IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 6. JUNE 1989 147

An Evaluation of Expert Systems for Software
Engineering Management

CONNIE LOGGIA RAMSEY, MEMBER, IEEE, AND VICTOR R. BASILI, SENIOR MEMBER, IEEE

Abstract—Although the field of software engineering is relatively
new, it can benefit from the use of expert systems because of the ability
to learn from them. We believe that a major limitation to building ex-
pert systems for software engineering is the fact that much of the
knowledge in this field is not well understood yet. Therefore, the de-
velopment of expert systems in this field must be considered explora-
tory. This project focused on the development of four separate, pro-
totype expert systems to aid in software engineering management.
Given the values for certain metrics, these systems provide interpre-
tations which explain any abnormal patterns of these values during the
development of a software project. The four expert systems, which solve
the same problem, were built using two different approaches to knowl-
edge acquisition, a bottom-up approach and a top-down approach, and
two different expert system methods, rule-based deduction and frame-
based abduction. In a comparison to see which methods might better
suit the needs of this field, it was found that the bottom-up approach
led to better results than did the top-dewn approach, and the rule-
based deduction systems using simple rules provided more complete
and correct solutions than did the frame-based abduction systems.

Index Terms—Expert systems, software development, software en-
gineering management.

I. INTRODUCTION

HE importance of expert systems is growing in in-

dustrial, medical, scientific, and other fields. Several
major reasons for this are: 1) the necessity of handling an
overwhelming amount of knowledge in these areas, 2) the
potential of expert systems to train new experts, 3) the
potential to learn more about a field while organizing
knowledge for the development of expert systems, 4) cost
reductions sometimes provided by expert systems, and 5)
the desire to capture corporate knowledge so it is not lost
as personnel changes.

Although the field of software engineering is still rela-
tively new, it can certainly benefit from the use of expert
systems because of the ability to learn from them. The
development of any expert system requires organized
knowledge; therefore, the knowledge engineer can learn
more about the field of software engineering as he is

Manuscript received November 10, 1986; revised January 31, 1989.
This work was supported in part by the National Aeronautics and Space
Administration under Grant NSG-5123 to the University of Maryland.
Computer support was provided in part by the Computer Science Center of
the University of Maryland.

C. L. Ramsey is with the Navy Center for Applied Research in Artificial
Intelligence, Naval Research Laboratory, Washington, DC 20375.

V. R. Basili is with the Institute for Advanced Computer Studies and
the Department of Computer Science, University of Maryland, College
Park, MD 20742.

IEEE Log Number 8927386.

forced to develop, understand, and organize relationships
between various pieces of knowledge.

On another level, the expert systems in this field can be
used to train and help people, including software man-
agers. They can contain general software engineering
principles as well as a history of information from a par-
ticular software development environment which can be
particularly helpful to inexperienced managers and devel-
opers.

Since software engineering is still such a new field with
much of its knowledge unclear, expert systems developed
in this field must be considered exploratory prototypes.
This project focused on software engineering manage-
ment. A first attempt was made at creating and system-
atically analyzing and comparing expert systems which
intelligently relate software engineering project measure-
ments and explanations of project behavior. This was an
exploratory learning experience which has provided an
initial baseline for future work [4], [29].

The high level goal of this project was to examine dif-
ferent approaches to expert system development for soft-
ware engineering management and determine strengths
and limits of the various approaches as they relate to the
field. Some of the questions this study tried to answer
were: 1) Are expert systems for software engineering
management feasible at this time? 2) What methodology
should be used for knowledge acquisition? 3) What type
of expert system methodology best suits software engi-
neering management? 4) Do the experts themselves agree
on the information to be used? 5) Are certain software
environments more suited for expert systems than others?
6) Are we ready to develop systems with environment-
independent, general truths? 7) What information should
be included in the system?

This paper will discuss the comparison of several pro-
totype expert systems, collectively named ARROW-
SMITH-P.' Earlier versions of thesg expert systems are
described in [3]. ARROWSMITH-P is intended to aid the
manager of a software development project in an auto-
mated manner. The goal of these systems is to help detect
and assess the problems which might occur during the
coding and testing of a project as early as possible. The
systems work as follows. First, it is determined whether
or not a software project is following normal development

'Martin Arrowsmith, created by Sinclair Lewis in the novel Arrowsmith,
was in constant search of truth in scientific fields. The *‘P’’ stands for
Prototype.

0098-5589/89/0600-0747$01.00 © 1989 IEEE

748 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. IS, NO. 6. JUNE 1989

patterns by comparing measures such as programmer
hours per line of source code against historical, environ-
ment-specific baselines of such measures. Then, the
‘‘manifestations’’ detected by this comparison, such as an
abnormally high rate of programmer hours per line of
source code, serve as input to each expert system, and
each system attempts to determine the reasons, such as
high complexity or low productivity, for any abnormal
software development patterns. Early detection of poten-
tial problems can provide invaluable assistance to the
manager of a software development project. These expert
systems should be updated as the environment changes
and as more is learned in the field of software engineer-
ing.

The rest of this paper is organized as follows. Section
IT provides a brief overview of the underlying methodol-
ogies used to build the expert systems discussed in this
paper. The knowledge representation and inference tech-
niques of the methodologies are presented here. Section
I describes aspects of the software engineering devel-
opment environment used for this study. Section IV de-
tails the implementations of ARROWSMITH-P, i.e., how
the different approaches were utilized to build the expert
systems. In Section V, some of the technical issues and
problems associated with this process are discussed. Sec-
tion VI furnishes the details for the evaluation of the ex-
pert systems. Section VII then discusses results and con-
clusions from the development and testing of the expert
systems. Finally, Section VIII discusses current and future
research needs.

II. BACKGROUND ON EXPERT SYSTEMS

In general, an expert system consists of two basic com-
ponents, a domain-specific knowledge base and a domain-
independent inference mechanism. The knowledge base
consists of data structures which represent general prob-
lem-solving information for some application area. The
inference mechanism uses the information in the knowl-
edge base along with problem-specific input data to gen-
erate useful information about a specific case.

The set of expert systems in ARROWSMITH-P was
constructed using KMS [25], an experimental domain-in-
dependent expert system generator which can be used to
build rule-based, frame-based and Bayesian systems. The
ARROWSMITH-P systems were built using two different
methods: rule-based deduction and frame-based abduc-
tion. These two methods are briefly described below.

A. Rule-Based Deduction

A common method for expert systems is rule-based de-
duction. In this approach, domain-specific problem-solv-
ing knowledge is represented in rules which are basically
of the form:

“IF <antecedents> THEN < consequents> ",

although the exact syntax used may be quite different
(e.g., PROLOG). If the antecedents of such a rule are
determined to be true, then it logically follows that the

consequents are also true. Note that these rules are not
branching points in a program, but are nonprocedural
statements of fact.

The inference mechanism consists of a rule interpreter
which, when given a specific set of problem features, de-
termines applicable rules and applies them in some spec-
ified order to reach conclusions about the case at hand.
Rule-based deduction can be performed in a variety of
ways, and rules can be chained together to make multiple-
step deductions. (For a fuller description, see [13].) In

" addition, in many systems one can attach ‘‘certainty fac-

tors’* to rules to capture probabilistic information, and a
variety of mechanisms can be used to propagate certainty
measures during problem solving. MYCIN [26] and
PROSPECTOR [8] are two well-known examples of ex-
pert systems which incorporate rule-based deduction.

B. Frame-Based Abduction

Another important method for implementing expert
systems is frame-based abduction. Here, the domain-spe-
cific problem-solving knowledge is represented in de-
scriptive “‘frames’’ of information [15], and inference is
typically based on hypothesize-and-test cycles which
model human reasoning as follows. Given one or more
initial problem features, the expert system generates a set
of potential hypotheses or ‘‘causes’’ which can explain
the problem features. These hypotheses are then tested by
1) the use of various procedures which measure their abil-
ity to account for the known features, and 2) the genera-
tion of new questions which will help to discriminate
among the most likely hypotheses. This cycle is then re-
peated with the additional information acquired. This type
of reasoning is used in diagnostic problem solving (see
[22] for a review). INTERNIST [14], KMS.HT [25],
[23], PIP [17], and IDT [27] are typical systems using
frame-based abduction.

In order to simulate hypothesize-and-test reasoning,
KMS employs a generalized set covering model in which
there is a universe of all possible manifestations (symp-
toms) and a universe which contains all possible causes
(disorders). For each possible cause, there is a set of man-
ifestations which that cause can explain. Likewise, for
each possible manifestation, there is a set of causes which
could explain the manifestation. Given a diagnostic prob-
lem with a specific set of manifestations which are pres-
ent, the inference mechanism finds all sets of causes with
minimum cardinality? which could explain (cover) all of
the manifestations. For a more detailed explanation of the
theory underlying this approach and the problem-solving
algorithms, see [23], [24], [16], and [18].

III. BACKGROUND ON SOFTWARE ENVIRONMENT
The software which provided the data for this study was
developed at the NASA Goddard Space Flight Center.
This software development environment is homogeneous,
.*Ockham’s razor. which states that the simplest explanation is usually

the correct one, together with the assumption of independence among causes
motivate the requirement of minimum cardinality. ’

RAMSEY AND BASILI: EVALUATION OF EXPERT SYSTEMS

i.e., many similar projects are developed for the same ap-
plication area. There has been a standard process model
developed over the years; the methodology for develop-
ment is similar across projects, and there is a great deal
of reuse of code from prior projects.

The NASA Software Engineering Laboratory has been
collecting reliable software project data such as program-
mer hours and lines of code for approximately fifteen
years. The data used for the knowledge bases of the ex-
pert systems was chosen from this database of information
because it was standard data for the environment and cov-
ered a great deal of the software life cycle phases being
studied.

The experts who aided in knowledge acquisition were
two managers who had successfully supervised software
development in this environment for many years. They
were also involved in the collection and analysis of data
for prior projects and therefore understood the implica-
tions of the information in the database.

IV. IMPLEMENTATIONS

In this section, we will first present the methodology
developed for building expert systems for software engi-
neering management. Then we will discuss the actual im-
plementations of ARROWSMITH-P.

A. Methodology

The following two methodologies of knowledge acqui-
sition for constructing expert systems for software engi-
neering management were developed. They can best be
described as a bottom-up methodology and. a top-down
methodology. (An earlier version of the bottom-up rea-
soning was developed by Doerflinger and Basili [12].)

1) Bottom-Up Methodology: Given a homogeneous
environment, it is possible to produce historical, environ-
ment-specific baselines of normalized metrics from the
data of past software projects. Normalized metrics are de-
rived by comparing variables such as programmer hours
and lines of code against each other. This is done so in-
fluences such as the size of the individual project are fac-
tored out. The baseline for each metric is defined as the
average value of that metric for the past projects at vari-
ous discrete time intervals (such as early coding or accep-
tance testing). Only those metrics which exhibit baselines
with reasonable standard deviations should be used: too
little variety in the values of the measures proves uninter-
esting, while too much variety is not very meaningful. In
addition, one ideally wants a relatively small number of
meaningful metrics whose values are easily obtainable.

Next, experts can determine interpretations, such as
unstable specifications or good testing, which would ex-
plain any significant deviation (more than one standard
deviation less than or greater than the average) of a par-
ticular metric from the historical baseline. The deviation
of some metric can be thought of as a manifestation or
symptom which can be ‘‘diagnosed’’ as certain interpre-

749

tations or causes. Furthermore. these relationships be-
tween interpretations and manifestations should be made
time-line specific because, for example, an interpretation
during early coding might not be valid during acceptance
testing. In addition, measures to indicate how certain one
is that the deviation of a particular metric has resulted
from a particular interpretation can be included.

The approach, described above, can be classified as a
bottom-up approach because it seems to go in the opposite
direction of cause-and-effect. First the symptoms (deviant
metric values) that something is abnormal are explored,
and then the underlying interpretations or diagnoses of the
abormalities are developed. This.approach to knowledge
acquisition is reasonable in a homogeneous environment
because the metrics are homogeneous, and deviations are
indicative that something is wrong. However, this ap-
proach contrasts with the development of expert systems
in other fields, such as medicine, which typically use a
top-down approach.

2) Top-Down Methodology: A top-down approach to
knowledge acquisition can be similar to the bottom-up ap-
proach in that the same manifestations and causes can be
used. However, it would first define the various interpre-
tations or diagnoses and then indicate the metrics which
would be likely to have abnormal values for each inter-
pretation. '

Using the top-down approach, the experts view the
knowledge from a different perspective when defining the
relationships that exist between the interpretations and
manifestations. This approach can be seen as a more gen-
eral approach than the bottom-up approach is to knowl-
edge acquisition in the field of software engineering man-
agement. In the bottom-up methodology, the metrics are
analyzed first and these are, by their nature, environment-
specific. The focus is automatically limited to the specific
environment. Conversely, in the top-down methodology,
the experts think first of the causes or interpretations and
then indicate the effects or likely metrics which would
show deviant values if a certain interpretation existed.
This generalizes the problem across environments some-
what because the emphasis seems to be switched to the
interpretations which can be universal.

3) Using the Expert Systems: Once the expert systems
have been developed, the input to each expert system
would then consist of those metrics from a current project
which deviate from a historical baseline of the same met-
rics at the same time of development for similar projects.
The knowledge bases consist of information about various
potential causes, such as poor testing or unstable speci-
fications, for any abnormally high or low measures, and
the expert system provides explanations for any abnormal
software development patterns.

B. Actual Implementations

ARROWSMITH-P consists of four independent expert
systems, one using a bottom-up approach to knowledge
acquisition and rule-based deduction, a second using the

750 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 6. JUNE (989

bottom-up approach and frame-based abduction, a third
using a top-down approach to knowledge acquisition and
rule-based deduction, and a fourth using the top-down ap-
proach and frame-based abduction.

The bottom-up methodology described above was based
on previous research conducted on the NASA Goddard
Space Flight Center Software Engineering Laboratory
(SEL) environment [12]. Since the SEL environment is
homogeneous, it was possible to produce historical, en-
vironment-specific baselines of normalized metrics from
the highly reliable data of nine software projects. (See
[71, (51, [6], [9], and [1] for fuller descriptions of the SEL
environment.)

The bottom-up development was performed first, and
nine metrics, derived from five variables, were chosen be-
cause they were standard data measurements for the en-
vironment and covered a great deal of the software life
cycle phases being studied. They also proved satisfactory
because they exhibited baselines with reasonable standard
deviations. The metrics are displayed in Table I. These
same metrics were later used during the top-down devel-
opment to ensure consistency and to allow a comparative
study to be performed. The time-line for the baselines was
divided (after a slight modification) into the following five
discrete intervals: early code, middle code, late code, sys-
tems test, and acceptance test.

The initial sets of interpretations and the relationships
between the interpretations and the abnormal values of
metrics were mainly derived from two experts who have
had a great deal of experience in this field and particularly
in the SEL environment. The experts were asked what
they thought high and low values of metrics might mean,
and the interpretations they suggested were used in the
experiment [12]. During the bottom-up development of
ARROWSMITH-P, mainly one of these experts modified
the existing sets and made them time-line specific. In ad-
dition, measures to indicate how certain one is that the
interpretation and the abnormal metric value are con-
nected were included. During the top-down development,
the same two experts were again asked to provide the re-
lationships for all five time phases, and the intersection of
their responses was used for the expert systems. Some of
their other indicated relationships were used as well; when
the experts did not agree on a relationship, we discussed
the situation to understand the reasoning behind the rela-
tionship and to see how certain an expert felt about the
relationship. The list of interpretations used and tested in
the bottom-up and top-down expert systems is displayed
in Table II. (Other interpretations were used as well, but
these could not be tested. See [3] for the complete list.)

As stated previously, two different expert system meth-
ods were used to build the expert systems for this appli-
cation in order to determine which method better suits the
needs of this field. The two methods used were rule-based
deduction and frame-based abduction which were de-
scribed in Section II. In the rule-based systems, the rules
are of the form ‘‘IF manifestations THEN interpreta-
tions,”’ while in the frame-based systems, there is one

TABLE |
METRICS USED IN EXPERT SYSTEM

- Computer Runs per Line of Source Code

- Computer Time per Line of Source Code

- Software Changes per Line of Source Code
- Programmer Hours per Line of Source Code
- Computer Time per Computer Run

- Software Changes per Computer Run

- Programmer Hours per Computer Run

- Computer Time per Software Change

- Programmer Hours per Software Change

TABLE 11
INTERPRETATIONS USED IN EXPERT SYSTEM

Unstable Specifications

Low Productivity

High Productivity

High Complexity or Tough Problem

High Complexity or Compute Bound Algorithms Run or Tested
Low Complexity

Simple System

Error Prone Code

Good Solid and Reliable Code

Large Portion of Reused Code

Lots of Testing

Little Testing

Good Testing or Good Test Plan

Lack of Thorough Testing

Poor Testing Program

Changes Hard to Make

Loose Configuration M or U
Tight Configuration Management or Control
Computer Problems or Inaccessibility or Environmentat Constraints
Lots of Terminal Jockeys

d Development

frame (containing a list of manifestations) for each inter-
pretation. Please note that these formats are independent
of whether the relationships between manifestations and
interpretations were defined using a bottom-up or a top-
down approach to knowledge acquisition. The rule-based
and frame-based systems which used the bottom-up ap-
proach were intentionally built to be as consistent with
one another as possible. The causes and manifestations
used were identical in both cases, as were the relation-
ships between them. The same was true for the two expert
systems which employed the top-down approach. How-
ever, the certainty factors attached to the rules and the
measures of likelihood in the frames could not be directly
translated to each other so some of these measures were
omitted. For example, within the bottom-up approach we
were relatively certain that an abnormally high value of
computer time per software change is caused by good,
reliable code so this was given a certainty factor of 0.75.
However, if that particular metric appears abnormally
high very infrequently and that particular interpretation is
common, then we would not be able to state that good,
reliable code generally results in an abnormally high value
of computer time per software change. (For a discussion
of similar problems see [21].) Fig. 1 shows a sample
section of a rule-based and a frame-based knowledge base.
Example sessions with the expert systems are provided in
the Appendix.

RAMSEY AND BASILI: EVALUATION OF EXPERT SYSTEMS

V. RESEARCH ISSUES AND PROBLEMS

The field of expert systems is relatively new, and there-
fore, the development process of expert systems still faces
many problems. The selection of which method to use for
building them is not generally clear, although an attempt
has been made to provide guidelines for the selection of
an appropriate method in {21]. Furthermore, most expert
systems are shallow in nature and cannot handle temporal
or spatial information well.

In addition to general problems, negative effects are
compounded when the knowledge to be included in such
systems is incomplete. The science of software engineer-
ing is not well-defined yet, and therefore many details
about the relationships between various components are
often unclear. The experts themselves may not even agree
on the information used in the expert systems. As a result,
the knowledge base of any expert system developed in
this field is particularly exploratory and prototypical in
nature. This is in contrast to expert systems developed in
established fields such as medicine where the information
contained in the knowledge base is based on many years
of experience.

Due to the uncertainty of the data in the knowledge base
for a field such as software engineering, one must deal
with the issues of completeness versus correctness and
completeness versus minimality. When dealing with a di-
agnostic problem, the more certain one is of relationships
between causes and manifestations, the more exact the
answer can be, ultimately leading to the one correct an-
swer. However, when dealing with very uncertain rela-
tionships, it is preferable to list many outcomes so as to
avoid missing the correct explanation, and to let the ex-
perienced person using the expert system decide what the
correct explanation really is. Therefore, rules with simple
antecedents were used in the rule-based deduction sys-
tems [see Fig. 1(a)] because the more involved patterns
needed for complex antecedents are not yet known. If one
tried to “‘guess’’ what these patterns are without actually
being certain, this would lead to incomplete solutions
which miss some of the correct interpretations. For ex-
ample, a high value for computer runs per line of code, a
high value for computer time per line of code, and a high
value for programmer hours per line of code are all indi-
cations of low productivity. So, we might construct the
following rule for this pattern:

IF computer runs per line of code is above normal,
and computer time per line of code is above normal,
and programmer hours per line of code is above nor-
mal THEN the interpretation is Low Productivity.

However, what if it turns out that computer time per line
of code is almost never above normal? Then this rule will
almost never succeed, and we will miss the interpretation
of low productivity even if it happens to be true.

This issue also leads to concern in the frame-based ab-
duction systems which provide all answers of minimum
cardinality. This inference mechanism works well for

751

ATTRIBUTES:

/* INPUT ATTRIBUTES */

COMPUTER RUNS PER LINE OF SOURCE CODE (SGL):
ABOVE NORMAL,
NORMAL,
BELOW NORMAL.

/* INFERRED ATTRIBUTE */
INTERPRETATION (MLT):

UNSTABLE SPECIFICATIONS

LOW PRODUCTIVITY

HIGH PRODUCTIVITY

GOOD TESTING OR GOOD TEST PLAN

RULES:

CRLCI IF COMPUTER RUNS PER LINE OF CODE = ABOVE NORMAL,
& TIME = EARLY CODING
THEN INTERPRETATION = LOW PRODUCTIVITY <0.25>,
& INTERPRETATION = ERROR PRONE CODE <0.75>.

SCLC3 IF SOFTWARE CHANGES PER LINE OF CODE = ABOVE NORMAL,
& TIME = LATE CODING
THEN INTERPRETATION = GOOD TESTING OR GOOD TEST PLAN <0.25>,
& INTERPRETATION = ERROR PRONE CODE <0.75>.

(a)
ATTRIBUTES:

7* INPUT ATTRIBUTES ¢/

COMPUTER RUNS PER LINE OF SOURCE CODE (SGL):
ABOVE NORMAL,
* NORMAL,
BELOW NORMAL.

* INFERRED ATTRIBUTE - FRAMES */
INTERPRETATION (MLT):
LOW PRODUCTIVITY
[DESCRIPTION:
COMPUTER RUNS PER LINE OF CODE = ABOVE NORMAL;
COMPUTER TIME PER LINE OF CODE = ABOVE NORMAL;
PROGRAMMER HOURS PER LINE OF CODE = ABOVE NORMAL],
GOOD TESTING OR GOOD TEST PLAN
[DESCRIPTION:
SOFTWARE CHANGES PER LINE OF CODE = ABOVE NORMAL;
SOFTWARE CHANGES PER COMPUTER RUN = ABOVE NORMAL;
COMPUTER TIME PER SOFTWARE CHANGE = BELOW NORMAL;
PROGRAMMER HOURS PER SOFTWARE CHANGE = BELOW NORMAL },

()
Fig. 1. (a) Small section of (a) rule-based deduction expert system, (b)
frame-based abduction expert system.

most diagnostic problem solving, but one must be cau-
tiously aware of the fact that not all possible explanations
are provided by this expert system. For example, if an
abnormally high value of computer runs per line of code
and an abnormally low value of programmer hours per
software change can be explained by the combination of
two interpretations, low productivity, and good testing,
and also by a single interpretation, error prone code alone,
then only the single interpretation will be provided by this
system. This is because the single interpretation has a
lower cardinality than the two interpretations together. As
was the case in this study, some researchers now feel that
the idea of providing only answers of minimum cardinal-
ity (minimal set covers) is inadequate sometimes. Re-
search is currently being performed on a newer and better
method called irredundant covers which provides all ir-
redundant sets of causes which cover all of the manifes-

752 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 6. JUNE 1989

tations [19], [11]. (A set of interpretations which covers
all of the manifestations is irredundant if none of its
proper subsets also cover all of the manifestations.)

One final, but very important, fact should be noted here.
ARROWSMITH-P was built using the data from one par-
ticular homogeneous environment. Therefore, the infor-
mation in the knowledge base reflects this one environ-
ment and would not be transportable to other
environments. However, the ideas and methods used to
build ARROWSMITH-P are transportable, and that is
what is important.

VI. EVALUATION oF EXPERT SYSTEMS

A. Methods of Evaluation

ARROWSMITH-P has been evaluated in several ways.
The correctness of each system was measured by com-
paring the interpretations provided by the expert system
against what actually happened during the development
of the projects, thereby obtaining a measure of agree-
ment. This analysis was performed for ten projects (the
original nine plus a newer project which was completed
after the development of the expert systems) in all five
time phases for each of the four expert systems. Each of
the original nine projects was compared against historical
baselines of the remaining eight projects to determine ab-
normal metric values, and the tenth project, which was
tested later, was compared against the original nine. A
total set of 50 cases was tested on each of the four expert
systems.

The actual results of what took place during develop-
ment were gathered from information in another section
of the database, mostly from subjective evaluation forms
and project statistics forms. The subjective evaluation
form contains mostly subjective information (such as a
rating of the programming team’s performance) and some
objective numbers (such as total number of €rTors) con-
cerning the project’s overall development. Since the vast
majority of the ratings in the subjective evaluation form
is not divided by phase of the project, there probably exist
some discrepancies between the results indicated in the
forms and the actual interpretations for a particular phase.
However, these are the closest data that are available, so
we must assume that most of the interpretations for each
phase are similar to the interpretations for the entire proj-
ect. .

The results from the expert systems were also analyzed
statistically by using a Kappa statistic test [28], [10] on
each interpretation. The Kappa statistic determines
whether the results are better or worse than chance agree-
ment. It takes into account the number of correct answers
and the number of incorrect answers with respect to each
interpretation, and it determines the amount of agreement
which can be attributable to chance alone. The formula
for the Kappa statistic is:

P, - P,
1 - P,

K =

TABLE III
(a) COMPARISON OF RESPONSES PROVIDED BY EXPERTS IN EACH OF THE FIVE
TIME PHASES FOR THE TOP-DOWN EXPERT SYSTEMS. (b) COMPARISON OF
FiNaL BoTToM-Up AND FINAL TOP-DowN EXPERT SYSTEMS

Number of Relationships Indicated by Experts
Time Phase Expert 1 Expert 2 Intersection
Early Coding 66 60 23
Middle Coding 78 65 28
Late Coding 81 ¢ 68 38
Systems Test 79 48 30
Acceptance Test 68 42 23
@
Number of Relationships Used in Each Approach
Time Phase Bottom-Up Top-Down Interscction
Early Coding 61 35 15
Middle Coding 65 43 19
Late Coding 63 50 23
Systems Test 65 40 17
Acceptance Test 62 37 17

(b)

where P, is the observed proportion of agreement, and P,
is the proportion of agreement expected by chance. A
value of 1 for K indicates perfect agreement, a value of 0
indicates that the results can be due to chance alone, and
a value less than O indicates worse than chance agree-
ment. The Kappa statistic was used for each interpretation
in each of the four expert systems. This was done to de-
termine whether certain interpretations are better under-
stood than others.

In addition to testing the performance of the expert sys-
tems, an anlaysis was performed to compare the infor-
mation provided by the two experts for the systems. This
was performed by comparing the relationships indicated
by each of the experts against each other and also by com-
paring the relationships indicated in the bottom-up sys-
tems against those indicated using the top-down ap-
proach.

B. Results

The first results we would like to discuss are those com-
paring information provided by the experts. This is essen-
tial because the expert systems can only perform as well
as the knowledge contained in the systems permits. The
experts were asked to fill in grids (one for each time phase
for the bottom-up approach and one for each time phase
for the top-down approach) indicating the relationships
between the interpretations and the manifestations as de-
scribed in Section IV. The comparison between the sets
of grids for the top-down approach is provided in Table
IlI(a). (The data for one of the experts using the bottom-
up approach is incomplete, so a comparison between the
two experts was not made there.) The experts only agreed
in about 1/3-1/2 of their indicated relationships. Fur-
thermore, the final set of relationships for the top-down
approach is very different from the final set for the bot-
tom-up approach. [See Table III(b).] When deciding on
the relationships during the top-down development, the
experts even decided to combine some of the interpreta-
tions used in the bottom-up approach, feeling there was

RAMSEY AND BASILI: EVALUATION OF EXPERT SYSTEMS 753
TABLE IV
AGREEMENT BETWEEN EXPERT SYSTEM AND INFORMATION IN DATABASE
BotroM-Up SYSTEMS.. (a) EARLY CODING PHASE. (b) MipDLE CODING
PHASE, (c) LATE CoDING PHASE, (d) SYSTEMS TEST PHASE,
(e) ACCEPTANCE TEST PHASE
Rule-Based Deduction System Frame-Based Abduction System Rule-Based Deduction System Frame-Based Abduction System
Project Agreement Disagreement Extra | Agreement Disagreement Extra Project Agreement Disagreement Extra { Agreement Disagreement Extra
1 1 0 2 1 0 2 1 3 0 7 0 3 1
2 3 4 7 0 7 1 2 0 7 0 0 7 0
3 1 0 9 1 0 5 3 1 1 11 0 2 i
4 0 4 0 4] 4 0 4 2 2 1 2 2 1
5 2 2 5 1 3 3 s 0 5 0 0 5 0
6 1 3 3 1 3 3 6 4 0 7 0 4 1
7 1 5 1 1 S 1 7 2 4 4 0 6 2
8 0 4 0 0 4 0 8 5 3 2 1 7 0
9 4 2 8 0 6 1 9 2 4 2 2 4 2
10 7 2 4 1 8 0 10 5 4 5 1 8 3
Total 20 26 39 [40 16 Total 24 30 39 6 48 11
Percent Percent
Agreement 43% (20/46) 13% (6/46) Agreement 44% (24/54) 11% (6/54)
(a) W)
Rule-Based Deduction System Frame-Based Abduction System Rule-Based Deduction System Frame-Based Abduction System
Project Agreement Disagreement Extra | Agreement Disagreement Extra Project Agreement Disagreement Extra | Agrcement Disagrecment Extra
1 2 1 [0 3 2 1 1 2 8 1 2 6
2 4 3 8 2 5 4 2 3 4 7 i} 7 !
3 0 2 0 0 2 0 3 0 1 0 0 1 0
4 1 3 3 1 3 0 4 2 2 4 1 3 0
5 0 6 5 0 6 5 S 1 5 0 1 5 0
6 3 1 5 1 3 1 6 3 H 5 0 4 H
7 1 S [} 1 S 0 7 2 4 3 2 4 3
8 3 5 3 1 7 2 8 3 5 1 3 5 1
9 1 b 2 1 5 1 9 2 4 6 2 4 6
10 1 8 3 1 8 3 10 1 8 3 1 8 3
Total 16 3% 35 8 47 18 Total 18 36 37 11 43 21
Percent Percent
Agreement 29% (16/55) 15% (8/55) Agreement 33% (18/54) 20% (11/54)
© @
Rule-Based Deduction System Frame-Based Abduction System
Project Agreement Disagreement Extra | Agreement Disagreement Extra
1 1 6 2 1 6 2
2 3 4 9 2 5 3
3 0 2 4 0 2 4
4 0 4 0 0 4 0
5 3 3 5 3 3 5
6 2 2 2 . 2 2 2
7 5 1 3 1 5 1
8 1 7 1 1 7 1
9 1 5 2 1 5 1
10 1 8 3 1 8 3
Total 17 42 31 i2 47 22
Percent
A 29% (17/59) 20% (12/59)
(e)

too little difference in meaning between them to be sig-
nificant, and they also dismissed several interpretations
during certain time phases (and tight management during
all time phases) because they felt that the meaning of those
interpretations could not be captured by the available met-
rics in those particular time periods. We believe that the
differences between the two approaches are mainly due to
two facts: 1) the experts were seeing the data from a very
different point of view, and 2) the metrics are not ideal in
that some of the interpretations could not be adequately
described in terms of the available metrics, so the experts
were not completely certain of all of the relationships that
they stated and they changed their opinions over time.
However, there were certain relationships which proved
more consistent than others. For example, the two experts

had strong agreement over the relationships involving
programmer hours per line of code, software changes per
line of code, and computer time per computer run. These
metrics seem to be better understood than the others prob-
ably because they are often used for evaluation and com-
parisons in this field. They also had fairly good agreement
with the interpretations of error prone code, lots of reused
code, and loose management. The top-down and bottom-

. up expert systems had good agreement over programmer

hours per line of code and software changes per line of
code and over the interpretations of error prone code and
good solid code.

The results of evaluating the four expert systems are
displayed in Tables IV and V. (An expanded version of
this data is presented in the technical report version of this

754

[EEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. I5. NO. 6. JUNE 1989

: TABLE V
AGREEMENT BETWEEN EXPERT SYSTEM AND INFORMATION IN DATABASE
Top-DowN SYSTEMS, (a) EARLY CODING PHASE, (b) MIDDLE CODING
PHASE, (¢) LATE CODING PHASE, (d) SYSTEMS TEST PHASE,
{€) ACCEPTANCE TEST PHASE

Rule-Based Deduction System Frame-Based Abduction System Rule-Based Deduction System Frame-Based Abduction System
Project Agreement Disagreement Extra Agreement Disagreement Extra Project Ag 1t Disag) Extra | Ag Disagn Extra
1 0 3 2 0 3 2 1 2 2 6 0 4 4
2 1 3 5 1 3 2 2 0 5 0 0 5 0
3] 1 5 0 1 t 3 1 1 7 1 1 3
4 0 4 0 0 4 0 4 0 2 1 0 2 1
5 1 i 3 0 2 2 s 0 4 0 0 4 0
6 1 2 2 1 2 2 6 3 H 6 0 4 1
7 1 2 2 1 2 2 7 0 4 4 0 4 2
8 0 3 0 0 3] 8 3 4 0 2 5 0
9 2 2 6 0 4 2 9 1 4 3 t 4 3
10 3 2 4 2 3 1 10 5 3 3 3 5 2
Total 9 23 29 5 27 14 Total 15 30 30 7 38 16
Percent Percent
Agreement 28% (9/32) 16% (5/32) Agreement 33% (15/45) 16% (7/45)
@ W)
Rule-Based Deduction System Frame-Bascd Abduction System Rule-Based Deduction System Frame-Based Abduction System
Project Agreement Disagreement Extra Agreement Disagreement Extra Project Agreement Disagreement Extra | Agreement Disagreement Extra
1 2 3 6 0 5 4 1 2 3 5 1 4 4
2 4 2 8 2 4 1 2 4 1 8 0 H 2
3 0 2 0 0 2 0 3 4] 0 0 0 0 0
4 1 3 1 1 3 1 4 1 3 3 0 4 1
5 1] 5 3 0 5 3 5 0 5 3 0 5 3
6 3 1 5 1 3 2 6 1 2 5 0 3 3
7 0 6 2 0 6 2 7 1 5 4 0 6 3
8 3 5 1 1 7 [8 1 7 0 1 7]
9 1 2 3 0 3 1 9 1 3 5 1 3 3
10 1 8 3 0 9 1 10 1 7 3 0 8 2
Total 15 37 32 5 47 15 Total 12 36 36 3 45 21
Percent Percent
Agreement 29% (15/52) 10% (5/52) Agreement 25% (12/48) 6% (3/48)
© (d)
Rule-Based Deduction System Frame-Based Abduction Sysiem
Project Agreement Disagreement Extra Agreement Disagreemcat Extra
1 0 5 5 [5 5
2 3 1 8 1 3 0
3 0 0 1 0 0 1
4 0 3 0 0 3 o
5 1 4 6 1 4 3
6 0 2 1 0 2 1
7 2 4 4 2 4 4
8 2 4 0 2 4 0
9 0 3 2 Y 3 1
10 0 7 3 0 7 1
Total 8 33 30 6 35 16
Percent
Agreement 20% (8/41) 15% (6/41)
O]

paper [20].) The entries in the agreement column are the
number of interpretations which were indicated by both
the expert system and the information in the database. The
entries in the disagreement column are those interpreta-
tions indicated by the database, but not listed by the ex-
pert system. Finally, the column labeled ‘‘Extra’’ speci-
fies the number of extra interpretations listed by the expert
system. This number is not that meaningful in determin-
ing the performance of the rule-based systems at this time
because, as discussed previously, the rule-based systems
were built to provide as complete a list of interpretations
as possible. The manager would then have to decide which
interpretations are meaningful and disregard the others,
However, in general, it is better to have as few extra inter-
pretations as possible. It should be noted that the total

number of interpretations varies from table to table. This
is because certain metrics were not available for some
projects in some of the time phases..It would be unfair to
say the expert systems did not detect certain interpreta-
tions if they were not given the manifestations necessary
to do so, so these interpretations were not included in the
results of the evaluation for those particular cases.

The expert systems performed moderately well given
the following limitations: 1) so much of the knowledge
and relationships are unclear in this field, 2) the experts
themselves do not agree on much of the knowledge, 3)
the expert systems used only five variables and only nine
metrics derived from these variables to achieve the list of
interpretations, 4) the metrics used are not ideal, 5) many
of the interpretations in the database are subjective in na-

RAMSEY AND BASILI: EVALUATION OF EXPERT SYSTEMS

ture and therefore may not always be correct, and 6) there
may be discrepancies between the interpretations of the
particular time phase and the overall interpretations for
the project. ’ _

The systems which were developed with the bottom-up
aproach performed better than those developed with the
top-down approach, and the rule-based deduction systems
performed better than the frame-based abduction systems.
Both the bottom-up and top-down rule-based systems per-
formed better than either of the frame-based systems. The
bottom-up rule-based system performed best, agreeing
with an average of 36 percent (ranging from 29 to 44 per-
cent depending on time phase) of the actual interpreta-
tions indicated in the subjective evaluation forms and
project statistics forms in the database, and the top-down
rule-based system agreed with an average of 27 percent
(ranging from 20 to 33 percent) of the database conclu-
sions. The bottom-up frame-based system agreed with an
average of 16 percent (ranging from 11 to 20 percent) of
the database interpretations, and the top-down frame-
based system agreed with an average of 13 percent (rang-
ing from 6 to 16 percent) of the database conclusions. It
should be pointed out that each expert system produced
relatively consistent results throughout its five time
phases.

The bottom-up systems contained more relationships
between manifestations and interpretations than did the
top-down systems. One might assume that the only reason
the bottom-up systems agreed with a higher percentage of
the database conclusions was that the bottom-up systems
would list more interpretations for the same input mani-
festations (test case). If it listed more interpretations, it
would get more right by chance. However, there was not
that big a difference between the number of manifesta-
tions per interpretation for the bottom-up systems which
was 3.16 and the number for the top-down systems which
was 2.77. As mentioned before, during the top-down de-
velopment, the experts combined certain interpretations
and dismissed others altogether during certain time phases
so there were fewer interpretations for each phase. Al-
though the intent was to throw out inappropriate interpre-
tations and make the top-down systems that much better,
the bottom-up systems still captured a higher percentage
of correct relationships than did the top-down systems.
The total number of interpretations listed by the bottom-
up rule-based system was 276 in the 50 test cases. Of
these, 95 were in agreement with the database conclu-
sions. The total number of interpretations listed by the
top-down rule-based system was 216, and of these, 59
agreed with the database conclusions. Therefore, the bot-
tom-up rule-based system had an average of 34 percent
(95/276) correct interpretations out of all those listed,
while the top-down rule-based system averaged only 27
percent (59 /216) correct interpretations.

It is interesting to observe that within both the bottom-
up and top-down sets of systems the frame-based system
always provided a subset of the interpretations listed by
the rule-based system (although in 48 percent of the com-

755
TABLE VI
KAPPA STATISTIC VALUES OF EACH INTERPRETATION IN EACH OF THE Four
EXPERT SYSTEMS

Bottom-Up Systems | Top-Down Systems

Interpretation RBD FBA RBD FBA
Unstable Specifications 0.120 0.000 -0.065 0.158

Low Productivity 0270 -0.065 0369 0.023

High Productivity 0.000 0.000 0.000 0.000
High Complexity (Tough Problem) -0.261 -0.236 -0.346 -0.160
Compute Bound Algorithm -0.139 -0.154 -0.253 -0.168
Low Complexity 0.122 -0.066 0.016 0.155

Simple System 0.121 0.124 i b

Error Prone Code 0.178 0.118 0.046 0.130
Good Solid Code 0.134 0.174 -0:372 -0.082
Lots of Reused Code -0.121 0.109 0075 -0.163
Lots of Testing -0.040 0.000 02713 -0.205
Little Testing 0.051 -0.144 -0.308 -0.238
Good Testing 0.231 0.296 -0.326 -0.198
Poor Testing 0.186 0.188 -0.241 -0.267

Lack of Thorough Testing -0.190 -0.061 kiad hiid
Changes Hard to Make 0.000 -0.092 021 0.149
Loose Management 0.124 0.123 0.427 0.194

Tight Management -0.062 -0.114 b b
Computer Problems 0.235 0.091 0.104 -0.092

Lots of Terminal Jockeys 0.049 -0.087 0.052 0.107

Note - K > 0 indicates better than chance ag K = 0 indi chance

agreement; K < 0 indicates worse than chance agreement.
RBD - Rulc-Based Deduction; FBA - Frame-Based Abduction
*** . these interpretations were not used in the top-down systems

bined bottom-up and top-down cases, the rule-based and
frame-based systems listed the exact same interpreta-
tions). As stated previously, the relationships between the
manifestations and interpretations were identical in the
frame-based and rule-based systems within each knowl-
edge acquisition approach used. Then, by the nature of
the expert system methodologies, the rule-based system
always listed every interpretation associated with every
input manifestation, while the frame-based system only
provided answers of minimum cardinality which ex-
plained all of the manifestations. Since the relationships
in the two systems were identical, the frame-based Sys-
tems could only list the exact same interpretations or a
proper subset of those listed by the rule-based systems.
As a result, the frame-based systems could not perform
better than the rule-based systems with respect to agree-
ment with the database conclusions. The frame-based Sys-
tems listed an average of 50 percent fewer extra interpre-
tations (ranging from 29 percent to 72 percent depending
on time phase) for the bottom-up approach and an average
of 48 percent fewer extra interpretations (ranging from 42
to 53 percent) for the top-down approach. However, it is
better to have extra interpretations than to miss correct
interpretations.

The results of using the Kappa statistic to evaluate the
expert systems is shown in Table VI. According to these
results, the bottom-up rule-based system performed best
again, indicating better than chance agreement for more
of the interpretations than the other systems did. A few
of the interpretations performed relatively well in all or
most of the expert systems. These were low productivity,
loose management, error prone code, and computer prob-
lems. The experts had fairly good agreement with each
other and also over time (between the bottom-up and the
top-down approaches) on the manifestations for loose

756 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. {5, NO. 6. JUNE 1989

management and error prone code. They agreed less on
low productivity and mostly disagreed on computer prob-
lems. The interpretations of low complexity, simple sys-
tem, and changes hard to make also did a little better than
chance agreement. The experts had fair agreement with
each other and over time concerning changes hard to
make, but mostly disagreed over low complexity and sim-
ple system. 1t is interesting to note that the interpretations
involving testing performed better in both bottom-up sys-
tems than in the top-down systems in general. Perhaps
testing is better understood using a very environment-spe-
cific approach. Several of the interpretations did not per-
form well in any of the expert systems, doing worse than
chance agreement in all or most cases. These were high
complexity (tough problem), compute bound algorithm,
good solid code, lots of reused code, lots of testing, little
testing, lack of thorough testing, and tight management.

VII. DiscussioN

The goal of this study was to determine whether it is
possible to build useful expert systems for software en-
gineering management. Some of the questions which we
tried to resolve involved determining how to do the
knowledge acquisition and what type of expert system
methodology might be best suited for this field. We used
two approaches to knowledge acquisition and two expert
system methodologies. The reader should be careful in
drawing too strong a set of conclusions, however, because
this was an exploratory experiment using a limited num-
ber of techniques for expert systems. It is very possible
that other representations of the knowledge using the same
or other inference mechanisms would lead to different re-
sults. Additionally, it is clear that a better and more ex-
tensive set of metrics would provide a more successful
management system. This work is being continued on the
TAME project [4] where various methods for structuring
knowledge are being analyzed. Based upon this study,
good results have also been obtained at NASA using a
similar system [29].

We believe that a major limitation to developing expert
systems for software engineering in general is the fact that
much of the knowledge in this field is not well understood
yet. Knowledge was gathered from two experts who have
had a great deal of experience in this field, and it was
found that they did not agree with each other about many
of the relationships we were trying to determine. Further-
more, they did not always agree with themselves when
looking at the data from a different point of view at a later
date.

The expert systems performed moderately well, espe-
cially when one considers that many of the relationships
between the metrics and the interpretations are unclear.
The experts did not agree on many of the relationships,
and the expert systems cannot perform better than the in-
formation included in them. Indeed, the bottom-up rule-
based system performed about as well as the experts
agreed with each other. In addition, a relatively small
number of metrics were used to suggest many interpreta-

tions, and the metrics used were not ideal. The experts
felt that some of the interpretations could not be ade-
quately described in terms of the available metrics. For
example, it was felt that the complexity interpretations
could not be adequately captured without error metric
data. The experts even threw out one of the interpretations
altogether when they were determining relationships using
the top-down approach. However, the five variables used
in the metrics were easily obtainable, and this is an im-
portant consideration when creating expert systems.

Another fact we would like to stress is that the expert
systems for the earlier time phases also performed well.
This is especially important because a manager should
learn of potential problems as early in the development
process as possible. Expert systems can be very helpful
because they may detect problems which a manager may
not recognize early on.

Two approaches to knowledge acquisition were used
and compared. The bottom-up approach produced better
results than did the top-down approach. This may well be
because the bottom-up approach is more environment-
specific. Since the field of software engineering is still
new, it is probably better to develop expert systems for
one homogeneous environment rather than trying to de-
termine general truths across different environments. In
general, it may be advantageous to work with small do-
mains when building expert systems for fields with un-
certain knowledge.

The two expert system methodologies, rule-based de-
duction and frame-based abduction, were also compared
with respect to ease of implementation and accuracy of
results. The initial knowledge was derived from empirical
software engineering research and organized in a table
format, so the very first sets of simple rules and frames
which were not time-line specific were straightforward to
develop. The situation became more complex when the
interpretations were made time-line specific. A time phase
was added to the antecedent of each rule, so there were
five times as many rules as before, specializing for each
of the five time phases. Each frame-based system was di-
vided into five systems based on time period because the
second dimension of time could not be incorporated into
the frames in a reasonable manner. Furthermore, an at-
tempt was made to rewrite the rules to contain more
meaningful and complex relationships among the mani-
festation in the antecedents. However, it was decided to
retain the format of simple rules in order to be as complete
as possible. It should be noted that for this type of diag-
nostic problem in a well-defined domain, it is generally
much easier and more natural to write frames than to en-
code the same information in complex rules [21].

In 48 percent of the cases, the rule-based and frame-
based systems provided the same interpretations. How-
ever, when analyzing the results from all projects, the
rule-based systems provided more interpretations and ex-
hibited a higher rate of agreement with the database than
did the frame-based systems. This is directly attributable
to the fact that simple rules containing one manifestation

RAMSEY AND BASILL: EVALUATION OF EXPERT SYSTEMS

in the antecedents were used in the rule-based systems,
leading to solutions which contained the complete list of
all possible interpretations associated with the manifes-
tations, while the frame-based systems provided only
those explanations of minimum cardinality and often
missed correct interpretations because the relationships
between interpretations and manifestations were not al-
ways correct. It is better to have extra interpretations than
to miss correct interpretations, so we conclude that a rule-
based system with simple rules is probably more appli-
cable to newer fields with unclear knowledge, such as
software engineering. However, as a field becomes more
established, a frame-based system may provide better so-
lutions. Also, newer methods of implementing frame-
based abduction with irredundant covers should provide
better results than those currently provided by frame-based
abduction using minimal set covers.

This study has provided many additional new insights
into the development of expert systems for software en-
gineering management. It is feasible to develop prototype
expert systems at this point in time, but one must realize
that in any new field with uncertain knowledge, the expert
systems cannot perform better than the state of knowledge
in the field permits. One of the best reasons to develop
these systems may be to learn from their development.
The knowledge engineer can learn a great deal about a
field as he organizes the information. Then, analyzing the
performance of the working systems can give further in-
sight about what is and what is not understood. In order
to develop better expert systems for software engineering
manag :imcnt, one needs to define fully the relationships
that exist between the components. In particular one must
define what development characteristics would result in
what types of abnormal measures, how this changes
through various project development phases, and how
certain one is that an abnormal measure results from a
certain characteristic.” As more is learned about software
engineering management, more can be incorporated into
useful expert systems.

VIII. FUTURE RESEARCH DIRECTIONS

The development of ARROWSMITH-P was a prelimi-
nary attempt at constructing expert systems for software
engineering management. Replications of this experiment
using varying approaches to building the expert systems
will lead to stronger confidence in the results and a better
understanding of the effects.

There is certainly a need for futher research in the field
of software engineering. As more is learned, the infor-
mation contained in the knowledge bases can be refined,
and new knowledge, such as information about error met-
rics [30], [2] or information about other phases of devel-
opment such as requirements or design, can be incorpo-
rated into the expert systems to make them stronger. As
incorrect relationships are brought to the surface, the sys-
tems can be changed to incorporate the knowledge gained
from testing. Eventually, the rules should become more
complex as relationships between manifestations and

757

causes become better defined. In addition, the testing of
current, ongoing projects can be performed on the expert
systems. The data from the new projects can then be in-
corporated into the environment-specific baselines of met-
rics so the systems continue to be updated as the environ-
ment changes.

In a more general sense, a theoretical framework for
developing expert systems for software engineering is
needed. For example, a categorization scheme, which
would address such issues as when a top-down system is
better than a bottom-up system and vice versa, should be
built. Also, perhaps a new and different type of inference
mechanism or method for building expert systems would
better suit the needs of some aspects in this field. All of
these issues require a great deal of further research and
analysis.

APPENDIX A
A SAMPLE INTERACTIVE SESSION WITH THE RULE-
BAsep DEDUCTION EXPERT SYSTEM

THIS EXPERT SYSTEM WILL HELP A MANAGER OF A SOFTWARE PROJECT
DETERMINE IF THE PROJECT IS ON SCHEDULE OR IN TROUBLE.
PLEASE ANSWER THE FOLLOWING QUESTIONS.

COMPUTER RUNS PER LINE OF SOURCE CODE:
(1)ABOVE NORMAL

(2)NORMAL

(3)BELOW NORMAL

=7

2,

COMPUTER TIME PER LINE OF SOURCE CODE:
(1DABOVE NORMAL

(2NORMAL

(3)BELOW NORMAL

=7

2.

SOFTWARE CHANGES PER LINE OF SOURCE CODE:
(1)ABOVE NORMAL

(2)NORMAL

(3)BELOW NORMAL

=?

2.

PROGRAMMER HOURS PER LINE OF SOURCE CODE:
(1)ABOVE NORMAL

(2)NORMAL

(3)BELOW NORMAL

=17

2.

COMPUTER TIME PER COMPUTER RUN:
(1)ABOVE NORMAL

(2)NORMAL

(3)BELOW NORMAL

=7
2.

SOFTWARE CHANGES PER COMPUTER RUN:
(1)ABOVE NORMAL

(2)NORMAL

(3)BELOW NORMAL

=?
2.

PROGRAMMER HOURS PER COMPUTER RUN:
(1)ABOVE NORMAL

(2)NORMAL

(3)BELOW NORMAL

=7

3.

PROJECT TIME PHASE:
(1)EARLY CODE PHASE
(2)MIDDLE CODE PHASE
(3)LATE CODE PHASE
(4)SYSTEMS TEST PHASE
(5)ACCEPTANCE TEST PHASE
=?

2.

COMPUTER TIME PER SOFTWARE CHANGE:
(1)ABOVE NORMAL

758

(2)NORMAL
(3)BELOW NORMAL
=7

2,

PROGRAMMER HOURS PER SOFTWARE CHANGE:
(1)ABOVE NORMAL

(2)NORMAL

(3)BELOW NORMAL

=?

3.

POSSIBLE INTERPRETATIONS ARE:
ERROR PRONE CODE <0.94>
EASY ERRORS OR CHANGES BEING FOUND OR FIXED <0.81>
LOTS OF TESTING <0.75>
LOTS OF TERMINAL JOCKEYS <0.75>
UNSTABLE SPECIFICATIONS <0.50>
NEAR BUILD OR MILESTONE DATE <0.50>
GOOD TESTING OR GOOD TEST PLAN <0.25>
MODIFICATIONS BEING MADE TO RECENTLY TRANSPORTED CODE <0.25>

Note - User answers are in boldface.

APPENDIX B

A SAMPLE INTERACTIVE SESSION WITH THE FRAME-

BASED ABDUCTION EXPERT SYSTEM

THIS EXPERT SYSTEM WILL HELP A MANAGER OF A SOFTWARE PROJECT
DETERMINE IF THE PROJECT IS ON SCHEDULE OR IN TROUBLE.

THIS PARTICULAR SYSTEM SHOULD BE USED FOR THE MIDDLE CODING PHASE.

PLEASE ANSWER THE FOLLOWING QUESTIONS.

FOCUS OF SUBPROBLEM:
THIS SUBPROBLEM IS CURRENTLY ACTIVE
GENERATOR:
COMPETING POSSIBILITIES:
UNSTABLE SPECIFICATIONS
LATE DESIGN
NEW OR LATE DEVELOPMENT
LOW PRODUCTIVITY
HIGH PRODUCTIVITY
HIGH COMPLEXITY OR TOUGH PROBLEM
HIGH COMP OR COMPUTE BOUND ALGORITHMS RUN OR TESTED
LOW COMPLEXITY
SIMPLE SYSTEM
REMOVAL OF CODE BY TESTING OR TRANSPORTING
INFLUX OF TRANSPORTED CODE
LITTLE EXECUTABLE CODE BEING DEVELOPED
ERROR PRONE CODE
GOOD SOLID AND RELIABLE CODE
NEAR BUILD OR MILESTONE DATE
LARGE PORTION OF REUSED CODE OR EARLY AND LARGER TESTS
LOTS OF TESTING
LITTLE OR NOT ENOUGH ONLINE TESTING BEING DONE
GOOD TESTING OR GOOD TEST PLAN
UNIT TESTING BEING DONE
LACK OF THOROUGH TESTING
POOR TESTING PROGRAM
SYSTEM AND INTEGRATION TESTING STARTED EARLY
CHANGE BACKLOG OR HOLDING CHANGES
CHANGE BACKLOG OR HOLDING CODE
CHANGES HARD TO ISOLATE
CHANGES HARD TO MAKE
EASY ERRORS OR CHANGES BEING FOUND OR FIXED
MODIFICATIONS BEING MADE TO RECENTLY TRANSPORTED CODE
LOOSE CONFIGURATION MANAGEMENT OR UNSTRUCTURED DEV
TIGHT MANAGEMENT PLAN OR GOOD CONFIGURATION CONTROL
COMPUTER PROBLEMS OR INACCESSIBILITY OR ENV CONSTRAINTS
LOTS OF TERMINAL JOCKEYS

COMPUTER RUNS PER LINE OF SOURCE CODE:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

=7
2.

COMPUTER TIME PER LINE OF SOURCE CODE:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

=7
2.

SOFTWARE CHANGES PER LINE OF SOURCE CODE:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

=17
2.

[EEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 6. JUNE 1989

PROGRAMMER HOURS PER LINE OF SOURCE CODE:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

=?

2.

SOFTWARE CHANGES PER COMPUTER RUN:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

=7
2.

COMPUTER TIME PER COMPUTER RUN:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

=7

2.

PROGRAMMER HOURS PER COMPUTER RUN:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

=7

3,

FOCUS OF SUBPROBLEM:
GENERATOR:
COMPETING POSSIBILITIES:

LOTS OF TERMINAL JOCKEYS
EASY ERRORS OR CHANGES BEING FOUND OR FIXED
LOTS OF TESTING
ERROR PRONE CODE
UNSTABLE SPECIFICATIONS

PROGRAMMER HOURS PER SOFTWARE CHANGE:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

=7

3.

FOCUS OF SUBPROBLEM:
GENERATOR:
COMPETING POSSIBILITIES:
EASY ERRORS OR CHANGES BEING FOUND OR FIXED
ERROR PRONE CODE

COMPUTER TIME PER SOFTWARE CHANGE:
(1) ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL

=7
2.

POSSIBLE INTERPRETATIONS ARE:
EASY ERRORS OR CHANGES BEING FOUND OR FIXED <H>
ERROR PRONE CODE <L>

Note - User answers are in boldface.
- Both interpretations listed as solutions can explain all of the mani-

festations, but the first is given a high measure of likelihood (shown
by the (H}) of being correct. while Error Prone Code is rated low.

ACKNOWLEDGMENT

The authors are grateful to F. McGarry, Dr. J. Page,
Dr. J. Reggia, J. Ramsey, B. Decker, and D. Card for
their invaluable assistance in this project. The authors
would also like to thank the members of their research
group for enlightening comments and ideas.

REFERENCES

{1] **Annotated bibliography of Software Engineering Laboratory (SEL)
literature, SEL-82-006,"" Software Eng. Lab., NASA Goddard Space
Flight Center, Greenbelt, MD, Nov. 1982.

[2] V. R. Basili and B. T. Perricone, *‘Software errors and complexity:
An empirical investigation,”* Commun. ACM., vol. 27, no. 1, pp. 42-
52, Jan. 1984.

[3] V. R. Basili and C. L. Ramsey. "*ARROWSMITH-P—A prototype
expert system for software engineering management,”” in Proc. Ex-
pert Systems in Government Symposium, IEEE, McLean, VA, Oct.
1985, pp. 252-264.

[4] V. R. Basili and H. D. Rombach, *‘The TAME project: Towards

RAMSEY AND BASILI: EVALUATION OF EXPERT SYSTEMS

improvement-oriented software environments,”* [EEE Trans. Soft-

ware Eng.. vol. SE-14, no. 6, pp. 758-~773. June 1988.

V. R. Basili and D. M. Weiss, ‘*A methodology for collecting valid

software engineering data,”” [EEE Trans. Software Eng., vol. SE-10,

no. 6, pp. 728-738. Nov. 1984.

[6] V. R. Basili and M. V. Zelkowitz, ‘‘Analyzing medium scale soft-
ware developments,”” in Proc. Third Int. Conf. Software Engineer-
ing, Atlanta, GA, May 1978, pp. 116-123.

[5

—

7

—

W. F. Truszkowksi, and D. M. Weiss, ‘‘The Software Engineering
Laboratory, SEL-77-001,”" Software Eng. Lab., NASA Goddard
Space Flight Center, Greenbelt, MD, May 1977.

A. N. Campbell, V. F. Hollister, R. O. Duda, and P. E. Hart, *‘Rec-

ognition of a hidden mineral deposit by an artificial program,”” Sci-

ence, vol. 217, pp. 927-928, Sept. 1982.

D. N. Card, F. E. McGarry, J. Page, S. Eslinger, and V. R. Basili,

**The Software Engineering Laboratory, SEL-81-104,”’ Software Eng.

Lab., NASA Goddard Space Flight Center, Greenbelt, MD, Feb.

1982.

{10] J. Cohen, ‘*Weighted Kappa: Nominal scale agreement with provi-
sion for scaled disagreement or partial credit,”’ Psychol. Bull., vol.
70, pp. 213-220, 1968.

[11]) J. deKleer and B. Williams, ‘‘Reasoning about multiple faults,” in
Proc. Fifth Nat. Conf. Artificial Intelligence, Philadelphia, PA, Aug.
11-15, 1986, pp. 132-139.

(12} C. Doerflinger and V. R. Basili, ‘‘Monitoring software development
through dyramic variables,”” JEEE Trans. Software Eng., vol. 11,
n0. 9, pp. 978-985. Sept. 1985.

[13] F. Hayes-Roth, D. Waterman, and D. Lenat, *‘Principles of Pattern-
directed inference systems,”” in Pattern-Directed Inference Systems,
Waterman and Hayes-Roth, Eds. New York: Academic, 1978, pp.
577-601.

[14] R. Miller, H. Pople, and J. Myers, ‘‘Internist-1: An experimental
computer-based diagnostic consultant for general internal medicine,”’
New England J. Med., vol. 307, pp. 468-476, 1982,

[15) M. Minsky, **A framework for representing knowledge,”” in The Psy-
chology of Computer Vision, P. Winston, Ed. New York: McGraw-
Hill, 1975. pp. 211-277.

[16] D. S. Nau and J. A. Reggia, ‘‘Relationships between deductive and
abductive inference in knowledge-based diagnostic expert systems, "’
in Proc. First Int. Workshop Expert Database Systems, 1984, pp. 500-
509.

{17] S. G. Pauker, G. A. Gorry, J. P, Kassirer, and W. B. Schwartz, *‘To-
wards the simulation of clinical cognition,’’ Amer. J. Med., vol. 60,
no. 7, pp. 981-996, June 1976.

[18] Y. Peng and J. A. Reggia, ‘*A probabilistic causal model for diag-
nostic problem-solving,”” IEEE Trans. Syst., Man, Cybern., vol. 17,
pp. 146-162, 395-406. 1987.

(19] Y. Peng and J. A. Reggia, ‘‘Plausibility of diagnostic hypotheses:
The nature of simplicity,”” in Proc. Fifth Nat. Conf. Artificial Intel-
ligence, Philadelphia. PA. Aug. 11-15, 1986, pp. 140-145.

[20] C. L. Ramsey and V. R. Basili, **An evaluation of expert systems for
software engineering management,”” Dep. Comput. Sci., Univ.
Maryland, College Park. Tech. Rep. TR-1708, Sept. 1986.

[21] C. L. Ramsey. J. A. Reggia, D. S. Nau, and A. Ferrentino. **A com-
parative analysis of methods for expert systems,>* /nr. J. Man-Ma-
chine Studies, vol. 24, no. 5, pp. 475-499, May 1986.

[22] 1. Reggia, **Computer-assisted medical decision making,” in Appli-
cation of Computers in Medicine, M. Schwartz, Ed. New York:
1IEEE Press, 1982, pp. 198-213.

[23] J. A. Reggia. D. S. Nau, and P. Wang, **Diagnostic expert systems
based on a set covering model.”” Int. J. Man-Machine Studies, vol.
19, no. 5, pp. 437-460, Nov. 1983.

[8

[9

—

V. R. Basili. M. V. Zelkowitz, F. E. McGarry, R. W. Reiter, Jr., .

759

[24] J. A. Reggia, D. S. Nau, P. Wang, and Y. Peng, *“A formal model
of diagnostic inference,’’ Inform. Sci., vol. 37, pp. 227-285, 1985.

[25] I. A. Reggia and B. Perricone, ‘*KMS reference manual,”” Dep.
Comput. Sci., Univ. Maryland, College Park, Tech. Rep. TR-1136,
1982.

[26] E. Shortliffe, Computer-Based Medical Consultations: MYCIN. New
York: Elsevier, 1976.

[27] H. Shubin and J. Ulrich, “IDT: An intelligent diagnostic tool,’” in
Proc. Nat. Conf. Artificial Intelligence, AAAIL, 1982, pp. 290-295.

[28] R. Spitzer, J. Cohen, J. Fleiss, and J. Endicott. **Quantification of
agreement in psychiatric diagnosis,”’ Archives General Psychiatry,
vol. 17, pp. 83-87, 1967.

[29] J. D. Valett, W. Decker, and J. Buell, ‘‘Software management en-
vironment,”” in Proc. SEL Workshop 1988, NASA Goddard Space
Flight Center, Greenbelt, MD, Dec. 1988.

[30) D. M. Weiss and V. R. Basili, ‘*Evaluating software development by
analysis of changes: Some data from the software engineering labo-
ratory,”’ IEEE Trans. Software Eng., vol. SE-11, no. 2, pp. 157~
168, Feb. 1985.

Connie Loggia Ramsey (M’88) received the B.A.
degree in biology from the State University of New
York at Binghamton and the M.S. degree in com-
puter science from the University of Maryland at
College Park.

She is currently a Research Scientist at the
Navy Center for Applied Research in Attificial In-
telligence at the Naval Research Laboratory,
Washington, DC. Her current research -interests
include expert systems, classification problem
solving, reasoning with uncertainty, machine
learning, and parallel processing.

Ms. Ramsey is a member of the IEEE Computer Society and the Amer-
ican Association for Artificial Intelligence.

Victor R. Basili (M’83-SM'84) is Professor and
Chairman of the Department of Computer Science
at the University of Maryland, College Park. He
was involved in the design and development of
several software projects, including the SIMPL
family of programming languages. He is currently
measuring and evaluating software development
in industrial and government settings and has con-
sulted with many agencies and organizations, in-
cluding IBM, GE, CSC, GTE, MCC, AT&T,
Motorola, HP, NRL, NSWC, and NASA. He is
one of the founders and principals in the Software Engineering Laboratory,
a joint venture between NASA Goddard Space Flight Center, the Univer-
sity of Maryland and Computer Sciences Corporation, established in 1976.
He has been working on the development of quantitative approaches for
software management, engineering, and quality assurance by developing
models and metrics for the software development process and product. He
has authored over 90 papers. In 1982, he received the Qutstanding Paper
Award from the IEEE TRANSACTIONS ON SOFTWARE ENGINEERING for his
paper on the evaluation of methodologies.

Dr. Basili is currently the Editor-in-Chief of the IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING and was Program Chairman for several confer-
ences including the 6th International Conference on Software Engineering.
He has served on the Editorial Board of the Journal of Systems and Soft-
ware. He is a member of the Board of Governors of the IEEE Computer
Society.

