software development

Software: A Management
Perspective ’

Victor R. Basili, University of Maryland
John D. Musa, AT&T Bell Laboratories

In the 1990s, market
forces will drive

into quantitative

methods for defining

)

process and product
quality.

here are many perspectives from which to view the future of software.
- This article focuses on the engineering process that underlies software
_.development. This process is critical in determining what products are
feasible. We support a quantitative approach and believe that software engineer-
ing must move in this direction to become a true engineering discipline and to
satisfy the future demands for software development. Further, we wanttospotlight
some areas of software engineering that we believe have received less attention
than they merit. Webegia with a brief summary of how information technology has
affected both institutions and individuals in the past few decades.

The past. In the 1960s, information technology penetrated institutions. This
decade could be called the functional era, when we learned how to exploit
information technology-to meet institutional needs. Institutional functions began
to.interhnk with software. ;

In the 19708, the need to develop software in a timely, planned, and:controlled
fashion became apparent. This decade introduced phased life-cycle models. and
schedule tracking. Tt could be called the schedule era.

The 1980s might be named the cost era. Hardware costs continued to decrease,
as they had from the-early days of computing, and the personal computer created
a-mass. market that drove software prices down as well. In this environment,
information technology permeated every cranny of our institutions, making them
absolutely dependent on it. At the same time, it became available to individuals.
Once low-cost applications became practical and widely implemented, the impor-
tance of productivity: in software development increased substantially. Various
cost' models came into use and resource tracking became commonplace. \

The problem with-these approaches to software development is their-focus on
single, isolated attributes. We did.not understandithe relations among functional-
ity, schedule, and cost well enough to control trade-offs. We did not effectively
define other attributes-such as reliability, necessary for engineering a software

GOH-9T6 /I HION0-0090$HE 00 & 1991 IEEE COMPUTER

product that satisiics & uscr s necds: We
did not learn enough about how to engi-
neer andimprove producis based on
experience.

The future. We behieve the 1990 will
be the quality era. in which software
quality is quantified and brought 1o the
centerof the development process. This
new focus on quality will be driven by
the dependence of institutivss on wgfor-
mation processing. We can also expect
software vendors 10 ry o create gew
demand in the consumer muss market.
Thus, home applications might expand
rapidly in the nineties. although the time
requiredfor cultural acceptance of some
applications could delay this past the
turn of the century.

The consumer mass market. with. its
potential for large sales but rather un-
sophisticated users. increuses the de-
mandsonquality. These demands, when
satisfied, intensify competition in the
institutional market because institutions
can improve quality for their customers
if better quality is available inthe infor-
mation systems they depend on. In the
future, this overall intense competition
will be international.

In this article we discuss suliwaly
yuality, software engineering that uses
models and metrics to achieve quality.
the processes needed to achieve soft-
ware quality. and how to put these pro-
cesses and technology into practice.

Software quality

Quality is 0ot a single wea. bu &
multidimensional concept. The dimen-
sions of guality include the entity of
interest. the viewpoint oo that entity,
and the quality attributes of that cutity.
Entites include the final deliverable,
intermediate products such as the re-
yuirements document. and process com-
ponents such as the design phasc. Ex-
ample viewpoints arc the linal
customer’s, the developiog organiza-
tion's, and the project manager’s. The
yuality attributes that are relevant ina
given situation depend on both the en-
tity and the viewpuint. For example.
readability is an important quality at-
tribute of arequirements document from
the designer’s viewpoint, Elapsed tme
is an important yuality auribute of the
design phase from the project manag-
er's viewpoint. Lt is important to quanti-
fy these dimensions wherever possible.

Sepletiber 1991

Software quality attributes
are not independent; they
influence each other.

Product quality, The ultimate quality
zval is usersatisfaction. Therefore, we
will consider quantitative specification
of final product attributes that satisfy
explicit and implicit user needs. The
attributes most often named as signifi-
cant are functionality, reliability, cost,
and product availability date. Reliabil-
ity often ranks first. ;

It is possible to reduce the kist of
attributes to three by taking a broad
view of reliability as the probability (over
an appropriate time period) that the
product will operate without user dis-
satisfactions (denoted “failures”). In this
view, if a function is missing when the
user nceds it, the event marks a failure.
Thus, the attribute of functionality folds
into the attribute of reliability.

The degree of quality is the closeness
with which the foregoing attributes meet
user needs. Competition makes it nec-
essary to improve the match. Tt will
increasingly force joint supphier-user
setting of objectives and measurement
to compare them with the results.

Software quality attributes are not
independent; they influence cach other.
If we think of reliability in terms of
fatlure intensity or fuilures per unit time.
we can define a quality figure of meritas
the reciprocal of the product of failure
intensity, cost, and development dura-
tion. (The real relationship among the
factorsis probably somewhat more com-
plex than simply taking their product,
butthis {ormulation will serve our pur-
poses here.)

The quality figure of merit always
characterizes the state of the art. Con-
sequently, a lower failure intensity (in-
crease in reliability) will generally re-
yuire an increase incost or development
duration or both. As technology ad-
vances, the quality figare of merit in-
creasesand the lower failureintensity is
achieved at lower cost or less develop-
ment time or both,

Process quality. Meeting quality ob-
jectivesin the delivered product requires

asuitable quality-oriented development
process. You can view this process as a
series- of stages, each with feedback
paths. In cach stage. an intermediate
supplicr develops anintermediate prod-
uct for an intermediate user — the next
stage. Each stage also receives an inter-
mediate product from the preceding

stage. Each intermediate product will

have certain intermediate quality at-
tributes thataffect the quality attributes
of the delivered product. but are not
necessarily identical to them. Forexam-
ple, in the design stage, designers are
the users for the requirements specifi-
cation. They develop the system archi-
tecture and unitspecifications, defining
them in a design document, which is
their intermediate ‘product. Important
quality attributes of the design docu-
ment are readability and completeness
inmeeting system requirements.

In addition to viewing the develop
ment process as a series of stages with
intermediate products, we need to look
at itas a semistructured cogaitive activ-
ity of a social group. Human cognitive
processes. and social dynamics in soft-
ware development affect product qual-
ity. For example, some evidence sug-
gests that informal communication
networks have much more impact than
documents in the software development
process.

We nced models of the development
process, measures of ils characteristics.
and practical mechanisms for obtaining
those measures. We need to relate the
measures to the quality attributes of the
deliverable product. Then, we can con-
trol the development process and ad-
just it to meet the attribute objectives.
For example. what are the appropriate
methods for developing a product that
must have high reliability and what lee-
way in cost or delivery is pernussible to
achieve it?

Finally. we need models of how usens
will employ the system and of the rela-
tive criticality of the various operations
in this context.

Engineering with
models and metrics

We have had quantitative approach
s to the design and implementation of
pure hardware systems for some time.
Scheduling, cost estimation. and reli-
ability technologies for hardware were

i

farely well developed by the 1YoUs, but
similar technologies for software have
lagged by 20 t0 30 years. We believe this
is due to lesser vnderstanding of soft-
ware development and the essential dif-
ferences between hardware and soft-
ware engineering (for example, the
differences between production and
development).

Laspite of the vouniplexity ol the task,
we must model. measure. and manage
software development provesses and
products if we are to vptimize the bal-
ance among quality attributes and satis-
fy user needs. Understanding where the
time and effort are going and what pro-
cesses provide the attribuies aceded for
a more rehiable product will help us
refine models of quatity atiributes and
the interrelationship between process
and product.

To do this we must pulaic and vate-
gurize the components of the suttwire
engineering discipline, define notations
for representing them. and specify in-
terrelationships amonyg then as they are
manipulated. The discipline’s compo-
aents consist of various processes and
process components (for example. life-
cycle modelsand phases. giethods, tech-
aigues. tools), products (for example,
code components, requiremcents. de-
signs. specifications. test plans). and
other forms of experience Utor example,
resource models. defectmodeds, quality
models. economiv models).

We need to build descriptive models
ot the discipline components w usprove
our understanding of

{1 the nature and Chatactensaes of
the processes and producs,

{4} the variations ainong them.

{3) the weaknesses and streaginy ol
hoth, und

{4) mechanisims W predict and cot-
trol them.

We huvie models tor suine compo-
uents. For example. thete arce several
mathematical models of programs and
modules. such us predicate calculus. fune-
tions, and state machines .

Costandschedule models have moved
tmom research and development into
apphcation. There wre parameterized
cost models for using historical data o
predict the project costs. For example.
many organizations are using or study-
ing cost models lke Cost Constructive
Model (Cocoma). Softwary Life-Cycle
Management (Shim). Soltware Produc-

Yz

tivity, Quality, and Reliability Model
(SPQR). and Estimacs.’

Software reliability engineering mod-
els are coming into practice.? The expo-
nential and logarithmic nonhomoge-
neous Poisson models are the most
widely used models in the industry to-
day. Japan has made some use of S-
curve models.

We have models and modeling nota-
vony for various life-cycle processes.
These key modeling technologies form
the basis for a quantitative approach to

-the engineering of software-based sys-

tems — ¢nough to start the advance of
software engineering from craft to sci-
ence. ' :

However, many morc-areas require
models. For example, little work has
been done in organizing and system-
atizing the practical knowledge accu-
mulatingin various application domains.

We need to screen the models that do
exist. They often require more formal
definition, further analysis, and: inte-
gration to deepen our understanding of
their components and interactions, We
need to eliminate models that are not
appropriate or useful.

Based upon analysis of these descrip-
tve models. we must build prescriptive
models that improve the products and
the processes for creating them. Pre-
scriptive models must relate to quality
attributes. We must provide feedback
for project control and learn to package
successful experience.

Because the overaltsolutionsare both
echnical and managerial, model-build-
g requires the support of many disci-
plines. The next several sections focus
on areas of technology that we believe
will play an important role in deepening
our understanding and attainment of
software quality in the next decade.

Formal methods. To improve our
understanding of the software product
itself and to enable theabstraction of its
functionality, computer scientists have
developed product models based on
mathematical formalisms. These formal-
isms include predicate calculus, func-
tions, and state machines (based on the
work of R. Floyd, E. Dijkstra, C. Hoare,
H. Mills, and others). These models have
had theoretical value for many years,
but they have not been used effectively
in practice. This is largely due to the
inability to scale them up to reasonable-
size'systems.

We are now beginning to see some

practical application of formal methods
in software development {for example,
the Vienna Development Method, Z.
and Cleanroom). They also may add to
the associated disciplinc of correctness-
oriented development. Foranintroduc-
tioit to formal methods. see Wing,’

Deesign methods. The 1980s broughia
major breakthrough in software design
with the-introduction of object-orient-
ed design ‘methods, technologies, and
languages.* This approach willcontinue
to have a-major effect on software de-
sigrein the 1990s. For example. we ex-
pectobject-oriented technologies to play
a:major-part in the definition of inte-
grated support enviranments. The no-
tion of managing and designing systems
by ‘objects will- be. better-defined and
will change the way we think about sys-
tems. Object-oriented approaches, like
functional decomposition approaches,
will become part of the software engi-
neer’ssetofintellectuat tools. They have
already begun to affect the creation of
reusable software, and this effect is ex-
peeted to increase as we learn more
about software engineering and reuse.

Programming languages. Languages
thatsupport object-oriented design and
programming, in whole or in part, will
continue to evolve (for example. Ada.
Objective C, C++. Smalltalk). Notations
will also evolve for formalizing higher
level abstractions, such asrequirements
and specifications. The higher the level
of these languages. the more likely they
will become application oriented and
specialized. For example, we will con-
tinueto see fourth-generation languagp-
es introduced for specific applications:
we will also see more effective transta-
tion of these higher order languages
into executable forms. These notations
will become basic tools in the engineer-
ing process for software.

Measurement approuches. Mcasuic
ment is associated with modeling. We
must base measures on models to deter-
mine if they are performing as planned.

In the past, measurement has been met-

ric oriented, rather than model orient-
ed. In other words, it has involved col-
lecting data without an explicit goal.
model, and context. For example, in
analyzing a test process, project manag-
ers may collect data such as program
size or number of defects. But they may
be unable compare the data to other

COMPUTER

#

projects unless the models used wspec-
iy the size and defect nicasures are
documented with sufficient contextual
information to imerpret the data,

We have begun to see nore orga
aized approaches to mcuasarement —
approaches based on models and driven
by goals.? These approaches integrate
goals with models of the software pro-
cesses, products, and quality perspec-
tives of interest. They tailor these goals
and models to the specific needs of the
project and the organization. For exam-
ple.if the goal is to evaluate how well a
system test method detects defects, then
models of the test-process and defects
must be available. Information thatsup-
ports interpretation must be collected
and integrated. For example. how ef-
fectively was the test method applied?
How well did the testers understand the
requirements? How many failures oc-
curred after system test compared with
similar projects?

Mechanisms for defining measurable
goals have come into use. These include
the goal/question/metric paradigm, the
quality function deployment approach,®
and the software quality metrics ap-
proach.” We expect the use of these
frameworks to increase in the future.

Usage and reduced-operation soft-
ware, Software usage will guide soft-
ware development. Anoperational pro-
file. the set of expected user operations
and their probabilities of occurrence,
will be defined at the same time us the
syslem requirements. Operations are
akin to functions except that they also
incorporate the concept of the environ-
ment. Operations are classified by erit-
wality where appropriate. The opera-
tional profile, adjusted for criticality.
will guide the setting of priorities and
allocation of effort for the entire devel-
upment process.

There is an excelicnt chiance Uiat we
will see the emergence of reduced-op-
eration software. ROS & the sofiware
analog of reduced MsrecuuR-et COM-
puting. 11 is based un the observabion
that most software bas a lew operalions
thutare used most of the time and many
operations that are used rarely. The
rarety used operations cat up a large
proportion of development. documen-
tation. and maintenance costs. They also
complicate the system. making user
training much wore difhcult. The ROS
approach avoids implemunting as many
of the rarely used operations as pussi-

Séptenber EYY

We are likely to see more
focus on the internal
problem-solving activity of
individuals and on ways to
enhance its quality.

bie. In many cases, they can be replaced
by sequences of more basic, frequently
used. operations. System and software
designers might set up these sequences
and document them'for users or-leave
them for users to determine, since many
users may never require them.

 Reuse. In the past, reuse was limited
mostly to the code level and based on
individual experience. Interestand tech-
nology development have recently
surged in this area. We-can and must
reuse all kinds of software experience,
but reusing an object requires the con-
current reuse of the objects associated
with it. For example, we have seen the
development of faceted schemes, tem-
plates. and search strategies associated
with reusable software components.
Objects may have to be tailored for a
particular project’s needs; heuce. reus-
able objects must be evaluated for reuse
potential and processes must be estab-
lished for enabling reuse.

Reuse will grow in the next decade
pased on better understanding of its
implications and on development of

supporting technology. Object-orient-

ed design should make reuse easier.

Cognitive psychology. Cognitive psy-
chology is the study of problem solving.
We can use its disciplines to study dif-
ferent intellectual activities in the soft-
ware developmentprocess. To date, very
fittle research based on cognitive psy-
chology has been performed in soft-
ware engineering, but there is substan-
ual evidence of its promise. Software
engineering, after all. is primarily a prob-
lem-solving activity. Unfortunately. few
researchers are trained and experienced
in both ficlds. Thetwo ficlds also have
significant cultural differences, which
canmake cross-fertilization difficult. For
example, many software researchers
pride themselves on the controlled dis-
cipline and logic they believe is central

to their approach to problems. Cogni-
tive psychologists sometimes focus on
the deficits and weaknesses they find
inherent in all human intellectual pro-
CESsES.

Application of cognitive psychology
in software engineering ‘has generally
focused on the human-computer inter-
face. Thisfocus is implicit in computer-
aidedsoftware engineering tools. CASE
has championed such buman-computer
interface design principles as protect-
ing users from mistakes. helping them
navigate casily through the commands
and data, providing for direct manipu:
lation of‘objects (for example, screen

editors); and using metaphors {(for ex-

ample, the “sheets of paper” metaphor
of windows).

Thistools-oriented work will undoubt:
edly continue. but we are likely to'see
more focus on the internal problem-
solvingactivity of the individual and the
methodologies and environmental fac-
tors that-can enhance the quality and
efficiency of this activity. For example.
people are known to have limited short-
term memory. Are there software de-

. velopment methods that deal with thiy

limitation in a way that increases pro-
grammer productivity? Does this limi-
tation tend to produce certain types of
faults? If so, can we use that informa-
tion to improve reliability and debug
more efficiently?

Early work of Curtis, Krasoer. and
Iscoetindicates that application domain
knowledge is a principal factor in the
wide performance differences among
software developers. Thisbelies the fre.
quently held concept that software de
velopment is a domain-independent
activity that can be abstracted and taught
totally by itself. The findings argue fora
certain degree of specialization among
programmers. Attention must be given
to organizing, publishing, and advanc-
ing knowledge in specific domains and
to providing corresponding education,
either formal or on-the-job.

A study of expert debuggers” shows
that-the stereotype of these people as
isolated software “freaks” is not true.
The best debuggers have excellentcom-
munication, negotiation, team building.
and other social skills. They generally
have a clear vision of the system’s pur-
pose and architecture, They typically
cultivate an extensive nctwork of ex-
perts they can call on. The career im-
portance of these social skills indicates
that education in these areas should

EA)

start 1 the untversily amd conuue
the workplace.

Software sociology. Must soltware
projects are group activities. mvolving
all the complexities of group dynamics,
communication networks. and organi-
zational politics. The study of group be-
havior in software development is in its
infancy. but like the study of individuals,
it promises to improve our uaderstand-
ing of the development process. particy-
larlv at the front end. Many observers
believe that improving this phase of de-
velopment could have the most impact
on software quality and productivity.

Software developers commounly face
mefficiencies and quality degradation
that result from highly volatile require-
ments. Some change is unavoidable be-
tause user requirements evolve with
tume. However. poor communication
accounts for much of this problem. Re-
search on this problem® has shown that
successful software development is a
joint process in which the developer
learns the application domain and user
operations, and the user learns the de-
sign realities and available choices.

Negotiationand conilict resolution are
miescapable pans of the provess. Manag-
ing the learning and negotiation process-
es intelligently is coitical {o suceess. So is
making decisions in & timely fashion. In
fact, there is some indication that the
percentage uf unresolved desipn issues
at a given point in the project life cycle
may be a good indicator of progress and
predictor of future rouble. Measures
can play an inportant role in making the
megotiation process concrele and the
negotiated agreements specific.

Inadequate documentation bas been
blamed for many project problems that
appear to stem {rom poor communica-
tion. However. documentation may not
be the real culprit® Many developers do
noteonsider it possible 1o matntain doc-
winentation that s sutliciently current
to meet their needs. They get their in-
formaton through informal nerworks,
This suggests that we devote more ef-
fort to encouraging. cultivating. main-
taining. und supporting such networks,

Improving software
quality

Enguicerinyg processey regqutte inud-
¢is of the various entities within g disci-

G4

pline. The -model$ must approximate
reality and include a controlled feed-
back loop to monitor the differences
between the models and reality. In soft-
ware engineecring, we have often not
had enough models to complete the pro-
cess. Where we do have models (for
example, for costs and schedules), we
do.not sufficiently understand the rela-
tionship between them and the other
discipline entities.

Models are necessary for focusing
autention on the multiplicity of issues
necessary for engineering a product. Bat
50 is.a process that supports feedback,
fearning, and the refinement of the
models for the environment.

Manufacturing haslearned to control
production using models and measure-
ments of the process and product. Feed-
back processes, such as the Plan-Do-
Check-Act cyele;'® have provided
quality-oriented processes for manufac-
turing. The Deming paradigm uses mod-
els and measures to control and engi-
neer the characteristics of processes and
products. The Plan phase sets up mea-
sures of quality attributes as targets and
establishes methods for achieving them.
The Do phase produces the product in
compliance withdevelopment standards
andquality guidelines. The Check phase
compares the product with the quality
targets. During the Act phase, problem
reports become the basis for corrective
action, Achieving the quality target is
the gate to the next phase.

Although softwarc development is
fundamentally different from manufac-
turing. at some fevel the same principles
apply. We need a closed-loop process
with feedback to the project and the
organization. The process must consid-
er the nature of software development.
The quality improvement paradigm® is
an example approach. It can help in
applying, evolving, tatloring, and refin-
ing various models and ranges of mea-
surements in software development.

In QIP, planning requires models of
the varioussoftware products and prod-
uct' quality attributes, processes and
process quality attributes, and environ-
mental factors. The models must be
guantifiable and the measures for them
must be set. Developers must under-
stand particular project needs with re-
spect (o such factors as functionality,
schedule. cost, and reliability. Project
and corporate goals are set relative (o
measurements associated with the mod-
¢ls. Unlike manufacturing, there is no

single modei of the process. Developers
must choose the process to meet the mix
of quality attributes required by a par-
ticular product’s user.

Doing and checking require follow-
ingtheselected process and taking mea-
surements to track conformance with
the:models. Because many models-are
primitive, we also need to track wheth-
er thiemodel’s predictionsare valid and,
if they are not, modify the models 10
come closer to reality.

Acting requires a closed-loop project
cycle with feedback for modifying mod-
els.as well as the processes. It involves
analyzing and packaging theexperience
gained on a project so that itisavailable
to-other projects. Analysis includes a
postmortem reviewof thefeedback data
to'evaluate the existing models, deter-
mine problems, record findings, and
recommend future model improve-
ments. Packaging involves implement-
ing model improvements and storing
the knowledge gained in an experience
database available for future projects.
This represents a closed-loop organiza-
tion cycle that transfers learning from
project to project. :

Emphasis on the engineering process
will-help achieve quality goals for soft-
ware development. It also supports the
transfer of technology within and from
outside an organization.

Making software
engineering technology
more transferable

Transferring technology within an
organization requires an evolutionary,
experimental approach, similar to QIP.
Such an approach bases improvements
in software products and processes on
the continual accumulation of evaluat-
ed experience (learning) in a form that
can be effectively understood and mod-
ified (such as with experience models).
Experience models must be integrated
into an experience base that can be ac-
cessed and modified to meet the needs
of new projects {reuse). The evolving
process and product models can help in
technology transfer. They represent
what we know and can apply in the
software development process.

This paradigm implies the separation
of project development, which we can
assign to a project organization, from
the systematic learning and packaging

COMPULTER

of reusable experiences. which we can
assign to a so-called experience fuctory.”
The project organization’s role is tw
deliver the systems required by the user,
taking advantage of whatever experi-
ence is available. The experience facto-
ry'sroleis to monitor and analyze project
developments: to package experience
for reuse. in the form of knowledge,
processes, tools, and products: and to
supply these to the project organization
upon request.

In this sense. the experience factory
is-a logical organization. a physical or-
ganization, or both. It supports project
developments by acting as a repository
for experience, analyzing and synthe-
sizing the experience, and supplying it
to various projects on demand. The ex-
perience factory evaluates experience
and builds models and measures of soft-
ware processes, products, and other
forms of knowledge. It uses people,
documents, and automated sapport to
do so.

Transferring software
technology into an
organization

There has been little succesy w dawe
i transferring new software engineer-
ing methodologies and tools into active
practice, despite the potential benefits
of improving the development process
in an industry of software’s size and
importance. This failure may be partly
because software engincering is a pro-
cess rather than a product. Lt is an ab-
stract intellectual activity with Hmited
visibility, which makes 10 much more
difticult to transfer.

Also. research and pracnie i »uit
ware engineering have been dnaded.
both organizationally and by cultural
values, impeding good comnmunication.

Most practicing software engineers
are not aware of all the possibilities for
improvement that exist. Most rescarch-
ers are not aware of the full range of
problems that must be solved before
new technologics can be applied in prac-
tice. Tuols and methudologies are often
ditficult 1o learn ot to use o1 buth. Ak
though must peupit teahize that unprove
ment means change 1n pracuce, few have
been willing to deal with the culwral,
motivational, and other faciors that
impede change,

The situation s not hikely o chalge

Sepletnber 1991

Research and practice in
software engineering have
been divided, both
organizationally and by
cultural values, impeding
good communication.

until researchers and practitionersideal
explicitly with these factors, rather than
leaving them to-chancel’ They must
support change proactively.

Practitioners need to address the re-
quirements and possibilities forimprove-
ment. Improvement requires widespread
education in new methods, closely inte-
grated with education in tools. We need
methods and tools that are easy tolearn
and use. The new technology mustevolve
and adapt as we gain experience withits
use and continually evaluate its success-
esand failures. A concept like the expe-
rience factory canhelp with this.

A planned approachis necessary. Stra-
tegic planning identifies the goals for
change and provides a basis for continu-
ing evaluation of activities undertaken
to achieve the goals. In general, this
approach follows the classic phases of
technology transfer: raising awareness,
cultivating interest, and persuading
someone to try the technology, followed
by trial use and full adoption. Raising
awareness Lypically involves the use of
publications. talks before organizations,
videos, and demonstrations at exhibits
and meetings.

Market researchis important in find-
ing connections between project require-

‘ments and the opportunitics offered by

new technology. Then, technical re-
search can find solutions fo these re-
quirements and extend available tech-
nology to seize the opportunities. Thus,
technical and market research interact,

The development of training courses
requires input from both marketing and
techniical research. However, courses
are only part of the technology transfer
process. Experts should present imple-
mentation workshops for the new tech-
nology. Consultants must be available
to solve problems or, if a problem is not
currently solvable, to stimulate research
aimed at developing the technology
aceded for resolution.

The development of software tools
should beseen as necessary to the appli-
cation of a-new technology and as an
integral part-of technology transfer.

Hisuseful for marketing personnelito
attend training courses. They can facil-
itate connections between technical in-
terests and project applications. This
mayinvolve uncoveringand dealing with
technological and cultural barriers to
change. Technical marketing personnel
canopen communication channels, pro-
actively soliciting user feedback that
technology transfer personnel can use
to-improve tools, courses, consulting,
research, and the marketing process it-
self. o

These activities require a range ol
skills difficult to find in one¢ person,
Hence, building a team of people whose
skills complement each other is essen-
tial, as is building trust and good com-
munication within the team. In the fu-
turg, we expect corporations to creaie
technology transfer organizations spe-
cifically to improve and speed up the
process of adopting software engineer-
ing technologies. These organizations
will probably include a diverse group of
professionals: researchers, educators,
software developers, consultants, and
marketing personnel. They will most
likely associate closely with a research
organization, but also have access to «
training organization. They will culti-
vate extensive networks among practi-
tioners. Technical improvement will
depend on much more than technical
factors alone.

e have tried to show why

and how the 1990s will be

the quality era for software
We believe that increasingly intense
international competition will make it
essential to specify and attain quantita-
tive product characteristics insoftware-
based systems. This will drive software
cngineering to become a true engineer-
ing discipline.

Existing technologies will become
either better focused (reduced-opera-
tion software}, more disciplined (reuse.
measurement approaches), or more
practical (formal development meth-
ods), providing more effective models
for software development. The new dis-
ciplines of cognitive psychology and
software sociology will enrich software
technology.

Process and product models and oth-
er forms of structured experience will

93

aid in the practical.engineering of soft-
ware,-Feedback andlearning through
measurement hased. on these models
will become fundamental. Software
models will ' become: corporate assets,
used not only for improving quality but
also for.transferring technology. Com-
panies will plan for efficient technology
- transfer. ’

The justification for any measure is
itsroleinhelping satisfy userneeds, and
the importance of the measure is its
corretation with-this satisfaction. The
presence of measures.indicates that a
technology -is being challenged in a
healthy fashion, that it is responding
positively, and that it m therefore ma-
turing: M-

Acknowledgments

We are indebted to Dieter Rombach, John
Stampfel, Jar Wu, Pamela Zave, Marv
Zelkowitz, and the reviewers for their help-
ful comments.

References

1. B, Boehm, Software Eng. - Econcmics,
Prentice Hall, Englewood Cliffs, N.J.,
1981.

2. LD Musa, A Lannino, and K. Okumoto,
Software Reliability: Measurement, Pre-
diction, Application, McGraw-Hill, New
York, 1987,

3. J.M. Wing, “A Specifier’s Imroduction
to Formal Methods,” Compurer, Vol. 23,
No. 9, Sept. 1990, pp. 8-24.

4.: B. Stroustrup, *What is Object-Oriented
Programming?” IEEE Software, Vol. 5.
No. 3, May 1988, pp. 10-20.

L

. V.R. Basili, “Software Development: A
Paradigmforthe Future.” Proc. {Sthine'l
Computer Software and Applications
Conf.. CS Press, Los Alamitos. Calif.,
Sept. 1989, pp. 471-485.

6. M. Kogure and K. Akao, “Quality Func-
tion:Deployment and CWQC in Japan,”
Quality Progresy. Vol. 16, Oct, 1983, pp.
25-29.

-~}

L BIW. Boehm, J R, Brown, and M. Lipow,
“Quantitative Evaluation of Software
Quality,” Proc. Second Int'l Conf. Soft-
ware Eng., IEEE CS Press. Los Alamitos,
Calif:, Order.No. 104 {microfiche only),
1976, pp. 592-603.

8 B. Curtis, H: Krasner, and N. lscoe, "A
Field Study of the Software Design Pro-

96

cess:for Large Systems,” Cc'zmm.- ACM,
Vol 31, No: 11, pp. 1,268:1,287.~

9. TR.Riedletal. “Applicationof s Knowl-
cdge. Elicitation Method to Software
Debugging Expertise,” to‘be presented
atthe Fifth Conf. Software Fng. Educa-
tion; Software Eng. Inst., Oct: 1991

10, 'W.E. Deming, Cut of the: Crisis, MIT
Center for Advanced Eng. Study, MIT
Press, Cambndge Mass., 1986

1L Transferring Software Eng. Tool - Tech-
nology; S. Przybylinski and:P.J; Fowler,
eds., IEEE CS Press, Los Alamitos, Ca-
Hif., Catalog No. 887, 1988,

Victor R. Basili is a professor in the Institute for Advanced Computer Studies and the
Computer Science Department atthe University of Maryland. He chaired the department for
six.years. He is one of the founders and:principals in the Software Engineering Laboratory,
& joint venture between NASA Goddard Space Flight Center; the University of Maryland,
and Computer Sciences Corporation. His researcheinterests include measuring and evaluat-
ing software developmentin industrial and government settings.

Basili received a BS from Fordham: ‘University and an MS from Syracuse Univ ersity, both
in mathematics. He received a PRD in computer science from the. University of Texas at
Austin, He.is currently the editor<in:chief of [EEE Transactions on Software Engineering
and serves on the editorial board of the Journal-of Systems and Software. He istreasurer of
the Computing Research Board and an IEEE fellow. He is a former member of the Computer
Society Board of Governors: He will chair the International (‘ontucncc on Software
Engineering in:1993.

John D). Musa is supervisor of the Software Reliability Engineering Group at AT&T Bell
Laboratories. He has managed orparticipated in.a number of software projects. His research
interestsinclude software reliability enginecring; software quality, and software metrics.

Musareceived a2 BA in enginéering sciences and-an. MS in clectrical engineering from
Dartmouth College. He is a senior editor of the Software Engineering Institute book series:
an-IBEE fellow;-elected on the basis:olhis extensive contributions to the field of software
enginecring and software reliability enginecring over the past 13 years;a former chairof the
1EEE Computer Society Technical Committee on Software Engineering and the Steering
Conmmmittee of the International Conference on Software Engincering; and a founding
memberof the Editorial Board of JEEE Sofrware.

Basilizcan.be contacted at the Department of Computer Science, A.V. Williams Building,
Rmi 411, University of Maryland, College Park, MDD 20742; and-Musa at AT&T Bell
Laboratories, Rm. 2D248, 600-Mountain Ave., Murray:Hill, NJ 07974,

COMPUTER

