550 . IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 5, MAY 1989

Mathematical Principles for a First Course in
Software Engineering

HARLAN D. MILLS, SENIOR MEMBER,

Abstract—The discipline of software engineering has transferred the
commonsense methods of good programming and management to large
software projects. It has been less successful in acquiring a solid the-
oretical foundation for these methods. We have developed an intro-
ductory computer science course, much as calculus is a basic course
for mathematics and the physical sciences, concerned primarily with
theoretical foundations and methodology rather than apprenticeship
through applications. This paper describes the principles taught in the
course and gives a small example illustrating them.

Index Terms—Formal specification, programming language seman-
tics, program verification, software development.

I. INTRODUCTION

SOFTWARE engineering is the name given to the art
of programming (and surrounding activities) when the
art is replaced by a discipline using well-defined methods
and formal skills. During the last two decades, a great
deal has been learned about good programming practices:
structured programming [1], [14], information hiding
[12], and data abstraction [7]. The spread of this knowl-
edge beyond expert programmers can be credited to soft-
ware engineering. The transfer of knowledge to routinely
trained technicians, the codification of common sense, and
the introduction .of management control are certainly
functions proper to engineering, and software engineering
has accomplished these things for programming.

The success and growth of any engineering discipline
has never rested entirely on the organization of trial-and-
error knowledge, however. Application of deep theoreti-
cal results is also required to progress beyond the initial
success that spreading common sense brings. The role of
the engineer is sometimes to invent the required theory;
more often, it is only to apply an idea from a more ab-
stract discipline to a problem the engineer understands.
Furthermore, the application must meet a requirement pe-
culiar to engineering: it must be in a form that can be used
to solve practical problems.

The work of [2], [3], [5], [6]. [8], and [11] comprises
a theoretical framework for programming based on math-

Manuscript received July 15, 1986; revised August 25, 1988. This work
was supported in part by the U.S. Air Force Office of Scientific Research.

H. D. Mills is with the Department of Computer and Information Sci-
ence, University of Florida, Gainesville, FL 32601.

V. R. Basili and J. D. Gannon are with the Department of Computer
Science, University of Maryland, College Park, MD 20742.

R. G. Hamlet is with the Department of Computer Sciences, Portland
State University, Portland, OR 97207.

IEEE Log Number 8926730.

tEEE, VICTOR R. BASILI, SENIOR MEMBER,
JOHN D. GANNON, anp RICHARD G. HAMLET, MEMBER

IEEE,
, IEEE

ematical foundations. This work continues to inspire ad-
vances in formal specification, programming language se-
mantics, and program verification. Because our
understandings of these topics are quite recent, people re-
gard them as subjects fit for graduate classes. Our belief
is that the time has come for computer science students to
start out with these ideas, not end up with them. At their
roots, these deep simplicities can be formulated in dis-
crete mathematics. This is material that undergraduates
can learn easily because understanding it does not require
a wide context of programming experience. By teaching
principles of syntax, semantics, correctness, and abstrac-
tion, we arm the student with solution patterns so that
program design becomes a problem-solving process with
new-found mental tools in a new domain.

We have developed a two-semester course for software
engineering [9], much as calculus is a basic course for
mathematics and the physical sciences, concerned pri-
marily with methodology rather than subject matter. In
fact, we introduce a ‘‘program calculus’’ that deals with
the functions computed by programs. Just as for ordinary
calculus, there are two main problems in the program cal-
culus. First, given a program, find its meaning (analogous
to a function’s derivative), and second, given a meaning,
find a program with that meaning (analogous to a func-
tion’s integral). This ability to derive functions from pro-
grams in the program calculus is of great value in com-
puter science and in engineering as well. First, it permits
a mathematical treatment of program correctness, namely,
whether a program specifies correct behavior of the com-
puter for every possible input. But even more impor-
tantly, it leads to a systematic design discipline for writ-
ing programs that are correct to begin with and which do
not require debugging.

II. Torics FOR THE INTRODUCTORY COURSE

In this section we outline the major principles covered
in the course. They represent a synthesis of an integrated
theoretical foundation for programming. They can be
characterized by a mathematical formalism, simplified to
the level necessary for the problem at hand, covering a
large piece of the programming domain in a consistent
way and permitting the process to be applied to larger
problems.

The simplicity and generality of the formalism permit
the material to be taught to beginning college students. It

0098-5589/89/0500-0550$01.00 © 1989 IEEE

MILLS ef al.: FIRST COURSE IN SOFTWARE ENGINEERING

forms a basis for their understanding of the programming

process and product and acts as a mechanism for com-
munication.

A. Programming Methods

During the first semester, programs are developed using
stepwise refinement, while in the following semester sys-
tems of programs and data are constructed using data ab-
straction. Programming has two distinct phases:

1) design, thinking out what the program should be in
order to solve the problem, and

2) development, putting the program text in execution
form.

In the stepwise refinement of a program, text designed
to carry out a task in more detail is called a design part.
A design part may itself contain more detailed task de-

scriptions (in the form of comments) to be carried out by

additional design parts. The result of the design phase will
be a hierarchy of design parts which collectively solve the
problem at hand. Each design part is a statement typically
with 5-15 lines, perhaps with 2-4 remaining tasks to be
designed at the next level. ;

After the program has been entirely refined into a hi-
erarchy of design parts, the translation into machine-read-
able form begins. A sequence of executable programs,
_each reflecting a larger part of the design, can facilitate
orderly and systematic translation into Pascal. Each pro-
gram in such a sequence is called a development program.
Development programs are accumulations of design parts,
which grow in size until the entire design has been turned
into Pascal. Each development program is defined so that
it can be executed and tested to verify correct translation
at each step of development.

In practice, the translation of a design into Pascal can
be done in chunks larger than one design step, typically
15-50 lines at a time. That is, each successive develop-
ment program is created by combining a few more design
parts with the last tested development program. Func-
tional testing methods are used to verify correct execution
of development programs after adding temporary state-
ments to create visible output.

An abstract data type is a collection of operations and
data declarations defined so that the operations are the only
means of accessing the data. Since they access data ob-
jects indirectly through operations, users of a type are un-
affected by changes to the type’s data declarations (which
might be made to improve functionality or efficiency).
Abstract data types represent potentially reusable modules
and should be tested independently of their uses in pro-
grams. In testing a data type, legal combinations of its
operations are applied to representative objects.

B. Programming Languages

Programs are written in three increasingly complex
subsets of the programming language Pascal. In the sim-
plest subset, CF Pascal, there is but a single kind of data
(characters) and a single data structure (files of characters
that can only be accessed sequentially). Restricting our

551

attention to so simple a language emphasizes program de-
sign rather than language features.

Small, but classical, problems lead to interesting pro-
gram design problems in CF Pascal. For example, break-
ing a text file into lines of a given length (specified by the
length of a file of blanks since there are no integers) can-
not be done without a working sense of abstraction. Sort-
ing and reversing files in #* In (#n) time are also chal-
lenges. Consider adding two 100-digit numbers in
different files and writing the result to a third file. The
input files are read left to right, but digits must be added,
and carries must be computed from right to left. It is easy
to see that the problem requires one pass over the two files
for the add and carry logic, but three file reverses. With
an n’ reverse, the solution will execute in n + 3n* time
where it only takes n for what seemed the hard part. So
reducing n + 3n% to n + 3n* In (n) by finding an n* In
(n) reverse becomes an interesting problem. CF Pascal is
a teacher’s helper in a real sense—an austere tool that re-
wards good programs in a visible way.

The second language subset, D Pascal, permits the same
functions to be created with smaller and simpler programs
than are possible in CF Pascal. D Pascal also contains
language features (type declarations and records) needed
to implement abstract data types. The final Pascal subset,
O Pascal, introduces control structures and data types to
help optimize programs by providing random access to
statements (gotos) and data (arrays). O Pascal language
features should be used only when they are needed for

“algorithm optimization and when their functions can be

determined and verified at least informally.

C. Mathematical Basis

The entire mathematical basis for the program calculus
rests on just five discrete mathematical structures of char-
acter data: strings, lists; sets, relations, and functions.
These five structures are not only sufficient to deal with
program correctness and program design, but also admit
treatment at various levels of formality with a mixture of
English and mathematical notation. Some sets are more
easily and precisely described in English than in mathe-
matics, but are sets no less because of the mode of their
description. Many programming problems are better stated
in English than mathematics, and we need to be able to
treat questions of program correctness and design inde-
pendently of the mode of description.

Understanding a program as a mathematical object is
understanding the functional behavior it induces in a com-
puter. An execution state is a relation or function whose
domain is the identifiers of a program and whose range is
the values attached to those identifiers. The semantic
meaning of a program will be a mathematical relation or
function, a set of ordered pairs of states, that defines a
correspondence between an input state and an output state.

D. Meanings of Program Parts

It'is convenient to have a notation for meaning relations
or functions, and we adopt a convention similar to one

552 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15, NO. 5, MAY 1989

used by Kleene: the meaning function corresponding to a
program object is denoted by a box around that object.
The meaning of an identifier V1 in execution state s is
simply the value of V1 in the state:

1] (s) = s(V1).

Values of literal character expressions do not depend on
the execution state at all. The meaning of an assignment
statement is a function from execution states to execution
states. The intuitive meaning of the assignment statement
as an execution state transformation is that the identifier
on the left-hand side ceases to be associated with an old
value and becomes associated with a new value, obtained
from the expression on the right-hand side:

V1= V2| = { <r,s>: s is the same as r except that
[F1l(s) = V2] (n}.

The meaning of an IF statement with Boolean condition
b and statements ¢ and e is

[IF b THEN 1 ELSE ¢] = {<s, [t]s>: [b](s)}
) {<s, le]s>: ﬂ(s)}.

The first set contains all state pairs in which the condition
b holds, and the second set contains those pairs in which
the condition does not hold. There is no evaluation of
these sets in some order. They simply contain or fail to
contain certain pairs.

The meaning of a WHILE statement with Boolean con-
dition b and statement d is defined recursively:

| WHILE b DO d |
= [1F b THEN BEGIN d; WHILE b DO d END].

The right-hand side of this definition can be rewritten as
the composition of two functions:

[WHILE » DO d |

= [IF b THEN d| o [WHILE 5 DO d].

This recurrence equation has solutions (the meaning of
the WHILE statement) which can be checked by substi-
tution. The WHILE statement verification rule [9] states
that a function f is the meaning of a WHILE statement if
and only if it satisfies three conditions.

1) fand the WHILE statement have identical domains.
(The domain of a WHILE statement is the set of states for
which the WHILE statement terminates.)

2) Restricting f’s domain to those states in which b is
false yields an identity function.

3) f=[IFb THEN d] o f.

E. Determining the Meaning of Program Parts

A concurrent assignment summarizes the effects of sev-
eral statements, mapping one state to another. A list of
variables is written on the left-hand side of the assignment
operator, and a list of expressions is written on the right-
hand side, these two lists being of equal length. The
expressions, computed all at the same time, are the values
taken by the corresponding variables.

Conditional assignments can be defined recursively by
the following rules.

1) A concurrent assignment is a conditional assign-
ment,

2) If b is a Boolean condition and ¢ is a conditional
assignment, then (b — c) is a conditional assignment.

3) If b is a Boolean condition and ¢, d are conditional
assignments, then (b — ¢)|d is a conditional assignment.

For state s, the meaning of a conditional assignment of
the form

(b — Cl)'(bz - Cz)l e '(bn - ¢,)

for any number of Boolean conditions (b;) and condi-
tional assignments (¢;) is the meaning of the first condi-
tional assignment, say ¢, such that

1) all Boolean conditions before b, have the value false
in state s, and

2) Boolean condition b, has the value true in state s.

The meaning is undefined for state s if any of the fol-
lowing occur:

1) none of the Boolean conditions evaluates to true in
s,

2) the first Boolean expression that does not evaluate
to false is undefined for s, or

3) ¢ is undefined for s.

For example, the meaning of the statement

BEGIN -
V1:=V2;.
V2:=V3;

IFV1 < V2THEN V3 := V1 ELSE V3 := V2
END

can be expressed as the conditional assignment
(V2 < V3 - V1, V2, V3:= V2, V3, V2)|
(V2 = V3 - V1, V2 := V2, V3).

Symbolic execution is a method of tracing the values of
variables through execution using only their names, not
particular values. A trace table is a systematic method for
carrying out symbolic execution. A trace table has a row
for each statement that is executed and a column for each
variable that might acquire a new value during execution.
The ‘‘values’’ in a trace table are expressions, and the
rows keep track of current expressions in terms of the
original starting expressions. A conditional trace table is
a trace table with an additional column of conditions,
namely, those required for the assignments in the table to
take place. For example, the BEGIN statement above will

MILLS et al.: FIRST COURSE IN SOFTWARE ENGINEERING

use one of two sequences of assignments, namely,
(V1:=V2;v2:=V3;, V3:= V1) or
(V1:=V2;,V2:=V3;, V3:=V2),

depending on whether the THEN or ELSE part of the IF
statement is selected during execution. Each sequence can
be handled by a separate conditional trace table. The tabie

for the case when the THEN part is executed is shown
below.

Statement Condition 14| V2 V3
Vl:= V2 V2
V2 :=V3 V3
IFV1 < V2 V2 < V3
THEN V3 := V1 |l v2

Each row of the table shows values in terms of the origi-
nal variables. The condition ¥2 < V3 in the third row is
the value of V1 < V2 because at that point V1 has the
original value of V2, and V2 has the original value of V'3
(obtained from the row above). The net result for this con-
ditional trace table is a conditional assignment:

(V2 < V3> V1, V2, V3:= V2, V3, V2).

Similarly, the table for the ELSE part derives the second
part of the conditional assignment above.

F. Program Correctness

Given a program specification relation r and a program
P, we say that P is correct with respect to r if, for every
member x of the domain of r (an instance of input data),
P produces some member of the range of r which corre-
sponds to x. That is, for each input x, P produces result
y such that < x, y> € r. What P does to input data not
in the domain of r is not important since r should define
all behavior important to the problem solver. A simpli-
fying condition for demonstrating that a program satisfies
its specification is given in the following theorem, called
the Correctness Theorem [9].

Correctness Theorem: Program P is correct with re-
spect to specification relation r if and only if domain (r
n) = domain (r). Note that, if r is a function f, then
the following corollary holds.

Correctness Corollary: Program|[Plis correct with re-
spect to specification function f if and only if f N =
f, that is, if and only if f © .

G. Data Abstraction Correctness

The essence of data abstraction is captured by a dia-
gram showing the relationship between the concrete world
objects manipulated by Pascal procedures (e.g., P) and
the abstract world objects the programmer uses in ab-
stract operations (e.g., m) to achieve a solution. A map-
ping must be defined between the values of concrete ob-
jects and the values of the corresponding abstract objects.
We call this the representation mapping and, for any type,
denote it Ayp. By convention, for objects common to the

553

concrete and abstract worlds, the representation mapping
is identity. Thus, the representation mapping carries any
concrete state to an abstract state.

{abstract states} m {abstract states}
ALype Aﬁype

{concrete states} {concrete states}

(7]

Intuitively, an implementation is correct if its data ob-
jects are manipulated in such a way that the abstract ob-
jects to which they correspond appear to be transformed
according to the abstract operations. That is, correct im-
plementation uses the concrete procedures and data, but
in a way that mirrors the abstraction. To decide if this
property holds, we must show that the diagram com-
mutes:

Aype o m S 0 Aiype-

Of course, abstract operations like m do not really exist
except in users’ minds. Pascal procedures implementing
abstract operations are written with two sets of comments,
labeled ‘‘abs’’ and ‘‘con.”’ The ‘‘abs’ comments are
added to modules so that users, those in the abstract world,
need not examine the code (or even the “‘con’’ comments
that document it). The ‘‘abs’’ comments replace the ab-
stract operations in demonstrations that diagrams com-
mute. If the implementation has been done properly, the
abstract comment can be believed and used in proofs at
the abstract level [4].

III. A PArRTIAL EXAMPLE

In this section, we carry out part of an example that
illustrates both stepwise refinement and data abstraction.
The example, which prints a list of prime numbers, is
large enough to require the judicious use of formal proofs,
embedded in a broader activity of informal reasoning and
design. In particular, the example illustrates that stepwise
refinement permits the control of details, step by step, in
both data and operations. A lower-level specification uses
only variables from the design it supports rather than those
introduced for its implementation. This property of defer-
ring details while maintaining control of the design is es-
sential in scaling up methods of ‘‘programming in the
small.”’

A. Developing and Proving the Solution

This section illustrates a typical design step in a small
problem, printing the prime numbers P such that 2 < P
< N. The solution prints 2, constructs a list containing
the remaining odd prime numbers less than or equal to N,
and prints the list elements. (Lists are denoted by angle
brackets and list concatenation by an ampersand (&).)

554 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. I5. NO. 5. MAY 1989

Design Part 1
{print the list of prime numbers P such that 2 <
P <N}
WRITELN(2);
EmptyList(Primes);
NextP := 3;
{Primes : = Primes &
ND(NextP,NextP, N,Primes)};
{print Primes}

EmptyList is an operation on abstract objects of type ““list
of integers”’ that initializes a list object that contains no
elements:

PROCEDURE EmptyList(VAR L: List):
{abs:L:=< >}

ND(L, C, U, Primes) is a list of numbers between C and
U that are not divisible by any of the numbers in Primes
or any of the numbers between L and C — 2. It is defined
as follows:

ND(L, C, U, Primes) =
< C:V P e (Primes & ND(L, L, C — 2, Primes)),
(Cmod P) # 0>
& ND(L, C + 2, U, Primes) if L < C < U
<>ifL=C>U

We can use a trace table to calculate the value of Primes
that is printed at the end of Design Part 1.

Condition Primes NextP

< > &ND(3,3,N, < >)

Assuming N = 3, we expand ND’s definition to check
that its behavior meets our expectations.

ND(3, 3, N, < >)

2 that are already members of ND. If none of the members
of ND divides i, then i is also a member of ND.

The fourth step of Design Part 1 can be refined into the
following design part. ’

Design Part 1.1
{Primes := Primes &
ND(NextP,NextP, N, Primes)}

WHILE NextP <= N DO
BEGIN
{IsPrime := (for all members P of Primes,
(NextP mod P) < > 0)};
IF IsPrime THEN Append(Primes, NextP);
NextP := NextP + 2
END

If L has not reached its maximum size, Append concat-
enates a singleton list containing Elt to the right end of L.
Otherwise Append is an identity function.

PROCEDURE Append(VAR L: List; Elt: EltType);
{ abs: { Length(L) < MaxSize —
L:=L& <Elt>)|
(Length(L) = MaxSize — I) }

If the design is under intellectual control at this point, we
need to demonstrate that the WHILE statement above
(which we call W) computes its specified function. In
order to do this, we first determine f, the meaning of W,
and show that it has the three properties listed at the end
of Section II-D,

f=(NextP < N — Primes :=
Primes & ND(NextP, NextP, N, Primes)) |
(NextP > N = I).

Then we use the Correctness Corollary from Section II-F
to verify

(rn |
(Primes : = Primes & ND (NextP, NextP, N, Primes)))
=f

=(<3:VPe(<>&ND(3,3,1, < >)),(3mod P) # 0> & ND(3, 5, N, < >))
= <3>&(<5:VPe(<>&ND(3,3,3, < >)),(5mod P) # 0> & ND(3,7, N, < >))

<3> & <5> &ND(3,7,N, < >).

When an odd number i is considered for membership in
ND, it is divided by the odd numbers between 3 and i —

<3> & <5:¥Pe(<>&<3>)),(5mod P) # 0> & ND(3,7, N, < >)
<3>& <5 VPe<3>),(SmodP) # 0> & ND(3,7, N, < >)

This last step is easy because ND(NextP, NextP, N,
Primes) = < > when NextP > N. Thus, f could be

MILLS ¢t al.: FIRST COURSE IN SOFTWARE ENGINEERING

written

355

(NextP < N — Primes := Primes & ND(NextP, NextP, N, Primes))i
(NextP > N — Primes := Primes & ND(NextP, NextP, N, Primes))
(< N or NextP > N — Primes := Primes & ND(NextP, NextP, N, Primes)

= (true — Primes : = Primes & ND(NextP, NextP, N, Primes)
= Primes : = Primes & ND(NextP, NextP, N, Primes).

To verify that f is the meaning of the WHILE statement
more easily, we eliminate details introduced by purely lo-
cal variables (like NextP, whose value is not needed after
W terminates), and size constraints on objects (like the
length of Primes).

The three steps of the proof are as follow.

1) Domain (f) = domain (@):

Domain (f) = domain (ND (NextP, NextP, N,
Primes)): ND(NextP, NextP, N, Primes) is defined
whenever the mod function within it is defined, i.e., if
either 0 ¢ Primes or 0 ¢ ND(NextP, NextP, N — 2,
Primes). The latter condition could be false only if Primes
= < >, NextP = 0, and NextP < (N — 2).

Domain (): W terminates immediately if NextP
> N. If NextP < N, the body of W is executed, and
normal termination occurs if NextP is incremented on
each execution of the body of W and if the result of the
mod function is defined for all members of Primes on each
iteration. The first condition is clearly true by inspection.
The mod function is defined if O ¢ Primes and if O is not
one of the values of NextP appended to Primes [i.e.,
Primes = < >, NextP = 0, and NextP < (N - 2)].

Thus, the domains are identical.

2) (NextP > N > f) = (NextP > N~ I): Whenf’s
domain is restricted to those states for which the WHILE
condition evaluates to false, fis an identity functiori.

(NextP > N - f) =
(NextP > N and NextP < N —
Primes : = Primes &
ND(NextP, NextP, N, Primes))|
(NextP > N and NextP > N — [),

IF IsPrime THEN Append(Primes, NextP);
NextP := NextP + 2
END

Then, is
(NextP < N and
(V P € Primes, (NextP mod P) # 0) —
Primes, NextP := '
Primes & < NextP >, NextP + 2)‘
(NextP =< N and 3P € Primes, (NextP mod P) = 0 —
NextP := NextP + 2)|
(NextP > N = 1),
We must demonstrate f = o f. Trace tables provides

a convenient way to study the composition, showing the
effect of each part of composed with each part of f.

Part Condition Primes NextP

IF NextP < N and
(V¥ P € Primes,
(NextP mod P) #
0)

f (NextP +2) < N

Primes & < NextP > NextP + 2

Primes & < NextP > &
ND (NextP + 2,
NextP + 2, N,
Primes & < NextP >)

This trace table computes the part function

(NextP + 2) < N and (V P € Primes, (NextP mod P) # 0) —
Primes : = Primes & < NextP > & ND(NextP + 2, NextP + 2, N, Primes & < NextP >).

which reduces to
((false = - - +)|(NextP > N = I))
= (NextP > N =),

an identity function.
3) Let IF be

IF NextP <= N THEN
BEGIN
{IsPrime := (for all members P of Primes,
(NextP mod P) < > 0)};

We need to show that < NextP > & ND(NextP + 2,
NextP + 2, N, Primes & < NextP >) is identical to fin
this limited domain. We calculate ND (NextP, NextP, N,
Primes), but restrict its domain to those states in which
the domain restriction

(NextP + 2) < N and
(v P € Primes, (NextP mod P) # 0).

has the value true.

556 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 5. MAY 1989

ND (NextP, NextP, N, Primes)
= < NextP: v P € (Primes & ND(NextP, NextP,
NextP — 2, Primes)), (NextP mod P) # 0>

& ND(NextP, NextP + 2, N, Primes) (1)
and

ND(NextP, NextP, NextP — 2, Primes) = < >.
Substituting (2) into (1) yields
ND (NextP, NextP, N, Primes)
= < NextP: ¥ P € Primes, (NextP mod P) # 0>
& ND(NextP, NextP + 2, N, Primes). (3)

In the domain v P € Primes, (NextP mod P) # 0, (3)
can be rewritten as

ND(NextP, NextP, N, Primes)
= < NextP > & ND(NextP, NextP + 2, N, Primes).

(3")

(2)

Thus, our two original terms are identical if

ND(NextP + 2, NextP + 2, N, Primes & < NextP >)
= ND(NextP, NextP + 2, N, Primes).

Both these terms represent sequences of numbers between
NextP + 2 and N that are tested to determine if they are
divisible by any number in another sequence of numbers.
The term on the right-hand side of the equation checks
divisors in the range NextP + 2..NextP + 2 — 2 and
the members of Primes & < NextP >. The term on the
left-hand side checks divisors in the range NextP .. NextP
+ 2 — 2 and the members of Primes. Thus, the terms
must be identical, and the part function can be rewritten
as
(NextP + 2) < Nand (¥ P & Primes, (NextP mod P) # 0) —

Primes := Primes & ND(NextP, NextP, N, Primes).

The next case resulting from this composition is as fol-
lows. ’

Part Condition Primes NextP

IF | NextP < N and Primes & < NextP > NextP + 2
(V P € Primes,
(NextP mod P) # 0)

f (NextP +2) > N

Primes & < NextP > &
ND (NextP + 2,
NextP + 2, N,
Primes &
< NextP >)

This trace table computes the part function
(N = 2) < NextP < N and
(v P & Primes, (NextP mod P) # 0) -~
Primes := Primes & < NextP> & < >.

In the domain (N — 2) < NextP < N where no member
of Primes divides NextP evenly,

ND (NextP, NextP, N, Primes)
= (<NextP> & < >),

so this part function could be combined with the previous
part function to obtain

NextP < N and (V P € Primes, (NextP mod P) # 0)—
Primes := Primes &
ND(NextP, NextP, N, Primes).

We need to perform four more function compositions to
obtain the rest of the function:

(NextP < N and
(3 P € Primes, (NextP mod P) = 0) —
Primes : = Primes &
ND(NextP, NextP, N, Primes))‘
(NextP > N — 1),

which, combined with the already-computed parts, yields
a function that is identical to f.

B. Verifying the Data Abstraction

In refining the remainder of the loop body, additional
operations must be added to the data type so that the val-
ues of the elements in the list can be obtained sequentially
without modifying the list value. The abstract type used
to represent Primes is ‘‘list of integers with a reading
pointer.’” The operations of this type are EmptyList, Ap-
pend, Head, and Next. Head(Primes, Trial) assigns
Trial the value of the first element in Primes (if Primes
is not empty) and the value EndList otherwise. In addi-
tion, Primes is prepared for reading, which we indicate
by writing the elements in Prime as

< already-read values of Primes >

& < to-be-read values of Primes >.

Next(Primes, Trial) assigns the next value to be read in
Primes to Trial and advances the reading pointer. If no
more values remain to be read, Next assigns to Trial the
value EndList.

A representation for list objects and its representation
function must be chosen.

TYPE o
EltType = Endlist.. MAXINT;
List = RECORD
V: ARRAY [1..MaxSize] OF EltType;
Size, Current: 0..MaxSize
END:; '

The repr'es’entation function A, ;, is a schema that specifies
how a list object L is mapped.

{(s.1): 0 = L.Current(s) < L.Size(s) < MaxSize. is the same state as s
except ¢ contains a new pair (L, L(r)) with

L) = <LV (s)[1), -, L.V(s)[L.Current(s)] >
& <L.V(s)[L.Current(s) + 1],
e, LV(s)[L.Size(s)] >

and { contains no members whose first elements are L.V, L.Current, or
L.Size :

MILLS et al.: FIRST COURSE IN SOFTWARE ENGINEERING

Finally, implementations are written for each opera-
tion. However, only the implementation of Head is given.
Each implemented operation comes with two comments
describing its function. The users’ expectations can be
captured by writing comments about the procedure part
functions in the abstract state. These comments are la-
beled ‘‘abs’’ in the code. Of course, the concrete proce-
dure themselves are concrete-state mappings and have part
functions in that world as usual; these are labeled “‘con.”’

PROCEDURE Head(VAR L: List; VAR Result: EltType);
{abs: (L = < > — Resuit := EndList) |
(L=<Lt,---,Li-1>&<Li,*--,Ln> -
L,Result := <L1> & <L2,---,Ln>,L1)
con: (L.Size > 0 — L.Current, Result := 1, L.V[1]} |
(L.Size = 0 - L.Current, Result := 1, EndList) }
BEGIN {Head}
"IF L.Size > 0
THEN BEGIN L.Current := 1; Result := L.V[1] END
ELSE Result : = EndList
END; {Head}

The correspondence between the body of Head and its
concrete comments is apparent from the meaning of the
IF statement. We need to demonstrate

AList o Headabs = Headcon o ALis!'

Again, trace tables prove to be a useful tool for computing
function compositions. The first trace table works out the
composition of the representation function and the first
part of the abstract comment. In the interest of space,
Current and Size have been abbreviated as C and S, re-
spectively.

FIRST PART A, 0 Head,,,

Condition L Result

0<sLC=LS= <L.V{I], -,

MaxSize LVILC]> &

<L VILC+1], -,
L.V{L.S|>

<L.V[I], -+, EndList

LVILC]> &

<L.V[L.C + 1],

L.VIL.S]>

=< >

The condition evaluates to true when

<L.V[1], -+ ,LV[LC]> = < > and
<L.V[L.C + 1], -+ ,LV[L.S]> = < >.

Picking L. S and L.C to be 0 achieves this result. Thus,
the function is

MaxSize = Oand L.S =0and L.C =0 —
L, Result := < >, EndList.

The second trace table calculates the composition of the
representation function and the second part of the abstract
comment,

557
SECOND PART A, 0 Head,,,
Condition L Result
0 =< L.C = L.S = MaxSize <L.V[T1}, .-,
LVILC|> &
<L.VILC +], -~
L.VIL.S|>
<L.V[I],---LV[LC]> & <L!> & <L2.--" . Ln> L1
<LVILC+ 1], -,
L.VIL.S|> =
<Ll -+ ,Li-1>&
<Li,++-,Ln>

This condition is true when{ = | (i.e., L.S = L.C =
I)and L.V[I]=L1, ---,L.V[L.S] = Ln. Thus, the
function is

MaxSize = L.S=LC=1-> L,
<Ll> & <L2,---,Ln>, Ll

Result :
The composition A4, 0 Head,,, yields
(MaxSize =2 0and L.S = 0and L.C =0 —
L, Result := < >, EndList) |
(MaxSize = L.S=LC =1~
L,Result := <L1> & <L2, ---,Ln>, Ll).

The next two trace tables compute the right-hand side of
the equation Head ., 0 Ay;.

FIRST PART Head,,, 0 ALy

Condition L L.C | Result
L.S>0 1 L.V[1]
0<l=<LS= <L.V[I],---,

MaxSize LVILC]> &
<L.VIL.C+1], -,
L.VIL.S]>
Thus, the function is
MaxSize =z L.S =1 -
L, Result :=
<L.V[1]> & <L.V|[2], - - -,
L.V[L.S]>, L.V[l].
SECOND PART Head,,, 0 AL
Condition L LC EndList
LS<0 EndList
0<LC=<LS= <L.V[I], -,
MaxSize LVILC]> &
<L VILC+1], ",
L.VIL.S|>

Since the condition requires both L.S < 0and L.S = 0,
it must be the case that L.S = 0, L.C = 0, and the list

<L.V[1], - ,LV[LC]>
& <L.V[L.C + 1], ---,LV[L.S]>

558 . IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 5. MAY 1989

must be empty. Thus, the function is
MaxSize =z Oand .S = 0and L.C =0 —

L, Result := < >, EndList.

The composition Head,,, 0 A vields
(MaxSize = L.S =<1 —
L, Result : =
<L.V[1]> & <L.V[2], -- -,
L.V[L.S]>, L.V[1]) |
(MaxSize = 0and L.S = 0and L.C = 0 —

L, Result := < >, EndList).

This composition yields the same results as the previous
composition, but on a slightly larger domain since it places
no restriction on the initial value of L..C.

C. Testing the Result

Once the design phase is complete, we switch to the
development process. In this stage, abstract data types are
tested independently, and design parts are incrementally
assembled into execution form and tested. For example,
Design Parts 1 and 1.1 in Section III-A would be assem-
bled, and later design parts that refine

IsPrime : = (for all members P of Primes,
(NextP mod P) < > 0);

might be replaced by
IsPrime := true;

which permits a development program to be tested (al-
though in this case all odd numbers would be added to
Primes). This development program would be tested with
various values of N (including at least odd and even val-
ues).

To test the data abstraction functionally, we should
consider the possible logical sequences of the operations
EmptyList, Append, Head, and Next. For example, to
check valid combinations of operations we might

1) build a list, ,

2) sequence through a list,

3) go back to the head of the list after partially se-
quencing through the list (after a Head or a Next),

4) append an element to the list while sequencing
through it (after a Head or a Next), or

5) empty the list after sequencing through or building
it.

These operations should be considered with at least three
different kinds of list values: an empty list, a partially full
list, and a full list (since we have chosen an array imple-
mentation). Some other combinations of operations are
not legal and are not tested. For example, applying the
Next operation to a list without executing the Head op-
eration first will cause an error.

To check that we have covered all cases, we should
consider all combinations of operations, noting whether

they are legal or illegal combinations and whether the
combination appears in the finished program.

Case Operations Legality = Used
1 EmptyList; EmptyList Legal No
2 EmptyList; Append Legal Yes
3 EmptyList; Head Legal No
4 EmptyList; Next Illegal No
5 Append; EmptyList Legal No
6 Append; Append Legal No
7 Append; Head Legal Yes
8 Append; Next Itlegal No
9 Head; EmptyList Legal No

10 Head; Append Legal No
11 Head; Head Legal No
12 Head; Next Legal Yes
13 Next; EmptyList Legal No
14 Next; Append Legal No
15 Next; Head Legal Yes
16 Next; Next Yes

Legal

To test the data abstraction properly so that it can be used
again, we should at least check the possible combinations
of operations listed above on three representative list val-
ues: an empty list, a partially full list, and a full list.

Design, analysis, and testing provide a three-pronged
approach to assuring confidence in the correctness and
quality of the developing program. The design formalism
assures that the program developed from the functional
specification is a correct elaboration of that specification.
The ability to perform a formal or informal analysis based
on that design formalism offers the programmer and the
reviewer the ability to check for consistency and correct-
ness in a systematic way. Incremental testing of the pro-
gram permits us to check details normally suppressed in
proofs (e.g., restrictions on the sizes of objects), as well
as the execution environment (e.g., the Pascal implemen-
tation corresponds to the formal definition).

IV. EXPERIENCE WiTH THE COURSE

The course requires new ways of thinking, even for ex-
perienced computer science educators. The material is
deep and quite different from the traditional ‘‘first course’’
in programming. However, the material is no harder for
students than traditional introductory courses in other sci-
entific disciplines such as mathematics or physics. We
have a strong sense of satisfaction from teaching this
course because it formalizes basic ideas of computer sci-
ence and provides the student with a solid foundation in
the principles of prograniming.

Because many students learn about computers before
they come to the university, they enter with very different
computer backgrounds. Those who know a lot about pro-
gramming, even in Pascal, will not be able to skip this
course. It is not a course in Pascal programming. The mix
of backgrounds in programming and in mathematics
causes student expectations and reactions to vary widely.
Some are disappointed that they are not writing big real-
istic programs. They may think the material is too simple,

MILLS er al.: FIRST COURSE IN SOFTWARE ENGINEERING

until they are surprised by the real depth in the course.
Others are initially overwhelmed because of their lack of
background or intimidated by the programming knowl-
edge of classmates. There will always be a few good stu-
dents who have trouble simply because the course does
not live up to their expectations. It is more important than
usual to make it clear early what the course is about and
what is expected. This motivation should be reinforced at
regular intervals.

We distinguish between useful tasks and useful skills.
Programming based on the program calculus and mathe-
matical correctness is an unnatural activity that takes faith
and practice to master. In learning to type, it is natural to
look at the keys while typing. We know that we should
learn to type in a systematic way (that is, without looking
at the keys) because it is a better way to type in the long
run, even though it is a terrible way to try to type on the
first day. We learn not to do something that looks useful
initially, but begin to learn useful skills instead. The im-
provement of mathematical approaches to programming
over what comes naturally can be as dramatic as that of
touch typing over hunt-and-peck.

Once they have mastered these ideas, programmers can
use the Cleanroom software development method [10].
The key components to the method are a mathematically
based design method, implementation without testing by
developers, and statistically based functional testing per-
formed by a third party. This method changes testing and
debugging from program-development strategies to qual-
ity-assurance measures. A study of the development of an
electronic message system by 15 three-person teams
helped demonstrate the feasibility of this approach [13].

REFERENCES

[1] E. W. Dijkstra, ‘‘Notes on structured programming,”’ in Structured
Programming. New York: Academic, 1972, pp. 1-82.

{2} —-., A Discipline of Programming. Englewood Cliffs, NJ: Pren-
tice-Hall, 1976.

3} R. W. Floyd, ‘‘Assigning meanings to programs,”’ in Proc. Symp.
Appl. Math., vol. 19, J. T. Schwartz, Ed., 1967, pp. 19-32.

[4] J. D. Gannon, R. G. Hamlet, and H. D. Mills, **Theory of mod-
ules.”” IEEE Trans. Sofrware Eng., vol. SE-13, pp. 820-829, July
1987.

[51 C. A. R. Hoare, ‘‘An axiomatic approach to computer program-
ming,”> Commun. ACM, vol. 12, no. 10, pp. 576-580, 583, Oct.

1969.

[6] —. *‘Proof of correctness of data abstraction,”” Acta Inform., vol.
1, pp. 271-281, 1972.

[7] —, **Notes on data structuring,’” in Structured Programming. New

York: Academic, 1972, pp. 83-174.

(8] H. D. Mills, ‘‘Mathematical foundations for structured program-
ming,”’ in Software Productivity. Boston, MA: Little, Brown and
Co., 1982, pp. 115-178.

{9] H. D. Mills, V. R. Basili, J. D. Gannon, and R. G. Hamlet, Prin-
ciples of Computer Programming: A Mathematical Approach. Bos-
ton, MA: Allyn and Bacon, 1986.

[10] H. D. Mills, M. Dyer, and R. Linger, *‘Cleanroom software engi-
neering,’’ IEEE Software, vol. 4, no. 5, pp. 19-25, Sept. 1987.

{11] P. Naur, **Proof of algorithms by general snapshots,’* BIT, vol. 6,
pp. 310-316, 1966.

[12] D. L. Parnas, ‘A technique for software module specification with
examples,”” Commun. ACM, vol. 15, no. 5, pp. 330-336, May 1972.

[13] R. W. Selby, V. R. Basili, and T. Baker, ‘‘Cleanroom software de-
velopment: An empirical evaluation,’* [EEE Trans. Software Eng.,
vol. SE-13, pp. 1027-1037, Sept. 1987.

[14] N. Wirth, *‘Program development by stepwise refinement,”’ Com-
mun. ACM, vol. 14, no. 4, pp. 221-227. Apr. 1971

559

Harlan D. Mills (SM’82) received the Ph.D. de-
gree from lowa State University, Ames, in 1952.

He is the President and founder of the Infor-
mation Systems Institute. He retired in 1987 as an
IBM Fellow and as a Professor of Computer Sci-
ence, University of Maryland, College Park. He
continues to serve on the U.S. Air Force Scientific
Advisory Board and as a part-time Professor of
Computer and Information Sciences at the Uni-
versity of Florida, Gainesville. He was the prin-
cipal architect for the curriculum of the 1BM Soft-
ware Engineering Institute, an IBM internal educational facility with a
worldwide faculty of over 50. He served on the IBM Corporate Technical
Committee and as Director of Software Engineering and Technology for
the Federal Systems Division. He has also taught at lowa State, Princeton,
New York, and Johns Hopkins Universities. His industrial experience be-
gan with the General Electric Company in management consultation and
operations research; he was a founder of the company Mathematica. serv-
ing as its first President.

Dr. Mills was the recipient of several distinguished awards. including
honorary Fellow in Mathematics from Wesleyan University in 1962, ACPA
Fellow in 1975, the DPMA Distinguished Information Sciences Award in
1985, and the Warnier Prize in 1987. .

Victor R. Basili (M’83-SM’84) is Professor and
Chairman of the Department of Computer Science
at the University of Maryland, College Park. He
was involved in the design and development of
several software projects, including the SIMPL
family of programming languges. He is currently
measuring and evaluating software development
in industrial and government settings and has con-
sulted with many agencies and organizations, in-
cluding IBM, GE, CSC, GTE, MCC, AT&T,
Motorola, HP, NRL, NSWC, and NASA. He is
one of the founders and principals in the Software Engineering Laboratory,
a joint venture between NASA Goddard Space Flight Center, the Univer-
sity of Maryland and Computer Sciences Corporation, established in 1976.
He has been working on the development of quantitative approaches for
software management, engineering, and quality assurance by developing
models and metrics for the software development process and product. He
has authored over 90 papers. In 1982, he received the Outstanding Paper
Award from the IEEE TRANSACTIONS ON SOFTWARE ENGINEERING for his
paper on the evaluation of methodologies.

Dr. Basili is currently the Editor-in-Chief of the IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING and was Program Chairman for several con-
ferences including the 6th International Confercnce on Software Engineer-
ing. He has served on the Editorial Board of the Journal of Systems and
Software. He is a member of the Board of Governors of the IEEE Computer
Society.

John D. Gannon received the A.B. degree in
mathematical economics and the M.S. degree in
applied mathematics from Brown University,
Providence, RI, in 1970 and 1972, respectively.
and the Ph.D. degree in computer science from
the University of Toronto, Toronto, Ont., Can-
ada, in 1975. . :

He is currently a Professor in the Department
of Computer Science and the Institute for Ad-
vanced Computer Studies at the University of
Maryland. His research centers on language and
compiler design to increase the reliability of programs. Initially his work
focused on the design of less error-prone programming languages. His in-
terests in program proving and testing have led him to investigate formal
specifications, test oracles, and test coverage metrics. He has also studied
atomic remote procedure call as a primitive for distributed and fault-tol-
erant computing.

Richard G. Hamlet (M'81) is a Professor of
Computer Science at Portland State University.
Portland, OR. After a career in electrical engi-
neering, engineering physics, and mathematics, he
discovered computing. in the form of recursion
theory, at the University of Washington, Scattle.
He now concentrates on software engineering the-
ory, especially testing theory.

