated together as well
as partially implemented pieces.

In this section, we discuss for each of the architectural
components of this TAME prototype as many of the fol-
lowing issues as are applicable: a) the particular approach
chosen for the first prototype, b) experience with this ap-
proach, c) the current and planned status of implementa-
tion (automation) of the initial approach in the first TAME
system prototype, and d) experiences with using the com-
ponent:

(A1) The User Interface Management component is
supposed to provide the physical user interface for ac-
cessing all TAME system functions, with the flexibility
of choosing between menu and command driven modes
and different window layouts. These issues are reasonably
well understood by the SEE community. The first TAME
prototype implementation will be menu-oriented and
based upon the ‘X’ window mechanism. A primitive ver-
sion is currently running. This component is currently not
very high on our priority list. We expect to import a more
sophisticated user interface management component at
some later time or leave it completely to parties interested
in productizing our prototype system.

(A2) The GQM Model Selection component is sup-
posed to force the TAME user to parameterize each
TAME session by first stating the objective of the session
in the form of an already existing GQM model or request-
ing the creation of a new GQM model. The need for this
restriction has been derived from the experience that data
is frequently misused if it is accessible without a clear
goal. The first prototype implementation does not enforce
this requirement strictly. The current character of the first
prototype as a research vehicle demands more flexibility.
There is no question that this component needs to be im-
plemented before the prototype leaves the research envi-
ronment.

(A3) The GQM Model Generation component is sup-
posed to allow the creation of specific GQM models either
from scratch or by modifying existing ones. We have pro-
vided a set of templates and guidelines (Section II-B-2).
We have been quite successful in the use of the templates
and guidelines for defining goals, questions and metrics.
There are a large number of organizations and environ-
ments in which the model has been applied to specify what
data must be collected to evaluate various aspects of the
process and product, e.g., NASA/GSFC, Burroughs,
AT&T, IBM, Motorola. The application of the GQM par-
adigm at Hewlett Packard has shown that the templates
can be used successfully without our guidance. Several of
these experiences have been written up in the literature
[4], [16], [17], [39], (48], [56], [60], [61]. We have been
less successful in automating the process so that it ties
into the experience base. As long as we know the goals
and questions a priori, the appropriate data can be iso-
lated and collected based upon the GQM paradigm. The
first TAME prototype implementation is limited to sup-

BASILI AND ROMBACH: THE TAME PROJECT

port the generation of new models and the modificaton of
existing models using an editor enforcing the templates
and guidelines. We need to further formalize the tem-
plates and guidelines and provide traceability between
goals and questions. Formalization of the templates and
providing traceability is our most important research is-
sue. In the long run we might consider using artificial in-
telligence planning techniques.

(A4.1 and A4.2) The Construction Interface compo-
nent is supposed to support all interactions between a SEE
(which supports the construction component of the TAME
process model) and the TAME system. The model in Fig.
1 implies that interactions in both directions are required.
We have gained experience in manually measuring the
construction process by monitoring the execution of a va-
riety of techniques (e.g., code reading [57], testing [20],
and CLEANROOM development [61]) in various envi-
ronments including the SEL [4], [48]. We have also
learned how analysis results can be fed back into the on-
going construction process as well as into corporate ex-
perience {4], [48]. Architectural component A4.1 is not
part of this first TAME prototype. The first prototype im-
plementation of A4.2 is limited to allowing for the inte-
gration of (or access to) external product libraries. This
minimal interface is needed to have access to the objects
for measurement. No interface for the on-line measure-
ment of ongoing construction processes is provided yet.

(A5) The GQM Analysis and Feedback component is
supposed to perform analysis according to a specific GQM
model. We have gained a lot of experience in evaluating
various kinds of experiments and case studies. We have
been successful in collecting the appropriate data by trac-
ing GQM models top-down. We have been less successful
in providing formal interpretation rules allowing for the
bottom-up interpretation of the collected data. One auto-
mated approach to providing interpretation and feedback
is through expert systems. ARROWSMITH-P provides
interpretations of software project data to managers [44];
it has been tested in the SEL/NASA environment. The
first prototype TAME implementation triggers the collec-
tion of prescribed data (top-down) and presents it to the
user for interpretation. The user-provided interpretations
will be recorded (via a knowledge acquisition system) in
order to accumulate the necessary knowledge that might
lead us to identifying interpretation rules in the future.

(A6) The Measurement Scheduling component is sup-
posed to allow the TAME user to define a strategy for
actually collecting data by running the measurement tools.
Choosing the most appropriate of many possible strate-
gies (requirements Section III-A) might depend on the re-
sponse times expected from the TAME system or the stor-
age capacity of the experience base. Our experience with
this issue is limited because most of our analyses were
human scheduled as needed [4], [48]. This component will
not be implemented as part of the first prototype. In this
prototype, the TAME user will trigger the execution of
measurement activities explicitly (which can, of course,

769

be viewed as a minimal implementation supporting a hu-
man scheduling strategy).

(A7) The Measurement Tools component is supposed
to allow the collection of all kinds of relevant process and
product data. We have been successful in generating tools
to gather data automatically and have learned from the
application of these tools in different environments.
Within NASA, for example, we have used a coverage tool
to analyze the impact of test plans on the consistency of
acceptance test coverage with operational use coverage
[53]. We have used a data bindings tool to analyze the
structural consistency of implemented systems to their de-
sign [41], and studied the relationship between fauits and
hierarchical structure as measured by the data bindings
tool [60]. We have been able to characterize classes of
products based upon their syntactic structure [35]. We
have not, however, had much experience in automatically
collecting process data. The first prototype TAME imple-
mentation consists of measurement tools based on the
above three. The first tool captures all kinds of basic Ada
source code information such as lines of code and struc-
tural complexity metrics [35], the second tool computes
Ada data binding metrics, and the third tools captures dy-
namic information such as test coverage metrics [65]. One
lesson learned has been that the development of measure-
ment tools for Ada is very often much more than just a
reimplementation of similar tools for other languages.
This is due to the very different Ada language concepts.
Furthermore, we have recognized the importance of hav-
ing an intermediate representation level allowing for a
language independent representation of software product
and process aspects. The advantage of such an approach
will be that this intermediate representation needs to be
generated only once per product or process. All the mea-
surement tools can run on this intermediate representa-
tion. This will not only make the actual measurement pro-
cess less time-consuming but provide a basis for reusing
the actual measurement tools to some extent across dif-
ferent language environments. Only the tool generating
the intermediate representation needs to be rebuilt for each
new implementation language or TAME host enviroment.

(A8) The Report Generator component is supposed to
allow the TAME user to produce a variety of reports. The
statistics and business communities have commonly ac-
cepted approaches for presenting data and interpretations
effectively (e.g., histograms). The first TAME prototype
implementation does not provide a separate experience
base reporting facility. Responsibility for reporting is at-
tached to each individual prototype component; €.g., the
GQM Model Generation component provides reports re-
garding the models, each measurement tool reports on its
own measurement data.

(A9) The Data Entry and Validation component is sup-
posed to allow the TAME user to enter all kinds of man-
ually collected data and validate them. Because of the
changing needs for measurement, this component must al-
low for the definition of new (or modification of existing)

770 {EEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 6, JUNE 1988

data collection forms as well as related validation (integ-
rity) rules. If possible, the experience base should be ca-
pable of adapting to new needs based upon new form def-
initions. We have had lots of experience in designing
forms and validations rules, using them, and learning
about the complicated issues of deriving validation rules
[4], [48]. The first prototype implementation will allow
the TAME user to input off-line collected measurement
data and validate them based upon a fixed and predefined
set of data collection forms [currently in use in NASA’s
Software Engineering Laboratory (SEL)]. This compo-
nent is designed but not yet completely implemented. The
practical use of the TAME prototype requires that this
component provide the flexibility for defining and ac-
cepting new form layouts. One research issue is identi-
fying the easiest way to define data collection forms in
terms of a grammar that could be used to generate the
corresponding screen layout and experience base struc-
ture.

(A10) The Experience Base component allows for ef-
fective storage and retrieval of all relevant experience
ranging from products and process pians (e.g., analysis
plans in the form of GQM models) to measurement data
and interpretations. The experience base needs to mirror
the project environment. Here we are relying on the ex-
perience of several faculty members of the database group
at the University of Maryland. It has been recognized that
current database technology is not sufficient, for several
reasons, to truly mirror the needs of software engineering
projects [26]. The first prototype TAME implementation
is built on top of a relational database management sys-
tem. A first database schema [46] modeling products as
well as measurement data has been implemented. We are
currently adding GQM models to the schema. The expe-
riences with this first prototype show that the amount of
experience stored and its degree of formalism (mostly
data) is not yet sufficient. We need to better package that
data in order to create pieces of information or knowl-
edge. The GQM paradigm provides a specification of what
data needs to be packaged. However, without more for-
mal interpretation rules, the details of packaging cannot
be formalized. In the long run, we might include expert
system technology. We have also recognized the need for
a number of built-in GQM models that can either be reused
without modification or guide the TAME user during the
process of creating new GQM models.

(A1l) The Data Access Control and Security compo-
nent is supposed to guarantee that only authorized users
can access the TAME system and that each user can only
access a predefined window of the experience base. The
first prototype implements this component only as far as
user access to the entire system is concerned.

(A12) The Configuration Management and Control
component is supposed to guarantee consistency between
the objects of measurement (products and processes), the
plans for measurement (GQM models), the data collected
from the objects according to these plans, and the at-

tached interpretations. This component will not be imple-
mented in the first prototype.

The integration of all these architectural components is
incomplete. At this point in time we have integrated the
first versions of the experience base, three measurement
tools, a limited version of the GQM analysis and feedback
component, the GQM generation component, and the user
interface management component. Many of the UNIX®
tools (e.g., editors, print facilities) have been integrated
into the first prototype TAME system to compensate for
yet missing components. This subset of the first prototype
is running on a network of SUN-3’s under UNIX. It is
implemented in Ada and C.

This first prototype enables the user to generate GQM
models using a structured editor. Existing models can be
selected by using a unique model name. Support for se-
lecting models based on goal definitions or for reusing
existing models for the purpose of generating new models
is offered, but the refinement of goals into questions and
metrics relies on human intervention. Analysis and feed-
back sessions can be run according to existing GQM
models. Only minimal support for interpretation is pro-
vided (e.g., histograms of data). Measurement data are
presented to the user according to the underlying model
for his/her interpretation. Results can be documented on
a line printer. The initial set of measurement tools allows
only the computation of a limited number of Ada-source-
code-oriented static and dynamic metrics. Similar tools
might be used in the case of Fortran source code [33].

V. SUMMARY AND CONCLUSIONS

We have presented a set of software engineering and
measurement principles which we have learned during a
dozen years of analyzing software engineering processes
and products. These principles have led us to recognize
the need for software engineering process models that in-
tegrate sound planning and analysis into the construction
process.

In order to achieve this integration the software engi-
neering process needs to be tailorable and tractable. We
need the ability to tailor the execution process, methods
and tools to specific project needs in a way that permits
maximum reuse of prior experience. We need to control
the process and product because of the flexibility required
in performing such a focused development. We also need
as much automated support as possible. Thus an inte-
grated software engineering environment needs to support
all of these issues.

In the TAME project we have developed an improve-
ment-oriented (integrated) process model. It stresses a)
the characterization of the current status of a project en-
vironment, b) the planning for improvement integrated
into software projects, and c) the execution of the project
according to the prescribed project plans. Each of these

®UNIX is a registered trademark of AT&T Bell Laboratories.

BASILI AND ROMBACH: THE TAME PROJECT

tasks must be dealt with from a constructive and analytic
perspective.

To integrate the constructive and analytic aspects of
software development, we have used the GQM paradigm.
It provides a mechanism for formalizing the characteriza-
tion and planning tasks, controlling and improving proj-
ects based on quantitative analysis, learning in a deeper
and more systematic way about the software process and
product, and feeding back the appropriate experience to
current and future projects.

The effectiveness of the TAME process model depends
heavily on appropriate automated support by an ISEE. The
TAME system is an instantiation of the TAME process
model into an ISEE; it is aimed at supporting all aspects
of characterization, planning, analysis, learning, and
feedback according to the TAME process model. In ad-
dition, it formalizes the feedback and learning mecha-
nisms by supporting the synthesis of project experience,
the formalization of its representation, and its tailoring
towards specific project needs. It does this by supporting
goal development into measurement via templates and
guidelines, providing analysis of the development and
maintenance processes, and creating and using experience
bases (ranging from databases of historical data to knowl-
edge bases that incorporate experience from prior proj-
ects).

We discussed a limited prototype of the TAME system,
which has been developed as the first of a series of pro-
totypes that will be built using an iterative enhancement
model. The limitations of this prototype fall into two cat-
egories, limitations of the technology and the need to bet-
ter formalize the model so that it can be automated.

The short range (1-3 years) goal for the TAME system
is to build the analysis environment. The mid-range goal
(3-5 years) is to integrate the system into one or more
existing or future development or maintenance environ-
ments. The long range goal (5-8 years) is to tailor those
environments for specific organizations and projects.

The TAME project is ambitious. It is assumed it will
evolve over time and that we will learn a great deal from
formalizing the various aspects of the TAME project as
well as integrating the various paradigms. Research is
needed in many areas before the idealized TAME system
can be built. Major areas of study include measurement,
databases, artificial intelligence, and systems. Specific
activities needed to support TAME include: more for-
malization of the GQM paradigm, the definition of better
models for various quality and productivity aspects,
mechanisms for better formalizing the reuse and tailoring
of project experience, the interpretation of metrics with
respect to goals, interconnection languages, language in-
dependent representation of software, access control in
general and security in particular, software engineering
database definition, configuration management and con-
trol, and distributed system architecture. We are inter-
ested in the role of further researching the ideas and prin-
ciples of the TAME project. We will build a series of

771

evolving prototypes of the system in order to learn and
test out ideas.

ACKNOWLEDGMENT

The authors thank all their students for many helpful
suggestions. We especially acknowledge the many con-
tributions to the TAME project and, thereby indirectly to
this paper, by J. Bailey, C. Brophy, M. Daskalantonakis,
A. Delis, D. Doubleday, F. Y. Farhat, R. Jeffery, E. E.
Katz, A. Kouchakdjian, L. Mark, K. Reed, Y. Rong, T.
Sunazuka, P. D. Stotts, B. Swain, A. J. Tumer, B. Ulery,
S. Wang, and L. Wu. We thank the guest editors and ex-
ternal reviewers for their constructive comments.

REFERENCES

f1] W. Agresti, **SEL Ada experiment: Status and design experience,”’
in Proc. Eleventh Annu. Software Engineering Workshop, NASA
Goddard Space Flight Center, Greenbelt, MD, Dec. 1986.

{2] J. Bailey and V. R. Basili, ‘A meta-model for software development
resource expenditures.”” in Proc. Fifth Int. Conf. Software Engineer-
ing, San Diego, CA, Mar. 1981, pp. 107-116.

[3] V. R. Basili, '*Quantitative evaluation of software engineering meth-

odology,’’in Proc. First Pan Pacific Computer Conf., Melbourne,

Australia, Sept. 1985; also available as Tech. Rep. TR-1519, Dep.

Comput. Sci., Univ. Maryland, College Park. July 1985.

V. R. Basili, ‘*Can we measure software technology: Lessons learned

from 8 years of trying,’” in Proc. Tenth Annu. Software Engineering

Workshop, NASA Goddard Space Flight Center, Greenbelt, MD, Dec.

198S.

[S] —, ‘‘Evaluating software characteristics: Assessement of software
measures in the Software Engineering Laboratory,”’ in Proc. Sixth
Annu. Software Engineering Workshop, NASA Goddard Space Flight
Center, Greenbelt, MD, 1981.

{6] V. R. Basili and J. Beane, ‘‘Can the Parr curve help with the man-
power distribution and resource estimation problems,’" J. Syst. Sofi-
ware, vol. 2, no. 1, pp. 59-69, 1981.

[7] V. R. Basili and K. Freburger, ‘‘Programming measurement and es-
timation in the Software Engineering Laboratory,”’ J. Syst. Sofrware,
vol. 2, no. 1, pp. 47-57, 1981.

{8] V. R. Basili and D. H. Hutchens, ‘*An empirical study of a syntactic
measure family,”’ I[EEE Trans. Software Eng., vol. SE-9, no. 11, pp.
664-672, Nov. 1983.

[9] V. R. Basili and E. E. Katz, ‘‘Measures of interest in an Ada devel-
opment,”’ in Proc. IEEE Comput. Soc. Workshop Software Engi-
neering Technology Transfer, Miami. FL, Apr. 1983, pp. 22-29.

{10] V. R. Basili, E. E. Katz, N. M. Panlilio-Yap, C. Loggia Ramsey,
and S. Chang, ‘‘Characterization of an Ada software development,””
Computer, pp. 53-65, Sept. 1985.

[11] V. R. Basili and C. Loggia Ramsey, **ARROWSMITH-P: A proto-
type expert system for software engineering management,”’ in Proc.
IEEE Symp. Expert Systems in Government, Oct. 23-25, 1985, pp.
252-264.

[12] V. R. Basili and N. M. Panlilio-Yap, *‘Finding relationships between
effort and other variables in the SEL.'" in Proc. IEEE COMPSAC,
Oct. 1985.

[13] V. R. Basili and B. Perricone, ‘‘Software errrors and complexity: An
empirical investigation,”” ACM, Commun., vol. 27, no. 1, pp. 45~
52, Jan. 1984.

[14] V. R. Basili and R. Reiter, Jr., “‘A controlled experiment quantita-
tively comparing software development approaches,”’ IEEE Trans.
Software Eng., vol. SE-7, no. 5, pp. 299-320, May 1981.

{15] V. R. Basili and H. D. Rombach, ‘‘TAME: Tailoring an Ada mea-
surement environment,”” in Proc. Joint Ada Conf., Arlington, VA,
Mar. 16-19, 1987, pp. 318-325. ‘

{16] —, “‘Tailoring the software process to project goals and environ-
ments,”’ in Proc. Ninth Int. Conf. Software Engineering, Monterey,
CA, Mar. 30-Apr. 2, 1987, pp. 345-357.

[17] —. *“TAME: Integrating measurement into software environ-
ments,”’ Dep. Comput. Sci., Univ. Maryland, College Park, Tech.
Rep. TR-1764 (TAME-TR-1-1987), June 1987.

4

—

~1
3
[

(18]

(19]

[20]

[21]

[’V\

(23]

(24}

{25

[28]
{29
{301

[31]

(32]

[33

[34]

{36]

(37

(391
(401

[41]

(42]

[43]

[44]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL.

—. “Software reuse: A framework.'" in Proc. Tenth Minnowbrook
Workshop Software Reuse, Blue Mountain Lake. NY, Aug. 1987.
V. R. Basili and R. W. Selby, Jr., “*Data collection and analysis in
software research and management,’” in Proc. Amer. Statist. Ass. and
Biomeasure Soc. Joint Statistical Meetings, Philadelphia. PA, Aug.
13-16. 1984.

—. "Comparing the effectiveness of software testing strategies,”
IEEE Trans. Software Eng., vol. SE-13, no. 12, pp. 1278-1296, Dec.
1987.

——. “*Calculation and use of an environment's characteristic soft-
ware metric set,”” in Proc. Eighth Ini. Conf. Software Engineering,
London, England, Aug. 1985.

V. R. Basili, R. W. Selby, and D. H. Hutchens, “*Experimentation
in software engineering,”” IEEE Trans. Software Eng., vol. SE-12,
no. 7. pp. 733-743, July 1986.

V. R. Basili, R. W. Selby, and T.-Y. Phillips, **Metric analysis and
data validation across Fortran projects,”” /EEE Trans. Software Eng..
vol. SE-9, no. 6, pp. 652-663, Nov. 1983,

V. R. Basili and A.]J. Turner, ‘*lterative enhancement: A practical
technique for software development.”” /EEE Trans. Software Eng.,
vol. SE-1, no. 4, pp. 390-396, Dec. 1975.

V. R. Basili and D. M. Weiss, **A methodology for collecting valid
software engineering data,”’ JEEE Trans. Software Eng., vol. SE-10,
no. 3, pp. 728-738, Nov. 1984.

P. A. Bernstein, *‘Database system support for software engineer-
ing."" in Proc. Ninth Int. Conf. Software Engineering. Monterey. CA,
Mar. 30-Apr. 2. 1987, pp. 166-178.

D. Bjorner. *'On the use of formal methods in software develop-
ment.”" in Proc. Ninth Int. Conf. Software Engineering, Monterey,
CA. Mar. 30-Apr. 2, 1987, pp. 17-29.

B. W. Boehm, *‘Software engineering,”” JEEE Trans. Comput., vol.
C-25. no. 12, pp. 1226-1241, Dec. 1976.
. Software Engineering Economics.
Prentice-Hall, 1981.

——. A spiral model of software development and enhancement,”’
ACM Software Eng. Notes. vol. 11, no. 4, pp. 22-42. Aug. 1986.
B. W. Boehm, J. R. Brown, and M. Lipow, **Quantitative evaluation
of software quality.”” in Proc. Second Int. Conf. Software Engineer-
ing, 1976, pp. 592-605.

C. Brophy, W. Agresti, and V. R. Basili. **Lessons learned in use of
Ada oriented design methods."" in Proc. Joint Ada Conf.. Arlington,
VA, Mar. 16-19, 1987, pp. 231-236.

W.J. Deckerand W. A. Taylor, "*Fortran static source code analyzer
program (SAP).”" NASA Goddard Space Flight Center, Greenbelt,
MD. Tech. Rep. SEL-82-002, Aug. 1982.

C. W. Doerflinger and V. R. Basili. **Monitoring software develop-
ment through dynamic variables,”" [EEE Trans. Software Eng.. vol.
SE-11. no. 9. pp. 978-985, Sept. 1985.

D. L. Doubleday, "*ASAP: An Ada static source code analyzer pro-
gram,”” Dep. Comput. Sci., Univ. Maryland, College Park. Tech.
Rep. TR-1895, Aug. 1987.

M. Dowson, '‘ISTAR—An integrated project support environment,”’
in ACM Sigplan Notices (Proc. Second ACM Sofrware Eng. Symp.
Practical Development Support Environments), vol. 2, no. 1, Jan.
1987.

M. Dyer, **Cleanroom software development method,’’ IBM Federal
Systems Division, Bethesda, MD, Oct. 14, 1982.

J. Gannon, E. E. Katz, and V. R. Basili, **Measures for Ada pack-
ages: An initial study,”” Commun. ACM, vol. 29, no. 7. pp. 616-
623, July 1986.

R. B. Grady, '‘Measuring and managing software maintenance,”
IEEE Software, vol. 4, no. 5, pp. 35-45, Sept. 1987.

M. H. Halstead, Elemenis of Software Science. New York: Elsevier
North-Holland, 1977.

D. H. Hutchens and V. R. Basili, *’System structure analysis: Clus-
tering with data bindings,'* JEEE Trans. Software Eng., vol. SE-11,
pp. 749-757, Aug. 1985.

E. E. Katz and V. R. Basili, "*Examining the modularity of Ada pro-
grams, "’ in Proc. Joint Ada Conf., Arlington, VA, Mar. 16-19, 1987,
pp- 390-396.

E. E. Katz, H. D. Rombach, and V. R. Basili, **Structure and main-
tainability of Ada programs: Can we measure the differences?" in
Proc. Ninth Minnowbrook Workshop Software Performance Evalua-
tion. Blue Mountain Lake. NY. Aug. 5-8, 1986.

C. Loggia Ramsey and V. R. Basili. "*An evaluation of expert sys-
tems for software engineering management.”’ Dep. Comput. Sci..
Univ. Maryland, College Park, Tech. Rep. TR-1708. Sept. 1986.

Englewood Cliffs, NIJ:

{45]

[46]

(47

(48]

[49]

[501

(51

{52

{53

{54]

[55]

[56)

(573

14, NO. 6. JUNE 1988

M. Marcus. K. Sattley, S. C. Schatfner. and E. Albert. ""DAPSE: A
distributed Ada programming support environment,”' in Proc. [EEE
Second Int. Conf. Ada Applicarions and Environments. 1986. pp. 115-
125.

L. Mark and H. D. Rombach. "*A meta information base for software
engineering,”’ Dep. Comput. Sci.. Univ. Maryland. College Park.
Tech. Rep. TR-1765. July 1987.

T. J. McCabe. *A complexity measure.”” JEEE Trans. Sofrware Eng.
vol. SE-2, no. 4, pp. 308-320. Dec. 1976.

F. E. McGarry, ‘‘Recent SEL studies.”” in Proc. Tenth Annu. Soft-
ware Engineering Workshop. NASA Goddard Space Flight Center.
Greenbelt, MD, Dec. 1985.

L. Osterweil, ‘‘Software processes are software too.’” in Proc. Ninth
Int. Conf. Software Engineering. Monterey, CA. Mar. 30-Apr. 2.
1987, pp. 2-13.

F. N. Parr. "*An alternative to the Ravleigh curve model! for software
development effort,”” /EEE Trans. Software Eng.. vol. SE-6. no. 3,
pp. 291-296, May 1980.

L. Putnam, '‘A general empirical solution to the macro software siz-
ing and estimating problem,’* [EEE Trans. Software Eng., vol. SE-
4, no. 4, pp. 345-361, Apr. 1978.

C. V. Ramamoorthy, Y. Usuda. W.-T. Tsai, and A. Prakash. "*GEN-
ESIS: An integrated environment for supporting development and ev-
olution of software,”” in Proc. COMPSAC. 1985.

J. Ramsey and V. R. Basili. “*Analyzing the test process using struc-
tural coverage,’’ in Proc. Eichin Int. Conf. Software Engineering.
London. England. Aug. 1985 pp. 306-31il.

H. D. Rombach, **Software design metrics for maintenance.'" in Proc.
Ninth Annu. Software Engineering Workshop, NASA Goddard Space
Flight Center, Greenbelt, MD. Nov. 1984,

——. "'A controlled experiment on the impact of software structure
on maintainability,”’ JEEE Trans. Sofiware Eng., vol. SE-13. no. 3,
pp. 344-354, Mar. 1987.

H. D. Rombach and V. R. Basili. A quantitative assessment of sott-
ware maintenance: An industrial case study,”’ in Proc. Conf. Soft-
ware Maintenance, Austin, TX. Sept. 1987, pp. 134-144.

H. D. Rombach, V. R. Basili. and R. W. Selby. Jr., " The role of
code reading in the software life cycle. " in Proc. Ninth Minnowbrook
Workshop Software Performance Evaluarion. Blue Mountain Lake,
NY, August 5-8, 1986.

W. W. Royce, “*Managing the development of large software sys-
tems: Concepts and techniques.”” in Proc. WESCON. Aug. 1970,

R. W. Selby, Jr.. “‘Incorporating metrics into a software environ-
ment.’" in Proc. Joint Ada Conf.. Arlington, VA. Mar. 16-19. 1987,
pp. 326-333.

R. W. Selby and V. R. Basili. **Analyzing error-prone system cou-
pling and cohesion,”* Dep. Comput. Sci.. Univ. Maryland. College
Park. Tech. Rep., in preparation.

R. W.Selby. Jr., V. R. Basili. and T. Baker. *“CLEANROOM soft-
ware development: An empirical evaluation,”” IEEE Trans. Sofrware
Eng., vol. SE-13. no. 9, pp. 1027-1037. Sept. 1987.

C. E. Walston and C. P. Felix. A method of programming mea-
surement and estimation.’” /BM Svsr. J.. vol. 16, no. I, pp. 54-73.
1977.

A. l. Wasserman and P. A. Pircher. " Visible connections,”” UNIX
Rev.. Oct. 1986.

Webster’s New Collegiate Dictionary.
1981.

L. Wu, V. R. Basili, and K. Reed. " A structure coverage tool for
Ada software systems.” in Proc. Joint Ada Conf.. Arlington. VA,
Mar. 16-19. 1987, pp. 294-303.

M. Zelkowitz, R. Yeh, R. Hamiet. J. Gannon. and V. R. Basili,
**Software engineering practices in the U.S. and Japan.™ Computer.
pp. 57-66, June 1984.

Springfield. MA: Merriam,

Victor R. Basili (M'83-SM*84) is Professor and
Chairman of the Department of Computer Science
at the University of Maryland. College Park. He
was invoived in the design and development of
several software projects, including the SIMPL
family of programming languages. He is.currently
measuring and evaluating software development
in industrial and government settings and has con-
sulted with many agencies and organizations. in-
cluding IBM. GE. CSC. GTE. MCC. AT&T,
Motorola. HP. NRL. NSWC. and NASA. He is

BASILI AND ROMBACH: THE TAME PROJECT

one of the founders and principals in the Software Engineering Laboratory,
a joint venture between NASA Goddard Space Flight Center, the Univer-
sity of Maryland and Computer Sciences Corporation. established in 1976.
He has been working on the development of quantitative approaches for
software management, engineering, and quality assurance by developing
models and metrics for the software development process and product. He
has authored over 90 papers. In 1982, he received the Outstanding Paper
Award from the IEEE TRANSACTIONS ON SOFTWARE ENGINEERING for his
paper on the evaluation of methodologies.

Dr. Basili is currently the Editor-in-Chief of the IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING and was Program Chairman for several confer-
ences including the 6th International Conference on Software Engineering.
He has served on the Editoriai Board of the Journal of Systems and Soft-
ware. He is a member of the Board of Governors of the IEEE Computer
Society.

773

H. Dieter Rombach received the B.S. degree
(Vordiplom) in mathematics and the M.S. degree
(Diplom) in mathematics and computer science
from the University of Karlsruhe, West Germany,
and the Ph.D. degree (Dr. rer. nat.) in computer
science from the University of Kaiserslautern,
West Germany.

He is an Assistant Professor of Computer Sci-
ence at the University of Maryland, College Park.
He is aiso affiliated with the University of Mary-
land Institute for Advanced Computer Studies
(UMIACS) and the Software Engineering Laboratory (SEL), a joint ven-
ture between NASA Goddard Space Flight Center, the University of Mary-
land, and Computer Sciences Corporation. His research interests include
software methodologies, measurement of the software process and its prod-
ucts, software engineering environments, and distributed systems.

Dr. Rombach served as Guest Editor for the /EEE Software magazine
Special Issue on Software Quality Assurance (September 1987). He is a
member of the IEEE Computer Society, the Association for Computing
Machinery, and the German Computer Society (GI).

