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Representing Software Ehgineering Models:
The TAME Goal Oriented Approach-

Markku Oivo and Victor R. Basili

" Abstract— This paper describes a methodology as well as
8 knowledge representation and reasoning framework for top
down goal oriented characterization, modeling and execution of
software engineering activities. A prototype system (ES-TAME)
is described which demonstrates the underlying knowledge repre-
sentation and reasoning principles. ES-TAME provides an object-
oriented meta-model concept in order to provide effective sup-
port for tailorable and reusable software engineering models.
It provides the basic mechanisms, functions and attributes for
all the other models. It is based on inter-object reiationships,
dynamic viewpoints and selective inheritance in addition to tra-
ditional object-oriented mechanisms. Descriptive software engi-
neering models (SEM’s) include representations for basic soft-
ware engineering activities like life cycle models, project models,
resource models, design methods, quality models etc. They are
controlled and made operational by active GQM models which
are built by a systematic mechanism for defining and evaluating
project and corporate goals and using measurement to provide
feedback in real-time. A rule-based data-driven mechanism is
defined for constructing and instantiating generic GQM tem-
plates into hierarchical GQM models. Support for the RT-SA/SD
method is used as a case study of modeling the design phase of
real-time software development.

Index Terms— ES-TAME system, goal/question/metrics par-
adigm, improvement paradigm, inheritance, inter-object rela-
tionships, knowledge-based techniques, object-oriented methods,
reuse, rule-based techniques, software engineering, software mod-
eling, TAME-project.

1. INTRODUCTION

HERE is a great deal of software engineering research
going on, i.e., people are building technologies, methods,
models, etc. However, this research is mostly bottom-up, done
in isolation. What is needed is a top down framework in which
research can be focused, logically and physically integrated
to produce quality software productively, and evaluated and
tailored to the application environment. C
TAME {4] is meant to serve as a framework for research and
development activities by providing an integrating umbrella
for various software engineering research projects, offering a
focus and a laboratory environment for experimentation, and
supporting the efficient transfer of technology into practice.
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It is an atiempt at defining a measurement-based closed-loop
process for software development and maintenance. TAME's

-specific goals are to provide a framework for 1) defining an

integrated set of measurable software process and product
models and goals relative to the project and the organization,
2) provide a quantitative basis for selecting the appropriate
methods and tools and tailoring them to the needs of the project
and the organization, 3) support the evaluation of the quality
of the process and product relative to the specific project and
organizational goals, and 4) provide an organizational structure
to support building, analyzing, refining, and using experience
models. The key components upon which TAME is based
include an evolutionary improvement paradigm tailored for the
software business, called the Quality Improvement Paradigm
[2], a paradigm for establishing project and corporate goals
and a mechanism for measuring against those goals, called
the Goal/Question/Metric Paradigm [4], and an organizational
approach for building software competencies and supplying
them to projects, called the Experience Factory [5].

The Quality Improvement Paradigm (QIP) is defined by
the following steps.

+ Planning: an iterative process involving characterizing the
current project and its environment, setting the quan-
tifiable goals for successful project performance and
improvement over past performance, and choosing the
appropriate process model and supporting methods and
tools for this project.

» Execution: a closed-loop project cycle that invoives exe-
cuting the processes, constructing the products, collecting
and validating the prescribed data, and analyzing it in
real-time to provide feedback for corrective action on the
current project. ‘

+ Analysis and Packaging: a post mortem analysis of the
data and information gathered to evaluate the current
practices, determine problems, record findings, and make
recommendations for future project improvements, and
a packaging of the experience gained in the form of
updated and refined models and other forms of structured
knowledge gained from this and prior projects and the
storing of the packages in an experience base so it is
available for future projects.

The Goal Question Metric Paradigm (GQM) is a mecha-
nism for defining and interpreting operational and measurable
software goals. It combines models of an object of study, e.g.,
a process, product, or any other experience model and one
or more focuses, €.g., models aimed at viewing the object
of study for particular characteristics that can be analyzed
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from a point of view, e.g., the perspective of the person
needing the information, which orients the type of focus
and when the interpretation/information is made available
for any purpose, e.g., characterization, evaluation, prediction,
motivation, improvement, which specifies the type of analysis
necessary to generate a GQM model relative to a particular
environment.

The Experience Factory is a logical and/or physical organ-
ization that supports project developments by analyzing and
synthesizing all kinds of experience, acting as a repository
for such experience, and supplying that experience to various
projects on demand. It packages experience by building infor-
mal, formal or schematized, and productized models and mea-
sures of various software processes, products, and other forms
of knowledge via people, documents, and automated support.

The Experience Factory requires an experience base that
supports accumulating experiences (learning) via recording
and analysis of experience, off-line generalizing and tailoring
of experience, and formalizing of experience, storing expe-
rience models in a variety of modeling notations that are
tailorable, extendible, understandable, flexible and accessible,
and accessing and modifying packages of experience to meet

the needs of the current project (reuse). An effective expe-

rience base must contain an accessible and integrated set of
analyzed, synthesized, and packaged experience models that
captures the local experiences. ‘

A. Requirements Overview

To formalize the QIP, each of the various steps needs to be
better defined and integrated. The experience base acts as the
mechanism of information and integration. These next items
implicitly define the genuine requirements for the experience
base:

* We need to build and store models of various software
" engineering experiences that characterize the project and
the organizational environment, e.g:, products, processes,
resources. g

* We need to integrate these models based upon the various
relationships between them, e.g., what resource model is
appropriate for a particular class of products.

-« The model definitions need to be able to evolve, be
modified or refined based upon learning, e.g., we need to
be able to modify a resource model by adding new project
data, refine a process model by recognizing a different
set of activities that need to be performed based upon a
specific project characteristic.

* The model definitions need to be instantiated with specific
project characteristics, e.g., we need to instantiate the
parameters of a resource model based upon actual project
values, and map process activities into a process model

- according to the actual life cycle model.

~ Models need to be classified and subclassified based

"upon type so that the appropriate types of models can

be combined in a GQM, e.g., that product evaluation

- qualities such as coupling or cohesion are applied to

'products defined in the appropnate notation such as RT-
++ SA/SD. :

* Some models may need to be applied to available data,
so the experience base must permit access to a data base
containing the current project and historical data, e.g., an
evaluated GQM model.

* We need to initialize and evolve various versions of the
experience base for different organizations.

Fundamental to the TAME concept is the ability to for-
mally define software engineering models so that they can be
integrated for evaluation, reconfigured based upon particular
project needs, and stored for future use. This requires a more
formal definition of the components of the QIP, including the
GQM and the definition of an experience base that contains
useful models and supports the conﬁguranon of models as
needed. : .

Knowledge-based techmques have shown promise in mod-
eling various aspects of software engineering. Some projects
have taken the ambitious goal of providing knowledge-based
support across the software life cycle, e.g., the knowledge-
based software assistant or apprentice approach {7], [12], [18],
[25], and knowledge-based support for team-work [13]. Other
projects have concentrated on specific software development
activities such as requirements specification and design [20],
[23], [24], and knowledge-based modeling and simulation
{22]. Knowledge-based techniques are also important from the
project management viewpoint [26]. In this paper we describe
a methodology and a knowledge representation and reasoning
framework for the experience base [5]. In addition to being
a comprehensive framework for modeling various aspects of
software engineering, it is also a basis for automating the
use of quantitative methods.. However, in this paper we will
concentrate on the modeling issues. In this section we have
described the fundamental requirements of TAME and the
experience base. In Section II we will present a meta-model
concept which impiements the basic requirements and supports
tailorable and reusable models. It provides a foundation for
software engineering models (SEM’s) and GQM models.
The knowledge representation mechanisms for SEM’s are
discussed in Section III. The modeling techniques are based
on an enhanced set of inter-object relationships, dynamic
viewpoints, and selective inheritance. Finally, Section IV
presents a goal oriented top-down method and a rule-based
construction tool for building active GQM object hierarchies
which are used to control and make the mostly passive
knowledge of SEM’s operational.

TAME is a very large concept and too huge a task to bc im-
plemented in one step. We have implemented a domain specific
version, called ES-TAME, to provide more comprehensive
support for building embedded systems. It uses RT-SA/SD
(Real-Time Structured Analysis and Design [33]) method as a
case study of modeling the design phase of building software
for embedded systems. This aspect of the system is related to
systems like IDeA, which supports analysis and design phases
in the context of a knowledge-based refinement paradigm [20],
and ESPRIT project ASPIS, which provides support for the
early phases of the software 'life cycle {24]. An extensive
discussion of the knowledge representation issues of the RT-
SA/SD method can be found in [23] which describes the basis
of the modeling principles for the various RT-SA/SD design
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Fig. 1. The basic models.

elements and how to provide knowledge-based support for the
requirements specification and design method.

UL II. MEETING THE REQUIREMENTS

Obviously, the previous requirements call for numerous
models for representing all the relevant aspects and knowledge
needed to build a viable so_ftWare engineering environment.
However, despite the.large variety of requirements we can
identify several principles, attributes and functionalities which
are common to most of the models. Consequently, we intro-
duce a meta-model concept for defining an overall knowledge
representation and reasoning framework for all the models. It
is an object-oriented model which specifies the basic mech-
anisms, functions and attributes for all the other models.
The meta-model includes support for characterizing, planning,
and packaging activities as well as user interface issues. It
provides all the necessary functions and attributes for building
and maintaining the actual tailorable models. It can also be
used like a software process meta-model to describe and
build customized software process models using pre-defined
components [22], [35]. Essentially our meta-model is a virtual
model which has to be refined and augmented to implement the
TAME models. Furthermore, it provides a uniform mechanism
to link the models to various additional tools like spreadsheets,
project management tools, database management systems and
metrics software, and combines their data under a ngorous
ob]ccl—oncmed formalism.

" We have classified our models into two categories: software
engineering models (SEM’s) and GQM models (Fig. 1). Both
are generic models which are defined using the meta-model as
a basis for their specification. SEM’s include representations
for the basic software engineering activities like life cycle
models, project models, resource models, design methods,
quality models, etc. They involve mostly descriptive knowl-
edge which is known and available during the characterization
and planning activities of a project life cycle. GQM’s involve
mainly procedural knowledge which is used to make the
descriptive knowledge of SEM’s operational. They manipulate
and use the knowledge of SEM’s in setting goals, answering
guestions and collecting data.

] - Entiy -

' <> « Relavonship

Fig. 2. TAME instances tailored for various needs:

By making a clear distinction between- the SEM’s and
GQM'’s we can create a highly modular system architecture
and achieve far better support for representing knowledge in
a reusable form. The descriptive knowledge of SEM’s can be
created and maintained without having to know how they are
used and made operational by the more complicated GQM's.
On the other hand, the constructing of GQM’s is simpler
because the user can concentrate on the essential features of
GQM’s without having to worry about the vast amount of
knowledge involved in the SEM’s. '

The meta-model with the SEM and GQM models constitute
a generic meta-tool environment which has to be tailored for
each organization and project (Fig. 2). Note that Fig. 2 does
not imply any static relationships. The tailoring diamonds
stand for concurrent processes that relate the basic TAME
environment to various corporations and in each corporation
to various projects. All the entities in the figure are constantly
evolving as we learn more about the changing environment and
requirements. New features are introduced and existing ones
are modified by evolving the objects and their relauonshxps
inside the TAME meta-tool.

Fig. 3 describes the overall architecture of ES-TAME.
It depicts the usage of ES-TAME to support the design
activities of software development. Other activities and their
corresponding documents would be represented in a similar
way. For example, testing would have its own user interface
controlled by the viewpoint manager and test documents would
be stored in the Model Base in an analogous way- as the design
documents. The main parts of ES-TAME include the Model
Base, Mode! Management, User Interface Manager, Reuse
Repository and Analyzing and Packaging Unit. This paper fo-
cuses on the most essential concepts of the Model Base, Model
Management and User Interface Manager. Furthermore, we
demonstrate the modular Designer Interface with a support
system for the RT-SA/SD method.

Model Base implements the main knowledge representation
techniques and models in the system. It includes all the
Software Engmeermg Models (SEM’s) and design documents
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Fig. 3. ES-TAME architecture for design support.

(see Section 1V) as well as GQM models (see Section V),
SEM’s and GQM’s interact in terms of both relationship
links between models and by GQM’s using and making the
descriptive knowledge of SEM’s operational. Because the
Model Base includes elements that are developed and modified
during the software development, it is considered: as a part of
the development process that includes addmonal elements and
activities. .

SEM’s and GQM’s are created and-managed'by a set
of tools in the Model Management unit (GQM Template
Editor, GQM Construction Manager, and SEM Manager). The
relatlonshxps between the various SEM and GQM models are
established and maintained. by a Relationship Manager.

The user interface consists of two main units: The first unit,
the ES-TAME User Interface, provides the main functions
which are relatively independent of the design methods. It
includes three modules. The Browser offers graphical tools
to view and manipulate the various relationship hierarchies.
The System Manager controls the analysis of the software
development process and the packaging of the results into the
experience base. Viewpoint Manager provides several different
perspectives to the system using the Browser and the Designer
Interface as tools for viewing the system. The second main unit
is the Designer Interface. It is a plug-in module that can be
changed to other design method tools without much effect on
the rest of the system. -

The Reuse Repository consists of a Reuse Manager that
stores and retrieves SEM’s and GQM’s in the Repository. The
Analyzing and Packaging Unit measures, collects, and packs
data from the software development process. The knowledge
representation principles of these systems are essentially anal-
ogous to the principles presented in this paper. A discussion
of the reuse management and measurement issues related to
TAME can be found in (3], [4], [6]. -

We have built an ES-TAME prototype system to demon-
strate the ideas of this paper. The run-time environment
can be a standard 386 PC with a minimum of 6 MB of
RAM. The development tools include Kappa™ expert system
development environment {17}, ToolBook™, Excel™, and C,
all running under Windows 3.0.

III. SOFTWARE ENGINEERING MODELS.

The SEM’s provide the essential means for characterizing
the current project and its environment as well as representing
the knowledge involved in them. Their underlying object-
oriented structure supports tailorability and reusability. SEM’s
consist of mainly passive objects that serve as a basis for
project execution and are governed by the active objects of
GQM’s.

A:. Modeling Mechanisms

In order to have a better understandmg of the underlying
modeling principles of ES-TAME, we will first study the major
features needed to model the SEM’s. The model building is
based on object-oriented modeling, inter-object relationships,
and a dynamic viewpoint mechanism with a highly selective
inheritance. Object-oriented modeling is the basis of most of
the technical topics. Since the basic object-oriented techniques
are well documented in the literature (8], [11], {21], [30],
(34] they are not described explicitly in this paper. Inter-
object relationships are used to construct models consisting of
various types of objects and define the relationships between
them. Dynamic viewpoints with selective inheritance are used
to view the models from various perspectives and to control
their inheritance via the relationships.

1. Inter-Object Relationships: In addition to the basic Is-A
hierarchy found in object-oriented systems, the meta-model
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FOR EACH attribute inherited from the Old-Parent in the Object
IF attribute has a local value in the Object
OR attribute is selected by the user to be inherited THEN

ELSE

Remove attribute from Object

Make attribute local in Object and maintain the local values

Change IS-A link of Object to the New-Parent .

provides a set of predefined relationships for building vari-
ous mode! hierarchies and networks. By offering a limited
collection of relationships we can maintain consistent models
and provide automated support for managing the models.
The basic inheritance hierarchies or lattices (Smallitalk-80
[11), Eiffel (21], KEE [17)], C++ [31], etc.) are not enough
for modeling SEM’s and GQM’s. On the other hand, using
attributes’ to store relationships without a rigorous set of
rules can easily lead to 2 spaghetti-like relationship net-
work which is very difficult to maintain in a large mod-
eling application. With a well-defined set of relationships
we can build models which are flexible and yet manage-
able. : '

The relationships offered by ES-TAME are Is-A/Children,
Instance-Of/Instances, Part-Of/Has-Parts, Compatible-Objects,
Dynamic-Attribute, and a Counterpart relationship. The princi-
ple of having all the relationships in pairs is important because
of the emphasis of using ES-TAME to build reusable objects.
Each object can be taken out of its original hierarchy and
subsequently be stored into the reuse repository for future use.
It must retain knowledge not only of its descendants in the
hierarchy but also of its possible ancestors, parts if it is a
composite object, to which context it belongs and information
on how its relationships can be used in new applications. It
is a reusable object with relationships as connectors that can
plug into other objects both upwards and downwards in any
of the relationship hierarchies.

The relationships are created and managed internally by the
Relationship Manager module in the Model Management unit
(Fig."3). The graphical user interface to the relationship is
provided by the Browser which is controlled by the Viewpoint
Manager.

The Is-A/Children and Instance-Ofi/Instances relationships
are similar to the standard class/subclass and class/instance
relationship offered by most object-oriented and frame-based
systems (8], [10], [11], [21). They are the only relation-
ships that employ the conventional inheritance in ES-TAME.
However, we do not provide traditional muitiple inheritance.
Instead we provide dynamic linking of the Is-A relationships
which considerably enhances the capabilities of the traditional
inheritance. Each object can have a potential Is-A relationship
to several super classes but only one of them is active at any
point in time. All the attributes of the active super class are
inherited, whereas inheritance via the other Is-A relationships
is highly selective and must be explicitly defined. This is the
foundation of the dynamic viewpoints described in Section
3.1.2. The children relationship is used to catalog all the
subclasses or instances of a given class.

VWe will use attribute as a collective synonym for instance variables of
objects and slots of frames.

Despite the rather novel approach to inheritance we still
consider our system a class based system as opposed to an
object-based system such as Self [32]. Self has the notion of
prototype metaphor instead of classes and variables. It searches
values for slots using parent pointers .instead of inheriting
according to a class hierarchy. In ES-TAME each class and
instance always has an active parent class and inherits all
the attributes of that parent. If we did not have the dynamic
linking mechanism, our strategy could be considered a single
inheritance approach similar to what is used in Smalltalk,
KEE, and Eiffel. However, the dynamic linking mechanism of
the Is-A relationships provides multiple viewpoints to object
models. Furthermore, it facilitates context sensitive behavior
for objects by changing relationships on the fly and inheriting
new attributes and functionalities from the new parent. The old
relationships can be restored without any loss of information
due to the dynamic relationship manipulation.

The fact that we do not currently use multiple inheritance
does not mean that we would argue that it is useless in
the context of software modeling and construction. On the
contrary, it is easy to identify numerous cases where objects
are conceptually related to more than one parent and multiple
inheritance is useful. The muitiple viewpoints and selective
inheritance offer many of the benefits of multiple inheritance.
We can avoid the well-known name collision and repeated
inheritance problems involved in multiple inheritance ([8],
[30), [34]) because we have only one parent link or viewpoint
active at any point of time. The optimal strategy for ES-TAME
would be to use mainly our current mechanisms and carefully
use multiple inheritance in selected cases.

The dynamic manipulation of the Is-A links is done at
the meta-model level in order to assure the propagation of
the viewpoint to all the pertinent elements. During a link
change, all the application level local values of an object,
i.e., instance values that are not inherited from the old parent,
must be maintained in the object in order to be accessible
also under the new parent. All the attributes selected by the
user to be inherited and ported under the new parent must
also be maintained. We can recover these values if the old
parent becomes the current parent again. Even if the old
parent is deleted or is not accessible anymore, we can maintain
the attributes which were initially inherited from the deleted
parent. This is useful for reusing objects in new systems where
the parent may not be included in the new systems. Attributes
without a local value and those that are not explicitly defined
1o be maintained by the user can be removed in the object
level because if the IS-A link is changed to point back to
the old parent the attributes are automatically inherited again
from the old parent.

This mechanism avoids the problem of information mainte-
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nance involved in coersion in schema evolution for object-
oriented databases [28]. In schema evolution the coersion
mechanism discards information during type changes if their
definition is not included in the new type. In the dynamic
linking of the IS-A relationship ES-TAME maintains all the
information even if the definition of the attribute is not
included in the new parent. On the other hand, dynamic linking
of the IS-A relationship is most often used as a run-time
feature and the relationship can also be changed back to any
of the previous parents, as opposed to the one way evolution
of versions in object-oriented databases [28]. The algorithm
at the top of the page describes the principle of the-attribute
manipulation of an object Object during dynamic changing of
an Is-A link from Old-Parent to New-Parent.

The Part-Of | Has-Parts relationship pair is used to describe
compound- objects. A composite object is a collection of
objects that can be managed as a single entity. Our composite
object is roughly comparable to the related concepts of some
other object-oriented languages and object-oriented database
systems [19], [30]. However, it is important to notice that
we do not require a composite object to be instantiated in a
top-down fashion starting from the compound object and then
instantiating the components [1}, [30]. Due to the emphasis on
reusable components and parallel design in large projects, we
don’t have any restrictions on the order in which compound
objects are built and instantiated. For example, we may want
to design a reusable door control unit that can be integrated,
using a Part-Of relationship, into several different types of
elevator control systems that use this type of door. Each
component of a composite object can be independently defined
in its own class hierarchy and used as a component in several
compound objects (e.g., a door control can be Part-Of a simple
elevator control system for low-rise buildings as well as a
Part-Of a high speed elevator control system). This allows us
to define objects in their most natural logical class hierarchies
and use them in various compound objects without having
to define the similar objects in different compound objects.
Part-Of relationships can also be used for performing system
level operations on compound objects and for broadcasting
messages to all the components of a subsystem. For example,
if a successful development team gets a raise in salary we
can automatically propagate the change to every SEM object
representing a member of the team via the Part-Of rela-
tionships and consequently automatically update the relevant
cost estimation model. This can’t be done using the Is-A
hierarchy because team member objects and team objects are
defined in different class hierarchies. Team members belong
to teams (Part-Of relationship), they are not subclasses of
teams (Is-A relationship). Furthermore, if we want to change
an attribute in all the modules of an elevator control system
we can automatically propagate the change to every object
representing the module via the Part-Of relationship (e.g.,
DoorControl is a Part-Of the ElevatorControl).

The Compatible-Objects telationship is used to describe
objects that can be used together, e.g., the function point
method might be compatible with MIS projects but not with
real-time projects. This information is used to ensure that the
objects we include from the meta-model in the company and

891

project level models are compatibie with each other.

Compatible-Objects provide an important mechanism for
reuse-oriented model building (see Section 3.3) and system
design. By navigating in the compatibility network and picking
from the list of compatible objects for each element, we can
configure a system using the most appropriate objects from
the reuse repository. This mechanism results in a procedure
for building a hierarchical system design, starting with the
root of the design model tree and successively adding nodes
selected from the compatibility network.

The Dynamic-Attribute provides a way of associating an
object’s attribute with the atiribute of another object [17]; e.g.,
if we have estimated the number of source lines (SLOC) in
the product characterization and given it as an attribute to the
product model, we can link the corresponding SLOC attributes
of the resource estimation and defect slippage models to the
product model’s SLOC attribute. Thus we maintain the SLOC
estimate in one place only and changing the estimate can be
automatically updated in the other models. This would be
impossible to implement with muitiple inheritance because
these models are conceptually totally different and belong to
different class hierarchies. The dynamic attribute mechanism
is similar to the inheritance of slot values in Self [32] in the
sense that it can be changed on-the-fly to access informa-
tion from a different object. However, the dynamic attribute
is used only to access information in single slots and the
main inheritance mechanism for classes and objects in ES-
TAME is implemented via dynamic manipulation of the IS-A

_ relationship. :

The Counterpart relationships are provided. for creating
various domain specific relationships and links between ob-
jects. They are normally used to define relationships between
objects which are used in the same context to build a larger
scheme. The counterpart relationship has some similarities
with Booch’s association relationship which denotes a se-
mantic connection among otherwise unrelated classes (8].
Counterpart relationships are also used for establishing links
between SEM’s and GQM’s. Using counterpart relationships
the user can create, edit and browse any kind of application
specific hierarchies. Naturally, each object can also be viewed
from all the standard viewpoints provided by ES-TAME.
We could, for example, establish a counterpart relationship
between data flow diagram models and design level coupling
models. They are independent objects but they are both used in
the same context in assessing the quality of the system design.
These relationships are used to manage the interconnections
and interactions between the related objects, including message
passing, constraint reasoning and value propagation. -

2. Dynamic Viewpoints and Selective Inheritance We intro-
duce a mechanism for attaching a generic_viewpoint mecha-
nism to any of the models or model components and their
relationships. It is provided by the Viewpoint Manager which
controls the Browser and the Design Method Tools according
to the choice of the user (Fig. 3). Normally each user has
a default viewpoint to the system. For example, the system
designer is mainly interested in the design models and their
features, and views other models as different perspectives of
systems, subsystems and objects. On the other hand, manage-
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ment is more interested in budgets, resources, COSt, project
schedule; etc. and can have models tailored according to the
management perspective. The manager may impose a schedule
for the: whole project using the project model. The system
designer.may estimate cost and effort from the viewpoint of
design :models by taking a cost estimation viewpoint on the
design models and using the tools of thc cost estimation model
onithe -design models. o

‘Each model or component of a modcl is defined as an object.
Each-object is defined with attributes that are relevant to itself
as:a:class or as an instance of a class, For example, a data flow
" diagram is defined with its relevant attributes in the context of
structured analysis and design. However, as a part of the meta-
model it inherits the capability of haying several viewpoints.
If the user wants to examine the quality aspects of a particular
data:flow diagram, he/she wo}uld change the viewpoint of that
object to a particular quality model. As a result, the data flow
diagram would be dynamically linked to that quality model and
inherit its features and functionality. Note that this is different
from multiple inheritance. Linking is dynamic and inheritance
is applied only while the object is. linked. to the viewpoint,
When changing the viewpoint again, only those attributes that
are instantiated during the old viewpoint, i.e., those that have
been modified or given local values, are ported into the new
vxewpomt

- One of the advantages of the dynamlc viewpoint mechamsm
and selective inheritance is it limits the amount of information
in each object. Because most of the objects can be viewed
from a variety of predefined perspectives: (quality models,
cost estimation, testing, design, implementation, etc.), use
of straightforward multiple inheritance or implementing the
auributes and functions. as part of the objects would yield
excessive information and obscure the user’s understanding
of the object itself and its conceptual relationships to other
objects. With dynamic viewpoints we can focus our attention
on the features that are relevant to our current interest.

Our approach differs from the multiple interfaces defined in
some object-oriented languages. For example, Snyder proposes
two different interfaces to classes, one for public use and one
for subclasses {29]. Others have proposed restricted subsets
of operations for different users to facilitate multiple views
to the same object [14]. Dynamic viewpoints and selective
inheritance are primarily a means. for changing run-time be-
havior, object attributes, or even class hierarchies. Changing
a viewpoint adds new methods and attributes to an object and
may remove old ones if they are no longer needed. This is a
basic difference from controlling visibility in Trellis/Owl [27]
or accessing an object in [14] and [29].

B. Principles of SEM's

The main purpose of the SEM’s is to formalize various
software engineering experiences and their relationships.
The:.experience or knowledge associated with SEM’s is
recorded in various forms, including model level and
object level descriptive knowledge and attributes, inter-class
relationships, rules, procedures, spreadsheets, and diagrams.
The recorded experience can be accessed from several

viewpoints both by browsing the meta-model and by gencral
purpose queries. Informal knowiedge is accessed mainly
by browsing whereas access to formalized knowledge is
more automated. SEM’s are internally created by the SEM
Manager and they are maintained in the Model Base (Fig.
3). Their relationships to the GQM’s are maintained by the
Relationship Manager. The user can use the Browser and
the Viewpoint Manager to create, modify and view the SEM
hierarchies.

Basically, the SEM’s are built as class/subclass hierarchies
using the Is-A relationship. Descriptive knowledge is stored
in the attributes of the objects and can be shared among
objects using inheritance or the Dynamic link relationship.
Descriptive knowledge includes mainly textual, graphical and
numerical characterization of the SEM objects. The Is-A
classification hierarchy is extensively enhanced using the Part-
Of, Compatible-Objects, and Counterpart relationships. These
links often have no specific value in the generic classes. They
may have constraints for attribute or link values. For example,
a link might be allowed to be established only to subclasses or
instances of certain classes. The undefined attribute values and
links are defined in the lower levels of the object hierarchies,
most often at instance level. Rules, procedures, spreadsheets,
and diagrams are defined with methods that either fully im-
plement the functionality or provide an interface to a tool that
offers the service.

The meta-mode! defines the buxldmg blocks and their re-
lationships for creating the actual models and environments
for each project. For example, the waterfall model can be

‘constructed using the Is-A and Part-Of relationships (Fig. 4).

It is defined as a subclass of a generic life cycle models
class with Part-Of relationships constrained to possible process
activity classes (analysis, design, coding, test, maintenance,
etc.) or their descendants which are defined as their own
independent object models. The process activity objects can
be used as building blocks for constructing different life
cycle models. A tailored waterfall model is defined in three
phases. First we define a customized waterfall model that
is refined as a subclass or an instance of waterfall models.
For example, we might specify the model as having separate
phases for product design and detailed design instead of
having only one design phase. As a second step, in the design
activities, we might choose to represent the data structure,
software architecture, and procedural design in terms of entity
relationship diagrams, data flow diagrams, state transition
diagrams, and structured English, respectively. As a third step
the tailored process activities® are defined to be parts of the
customized waterfall model. Thus the customized waterfall
model is a compound object that is a subclass of waterfall
models and its component objects are subclasses of the process
activities. This same approach applies for most of the SEM
models. The meta-model defines independent reusable building
blocks and mechanisms for customization and interconnec-
tion. The actual environment is established by tailoring the
classes and defining the relationships described in the previous
section.

2These process activities can be reused as parts of other life cycle models,
cither as is or modified for the particular model.
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C. Planning and Characterizing

This section provides an overview of how the meta-model
supports the planning steps of the QIP. It does not, however,
include the detailed goal conmstruction techniques which are
described in Section IV. The characterizing is based on refining
and augmenting the generic SEM objects and components
as well as building larger models and compound objects by
combining the template objects with pertinent relationships.

The meta-model can be tailored for various organizations
by refining and augmenting the objects, relationships and,
more importantly, by using several viewpoints into the system
and combining the model hierarchies according to the interest
of the user. Selective inheritance can be used for picking
up relevant attributes and functionalities from various object
classes without the burden of inheriting too much information
from several sources. Initial tailoring of the meta-model is
performed during the project planning activities. The meta-
model can be further modified at any point during the project.

ES-TAME encourages reuse of previously defined mod-
els and objects in the planning and characterizing phase as
well as in building the actual application software. Using a
compatibility relationship network it can suggest objects and
object hierarchies from the experience base that can be used in
building and tailoring the models for the current project. With
a sufficiently large reuse repository this works like a chain
reaction.

We normally start the planning from a previously built
meta-model that is tailored either for the company or for the

Waterfakl.2

«

Part-Of hierarchy

Is-A and Part-Of relationships of the waterfall model.

type of project that we are going to run. Thus, the star;ing
point is a template model that has components with several
compatibility relationships whose values are constrained to
classes or class hierarchies which can be directly linked to this
component. These compatible components are offered by the
Reuse Manager (see Fig. 3). By retrieving a component from
the repository we obtain a component that can suggest other
components from the repository that are compatible with the
current one. These in turn can suggest new components and so
on. The procedure is like building a tree with nodes that can
further suggest new nodes or sub-trees below themselves. The
tree can be any of the relationship hierarchies supported by ES-
TAME. We can, for example, start with a node and pick up
from the list of potential Part-Of components building a Part:
Of hierarchy. At any moment we could change our approach
and start picking up from the list of potential subclasses of a
class level component. This procedure can be repeated until
we have exhausted the list of potential components from the
various compatible components.

D. Modeling for' the Desigﬁ Phase of Project Execution

Execution in the context of the QIP is defined as a closed-
loop process of executing the processes, constructing products,
collecting and validating data, and giving feedback in real-
time. This section describes the aspect of defining the SEM’s
to support these activities. We will use design activities of
the project life cycle as an example of the modeling support
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for project execution. The process of making these models
executable also involves the GQM models.

In order to be able 1o support the activities after the initial
project planning phase, we have to support the methodology
chosen by the user to model the system being built. Nor-
mally the design involves the decomposition of the system
into subsystems and further into more detailed subsystems
in a hierarchical manner. Our approach can be applied for
functional decomposition as well as object-oriented decompo-
sition. The main assumption is that the method supports some
mechanism for decomposing the system into subsystems or

class hierarchies. In functional decomposition, the design is

.internally represented with Part-Of relationships by ES-TAME.

For our first prototype of ES-TAME we have chosen RT-
SA/SD (Real-Time Structured Analysis and Design [33]) as
the case study for the system modeling and implementation
oriented models. The modeling and support of the RT-SA/SD
method is based on the work in Prospex project reported in
detail in [23]. However, the viewpoint mechanism provides a
significant improvement over the basic frame-based modeling
in Prospex. Consequently, most of the principles in the follow-
ing examples can be applied to other methods, often simply by
replacing the name RT-SA/SD with the corresponding method
name. ‘ :
RT-SA/SD serves as a starting point for software develop-
ers. to view various aspects of the product and process via
multiple viewpoints of the ES-TAME models. The amount of
information associated with each RT-SA/SD element in 2 real
world ES-TAME would be overwheiming (both RT-SA/SD
related information and more general information related to
each sub-system in the RT-SA/SD models, including quality
attributes, cost attribuges, schedules, implementation, testing,
etc.). Multiple viewpoints of the system help avoid cognitive
overload of the user. For example, the user can choose 1o
view the RT-SA/SD model from the point of view of testing
and access information of the testing methods, test data, test
results, etc., which are relevant to the particular RT-SA/SD
model. Multiple viewpoints can be active at the same time
providing features like checking the quality model and testing
features of a specific RT-SA/SD model.

The entity relationship diagram in Fig. 5 shows the re-
lationships of the various viewpoints of a subsystem in an
imaginary elevator control system. It describes the viewpoints
to a FancyDoor control system in an elevator control system
and its relationship to the simplified product model. Fancy-
Door control subsystem has an Is-A (subclass) relationship to
the RT-SA/SD diagram element which in turn has an Is-A
relationship to the more general Method element. The Method
element object has a property of being able to provide several
viewpoints to itself. Each viewpoint (resource model, quality
model, etc.) is dynamically linked to the Method element
providing the user 1 to n different viewpoints into the Method
element. The FancyDoor control inherits ali the different
viewpoints from the Method element via Is-A relationships and
consequently has a capability of providing several viewpoints
to itself.

The left side of the diagram illustrates how the FancyDoor
element is related to the simplified product model of the

Fig. 5. The relationship between the product hierarchy and multiple
viewpoints,

elevator control system. FancyDoor is conceptually a subclass
of a more general class of Automatic doors which in turn is
a subclass of a Door control class. The Elevator control has
several parts, one of which is the Door control class.
Linking the different viewpoints into the generic method
element provides an important independence of the design
method. The mechanism for changing viewpoints is defined
and implemented in the generic method element object and
inherited by the elements in different methods. The first ES-
TAME prototype can be enhanced by linking corresponding
elements from other design methods (JSD, SADT, SDL,
etc.) to the generic method element thus providing similar
viewpoints for each method. The enhancement is implemented
by creating an object-oriented model of each method (concep-
tually similar to the RT-SA/SD model). It will then inherit all
the viewpoints, attributes, and functionalities of the generic
method element that are further refined to meet the needs of
each method. We have demonstrated this idea with a design
level quality model example that was initially built for RT-
SA/SD and was used for JSD with very few modifications.

IV. GQM’s

GQM'’s are the primary means of making our models
operational. They provide information to the analysis and
packaging activities using data collection, metrics, analysis,
and packaging procedures incorporated in the objects either as
methods or as interface links to the appropriate tools. GQM’s
are the main execution and analysis “engine” of the system.

GQM models are an organized coliection of active objects
that can perform functions on their own without explicit
activation by the user or other objects. SEM’s, on the other
hand, are a collection of passive objects that are used to
formalize and package software engineering knowledge. They
perform functions only when activated by the user or by GQM
objects.

The construction of GQM’s consists of two concurrent
processes, which we will call P1 and P2. P1 involves the
creation, tailoring, and reuse of GQM template objects to
build a GQM model base which is used by the software
development project (GQM Template Editor in Fig. 3). P2
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involves the rule-based construction and instantiation of the
GQM model base into a collection of operational GQM’s
(GQM Construction Manager in Fig. 3). These processes
are comcurrent rather than sequential, supporting the iterative
development of GQM models. The first process is actually a
part of the characterization and planning phase of the QIP.
It involves the construction of GQM object templates and
the creation of a generic model using template objects as
building blocks. The second process includes refining and
augmenming the often incomplete objects and instantiating
them igto operational objects.

GQM models are basically compound objects consisting
of goals, questions, and metrics that are normally modeled
as stracmzed objects. The top-down construction of a GQM
model starts with a formulation of an overall top level goal
object. It can be subsequently defined by lower level sub-
goal altjects. The goal objects at the lowest levels in the
goal hierarchy are characterized by attaching question level
attribuses; to. the objects yielding more specific goal/question
objects;, needed for achieving the goals. Question objects
inherit the goal definition from their ancestors in the hierarchy.
Each goel can generate one or more questions. Each question
in tumm is:defined by one or more metrics. Metrics can be either
automated measurement, data collection and interpretation
procediages, or interactive information gathering sessions with
the uszr. They can also be combinations of these activities.
Metrics inherit both goals objects and question objects. Each
questiomcan be used in the definition of several goals and each
metric ¢an be used to answer several questions (Fig. 6).

Each ebject is defined using a template driven editor (see
Fig. 7). The templates have a predefined structure but the
interprefation of the attributes can be different for various
objects aad object hierarchies. Moreover, attribute definitions
and template values can be inherited via the GQM hierarchy.
A frecfiarm way of defining goals, questions and metrics is
also pravided by ES-TAME but automated support for them
is limied.

GOM eonstruction and instantiation is the final step.of
plannizg and characterizing before the project execution. The
purpose: of these activities is to perform the final refinement
and augmenting of the GQM’s in order to make them opera-
tional {he process P2 of GQM construction).

The formal semantics of the GQM’s allow us to infer the
underlying functionality of each attribute of a GQM model
or its smponent. This feature is' used extensively to assist
in the pmocess of constructing goals, questions and metrics.

Fig. 7. Simplified GQM templates.

The user starts with a goal template (see Fig. 7), refining
and augmenting its attributes according to the needs of the
project. Each new piece of knowledge prompts the system
to determine if it can automatically deduce the necessary
elements for the definition of the goal or the subsequent
questions and metrics. Thus, the process of iteratively defining
goals, questions, and metrics can activate functions that are
associated with the particular object. If a GQM model is not
yet fully defined, a user input into the template can activate
the automatic generation of questions for goals or metrics
for questions. If a particular GQM model is fully specified
when the attributes are filled in, the template can automatically
activate the corresponding data collection proccdures that
interact with the user and the SEM’s.

The construction of the GQM’s is performed usmg a rule-
driven GQM generator. It is a tool that uses forward chaining,
data-driven rules to help in the process of creating GQM’s.
When the user creates a goal he/she uses an editor to fill in
and instantiate a goal template. The semantics of the templates
are defined by rules. When an attribute of a template is filled
in, it can fire one or several rules. These rules can infer more
information and fire additional rules in a forward-chaining
manner. Fired rules can generate more information based on
the given initial data, they can fill empty attributes of the
template, suggest or generate questions based on the data, and
S0 on.

The same rule-driven construction principle apphes to creat-
ing questions. Normally the user has to be involved in defining
the questions, although in some cases the questions can be
created automatically based on the goal by the GQM gen-
erators rule-base. The construction includes choosmg, filling
in and instantiating question templates | based on mformatxon
from the goal definition.

Finally, the user chooses and dcﬁnes the metrics and data
collection procedures with the help of the GQM rules. This
procedure uses the SEM’s in the meta- -model in an object-
oriented way. For example, if the cost of 2 sub-system is not
known and it is needed to answer a question of a GQM then
a message is sent to the corresponding sub-system object in
a SEM. The SEM object calculates the cost, possibly asking
further questions of the user if sufficient information is not
available. On the other hand, if the cost is already available in
the SEM, either by previous calculations or as previously given
by the user, then the method in the SEM object simply returns

C e
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the value of the cost to the GQM. Furthermore, the mechanism
for calculating the cost depends on the context of the object.
It may be calculated by summing up the cost of sub-systems,
based on recorded and user provided data, or estimated by a
given formula (e.g., Cocomo). In all cases, the GQM model
is the same and does not have to know anything about how
the corresponding SEM gets the value. The differences are
defined in the corresponding SEM’s (product model, project
model, cost model, etc.) and can be hidden from the objects
who ask for the information.

GQM'’s and SEM’s typically communicate using the metrics
level objects of the GQM’s. Goal and question level objects
normally refer to lower level objects in the GQM hierarchy to
obtain information. The links between the SEM’s and GQM’s
are established during the construction and instantiation of
the operational GQM’s, either automatically or with user
assistance. The rules and constraints for the relationships are
defined in the GQM template objects by the person who is
responsible for the ES-TAME system.

For example, consider a GQM that needs information on
the experience of the manager in order to evaluate the devel-
opment team, i.e., the GQM involves several questions and
one of them is “What is the experience of the manager?”
The GQM is initially constructed from a template object
(using process P1 of GQM construction) which defines that
its manager link (defined as a Counterpart relationship) must
point to an Instance-Of managers class in the SEM’s. When
a GQM object needs the experience information for the first
time, it doesn’t know who the manager is. However, based
on the manager link constraint, it knows that it must be an
instances of the manager class. Consequently, it asks for the
name by giving a list. of instances of the manager class to
the user. When the user selects the name of the manager in
the menu, the system automatically initializes the Counterpart
relationship between the GQM and the selected manager object
in the SEM and all future references to the manager use this
link. When the link is established, the GQM object sends a
message to the manager instance asking for the experience of
the manager. If the information is not available in the manager
object, it activates characterization procedures which provide
the user with a form editor for defining the necessary facts
for the manager object. When the characterization is done, the
manager object returns the experience data to the GQM object.
Naturally, the manager instance saves this new information
from the form editor during the characterization process and
can immediately return the experience data, as well as any
other characteristics defined in the characterization, without
any user interaction during the next requests.

The communication between the GQM’s and SEM’s is
analogous to the previous example when the information
flow is reversed, i.e., when the GQM’s are manipulating
the information of the SEM’s. For example, when a metrics
method of a GQM has measured the error density it will send
the results as a message to the corresponding quality model
(SEM). The establishment of the link is also similar. The
template objects provide the allowable quality models which
can be linked to the particular GQM and the final establishment
of the link is done either automatically or interactively during

the construction and instantiation of the GQM’s.

By having separate SEM’s and GQM models we can have
a clear interface between the general principles of creating
GQM'’s and the project specific information defined and stored
in the SEM’s. All the complexities and implementation details
can be hidden in the corresponding models. -

The actual use of fully specified GQM’s is performed
by backward chaining rule-based reasoning. The goal part
of 2 GQM is used as a high level goal® in the ‘backward
chaining process. The reasoning process establishes questions
and metrics as backward chaining sub-goals When metric
level goals are established in the reasoning they activate the
corresponding metrics procedures.

V. CONCLUSIONS

We have described a methodology, a knowledge represen-
tation, and a reasoning framework for the top down goal
oriented characterization, modeling and execution of software
engineering activities. This is done in the context of the Quality
Improvement Paradigm (QIP), an evolutionary improvement
paradigm tailored for the software business defined by three
steps: 1) planning, 2) execution, and 3) analysis and packaging.
The Experience Factory concept provides an environment for
the organizational approach for building software competen-
cies and supplying them to projects. -

A prototype system (ES-TAME) is descnbcd which demon-
strates the underlying knowledge representation and reason-
ing principles. Support for the RT-SA/SD method is used
as a case study of modeling the design phase of build-
ing software for real-time systems. ES-TAME provides an
object-oriented meta-model concept which supports tailorable
and reusable software engineering models. It provides the
essential mechanisms, functions and attributes for building
other models. Modeling is based on inter-object relationships,
dynamic viewpoints and selective inheritance in addition to the
traditional object-oriented techniques. This extended object-
oriented approach has proven to be effective in implementing
the two types of highly modular and tailorable ES-TAME
model categories: descriptive SEM’s which consist of mainly
passive objects and procedural GQM’s which consist of active
objects. By defining SEM’s and GQM’s as two clearly separate
models, we can create a highly modular system and a far better
support for representing knowledge in a reusable and easily
maintainable form.

SEM modeis include representations for the basic soft-
ware engineering activities. They involve mostly descriptive
knowledge defined in the characterization and planning ac-
tivities of a project life cycle. SEM’s are used and made
operational by the active GQM models that are defined by
a systematic mechanism for defining and evaluating goals and
using measurement to provide feedback in real-time. GQM’s
provide a paradigm for establishing project and corporate
goals and a mechanism for measuring against those goals.
A rule-based forward chaining mechanism provides a user-

3Notice the dual meaning of the word goal. It is used to refer both to the
goal part of a GQM and to the goal of a backward chaining reasoning process.
The context of the word should clarify the meaning.
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friendly, incremental, and flexible way of constructing the
GQM templates into GQM object hierarchies.

The current implementation of ES-TAME provides a
framework for creating and maintaining tailorable SEM’s and
GQM’s. It demonstrates the main knowledge representation
and reasoning mechanisms of the Model Base, Model
Management, and ES-TAME User Interface unit including the
Viewpoint Manager (Fig. 3) and an interface to Design Method
Tools. However, it does not include automatic support for
the Analysis and Packaging Unit and these functions must be
carried out manually. Furthermore, the Reuse Repository needs
additional research to be useful in practical environments.

Potential directions for future research include comprehen-
sive support for building and managing the reuse repository,
using reverse engineering techniques for creating and main-
taining the experience base for an organization, using case-
based reasoning techniques for packaging information into the
experience base and supporting GQM management with deep
knowledge.
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