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This paper reports on: the development of the data binding tool and its use in Ada source
code reusability and software system design assessment. The tool was built around the
metric of data bindings. Data bindings fall in the category of data visibility metrics
and are used to measure inter—component interactions. Software system components are
defined in the context of the Ada language using a flexible scheme. They are used, along
with cluster analysis, to present structural configurations of a software systern. The clus-
tering technique as well as the tool design and its problems are discussed. The analysis
of dendrograms (trees of components produced by the tool) reveals several classes of
systems dendrograms and provides a simple mechanism for Ada source code reusability.
Finally, the implications of different design methodologies used to develop the test soft-
ware are discussed and explanations for the several types of dendrogram formulations
are given. s
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1. Introduction

Software projects are often scaled down, delayed and even abandoned due to cost
and time constraints set on the development effort. Although we have experienced a
great number of innovations like the introduction of workstations and programrming
environments, the development of software has not achieved a sufficient rate of
productivity to satisfy demand. It is expected that this trend will continue, at least
in the near future [10, 35]. There are two major reasons for this: limited software
reuse is employed [6, 7] and assessment of software designs is often hard to be carried
out [21, 14, 28]. o _

By reuse, we mean not only reuse of code, but also of other life-cycle products
as well as processes. In certain environments, the reuse of processes is already a
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common practice. People follow a predefined path in their problem solving. Based
on previous project experiences, personnel and resources are allocated and schedules
and milestones are laid out. However, reuse of products still remains limited. Al-
though reuse of early software life cycle products could prove extremely profitable,
reuse of source code itself remains an issue of critical importance [10].

Design represents an intermediate, yet extremely essential, part of any project
[27, 21]. High level solutions are offered to a set of problems furnished by the
requirements analysis phase. Programmers are expected to comply with the outlined
design plans on their way to implementation. In an environment in which many
people work simultaneously to meet development goals, and in which changes of
design are common, regular inspection and validation of the design blueprints is
desired. Compatibility of the design with the released code should be observed as
well. : _

The introduction of Ada [30] had two primary goals: to promote reusability
of code through the wealth of the language constructs and to assist system design
through its abstraction mechanisms. The elementary building block of Ada is the
subprogram structure [9]. Ada offers packages, tasks and generics as major struc-
tural elements. Packages provide the capability to extend the language by creating
new objects with their operations. Tasks provide concurrent interaction among lan-
guage objects. Generics offer a versatile mechanism for building reusable software
components. There is a great deal of interest in using Ada as a design language,
given the benefit of design analysis provided by the numerous tools implemented for
the analysis of Ada source code [32]. While it will not expected that full elabora-
tion of the source code will be available at design time, the system architecture and
the interfaces between system components will be identified. Analysis of the archi-
tecture and inter-module information flows provides indicators of product qualities
such as reliability, maintainability and reusability.

The purpose of this paper is to report on the development of an Ada based tool
(the Data Binding Tool or called dbt) and to demonstrate how it assists in the reuse
of source code and system design assessment of Ada systems. The tool has been
developed around the idea of information flow among software components. Data
bindings [4] provide a measure of component and module interaction. They evaluate
the proximity of the system’s components. Those “closeness” measures serve as
input to a mathematical taxonomy (cluster analysis) method that constructs a
simple and unique tree diagram of the elements involved, This diagram — called
a dendrogram — expresses element similarities and dissimilarities at a glance. By
examining dendrograms, one can determine what happens when certain components
within a cluster need to migrate into a new environment. Designers can determine
if clusters are representative of their design and can derive a deeper understanding
of their systems. The tool has been applied to a number of software projects and '
has helped to draw conclusions about reuse potentials. The analysis, from the point
of view of design assessment, shows that indicators of quality factors vary according
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to the employed design techniques. Conformance of the obtained dendrograms with
the initial designs of the systems is also discussed.

The organization of the paper is as follows. In Sec. 2, a review of related work
and the concept of data bindings are presented. The notions of a component and
data bindings for Ada are discussed in Sec. 3. Section 4 briefly studies the concept
of mathematical taxonomy and how the final output (a dendrogram) is produced.
In Sec. 5, the design of the tool and the major problems encountered are examined.
Section 6 presents issues in reusability and design methods used, sets questions
to be answered through the dendrograms, gives a description of the test data and
offers an explanation of the derived dendrograms. The results of our experiments
are discussed in detail. Conclusions and research plans can be found in the last
section of the paper.

2. Background
2.1. Related work

Information flow metrics and concepts — similar to the one used in this paper —
have been extensively used in the literature for a broad range of purposes. Their
benefits are that 1) they can be used in stages prior o detailed coding (information
flow metrics can be applied during PDL design), 2) they provide insight into com-
plex programming structures, and 3} they can be readily automated since a simple
instrumentation of the compiler is usually required. In this section, we present only
a partial overview of previous research in the area from a large body of literature.

In [18], the concept of information flow is formally defined and the notions of
fan~in and fan-out are introduced. Global flows are distingunished from local flows.-
Based on these concepts the avthors speculate that the complexity of a procedure
depends on the complexity of its code and its environment. Measurements for the
suggested metrics were used to locate design and code problems. Information flow
was used to quantify the strength of connections between program modules. Wilson
and Osterweil [37] used information flow to.detect mistakes in C programs. Code
that goes through the compilation phase successfully may still have problems at
run—time. The key idea is that variables should follow a sequence of events: defini-
tion, reference, undefinition. If a variable of a function presents a pattern such as
definition—-definition, definition-undefinition, or undefinition-reference somewhere
in the control flow, then it is a data flow anomaly.

Barth [I] used data flow techniques to perform inter-procedural flow analysis.
The goal of this analysis was to determine information available at particular pro-
gram segments. Segment semantics is propagated through the program in a way
that reflects the control structure. Generally, the problem of global flow analysis
is shown to be NP-hard. A one-pass algorithm is used to gather complete inter—-
procedural information., The emphasis of this algorithm is on the computation of
modification and usage information for every object (similar to the notion used in
data bindings, and in [37]). Information flow techniques were used in [36] by Stevens
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to demonstrate improvement in application development productivity. Indeed, this
is the first reference which views information flow techniques in conjunction with
reusability and system design assessment, regarding them to be a mechanism for
reducing system complexity. Belady and Evangelisti [5] used the interconnection
of program modules and data structures, in terms of calls and references, to deter-
mine system partitioning through the use of clustering techniques. An algorithm to
perform automatic clustering of modules and a metric to qualify the complexity of
the resulting module partitioning were proposed.

Hutchens and Basili {19] presented an evaluation of system component inter-
action in Fortran using data bindings. Bindings among system subprograms were
input to a number of clustering algorithms to derive system dendrograms. The pur-
pose of that work was to find functional clusters, to perform error analysis involving

- changes in the code and finally to compare some clustering techniques. Selby and

Basili [33] used data bindings to quantify ratios of coupling and cohesion. They sub-
sequently used these ratios to generate hierarchical systems descriptions in order to
localize errors by identifying error—prone system structures during the development

- phase.

2.2. Data bindings

Data Bindings fall in the category of measures for data visibility [4]. They have
been utilized to measure the inferaction among system segments (2 segment is a set
of executable statements and conceptually is very similar to the notions of module
and component). The definition of data bindings follows.

Definition:

Let « and B be two program segments and variable 7 be global to both. If v is
assigned a value by segment o which is accessed (or referenced) by #, then there
exists a data binding between the two program segments, denoted by the triplet
(@7, 8)- : :

This triplet conceptually describes a flow of information from the first segment
to the second. It is also possible that another binding indicating a reverse flow exists
(i.e., (8, 7', @) where 4’ is a global variable assigned a value by f and referenced
(accessed) by ). Intra-segment bindings are not considered to be of interest since
they portray flow internal to the segment (so (o, =z, ) does not count). Although
the definition speaks about assignments and accesses, this really refers to potential -
assignments and references. '

In (19}, the notion of segment was made to be synonymous to the Fortran sub-
routine or function.' Several families of Data Bindings were identified in the same
early work [19]: potential, used, actual and control flow. The definition given above
is for actual data bindings. It is also the only one to be used in realistic measure-
ment settings [4, 19, 33]. Potential bindings, as the name suggests, capture the
possibility that two segments communicate through a variable located in both their
lexical scopes. So, if a and 8 are two segments and 7 is in the lexical scope of a and -
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B then (&, 7, B) is a potential data binding. Used bindings reflect the similarity of
two segments with regard to the “use” (either reference or assignment) of a variable
in their scope. Thus, if « and # are two segments that use global variable v, then
there is a used data binding («, v, 8). Finally, control bindings are an improvement
over actuals in the sense that an extra condition is required, namely control from
segment « is passed over to segment J. Naturally, the number of potential bind-
ings is the largest of all binding types. As the definitions become more restrictive,
smaller numbers of data bindings are found.

3. Concepts in Ada
3.1. Segmenis

System segments in [19] are called either modules or components. The term module
is unfortunately overloaded in the literature. There is disagreement on what should
be considered as a module (component). Myers [29] suggests that a system module
(component) is a set of executable statements satisfving the following criteria:

¢ It is a closed subroutine.
¢ It has the potential of being called from any other module in the program.
o It has the potential of being independently compiled.

The last two requirements are more suggestive than definitional. Fértran sub-
programs generally comply with all of the above criteria. Since subprograms are the
only constructs for abstraction in Fortran, their utilization as system components
in [19] is justified. _ '

Hammons in [16] defines Ada modules as non—nested subprograms. However,
 subprograms encapsulated in package bodies are not characterized as modules. The
claim is that since such subprograms cannot be called from any random point in
the system {only within the package body’s scope) they do not qualify as modules.
Hammons also suggests that Ada tasks do not qualify either.

A.da provides a wealth of programming constructs and it is generally difficult to
~ identify one of them as the general modularization mechanism. Packages mainly
accommodate the need for encapsulation and abstraction. The main routine that
drives an Ada system is a subprogram. Therefore, it is difficult to differentiate
between packages and subprograms. A flexible scheme, called Ads data Binding
" Components (ABCs hereafter), is proposed here to define Ada constructs as com-
ponents. ABCs offer a two-level module definition capability. ' ,

At the first level, subprograms (functions and procedures) as well as task entry
bodies constitute the system components. There is not much syntactic difference
between a task entry call and a procedure call. Although the nature of tasking is
dynamic, information flow among task entries can be modeled and analyzed from
a static perspective. Indeed, the data binding concept could be applied to the
entries. Entries are considered to behave much like procedures. Entry parameter
lists correspond to formal parameter lists. In addition, bodies of tasks can be
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compiled separately. ABCs of the first level are the essential buﬂding blocks of the
language and of our analysis. Note that these low-level cornponents comply with
Myers’ laws,

At the second level, certain sets of components of the first level are viewed as
integrated entities. A substantially different view of a system under analysis could
be taken by recognizing that there is such a'need for integration. That would
change the formulation of the participating ABCs in the analysis. For instance,
there are occasions where packages implement abstract data types and they must
be seen as integrated components. The same applies to the case of nested functions,
subprograms as well as tasking constructs encapsulated either in subprograms or
packages. Thus, a mix of higher-level components (packages) with elementary ones
(procedures, functions) may be obtained, providing a more diversified view of the
systemn.

The ability to express two-level ABCs is supported by our work. If nothing is
explicitly demanded, then the analysis will be carried out assuming that only first
level components are elaborated. Otherwise, the second level ABCs will be built on
knowledge acquired by the analysis performed on the first level of Ada data Binding
Components.

Block statements are not considered ABCs of either level. Blocks are instead
part of the Ada Binding Components that contain them within their scope. Package
body initializations are also not ABCs. Initializations are considered to be part of
the package as a whole, therefore, they are covered by the Ada Binding Components
of the second level. It is also important to understand and classify the interaction
of instantiated gemerics with the rest of the system. Instantiated ABC generics
are identified and their data interaction with other Ada Binding Components is
“evaluated.

3.2. Definition of data bindings in Adg

The definition of Data Bindings, in light of the Ada Binding Component scheme,
is modified as follows: :

Definition I:

There exists a Data Binding (abc.ix,abej) between two ABCs abed, abej if all
of the following hold: S . :

@ abedi calls abcj,
® object x is part of the abcj interface (either an element of the formal parameter
list or a returned function value), ' '
® one of the abc.,abe.j assigns x and the other references it.

Note that in Ada the mode of the formal parameter x determines the direction
of the binding. Ifit is an IN parameter type then the binding (abc.ix,abe.j) is estab-
lished. Ifit is an OUT then the reverse direction binding is set up (ie., {abej.x,abe)).
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In the case of INOUT, either binding could be established depending on who assigns
and who references.

Definition II: .
There exists a Data Binding (abe.i,x,abej) between two ABCs abc.i, abc j if:

e The scope of object x extends to both abe.i and abe .
s abc. assigns to x and abcj references it.

The scope represents the set of system variables that are accessible by both
ABCs. Some of these objects may be local to the ABCs library units. They may also
be objects belonging to different library units than these of the ABCs, but are visible
by being WITHed. Except for the removal of the stipulation that x be a global
variable, this last definition parallels the original one [4]. These definitions can be-
applied whether or not the components in question are visible at the library level -
or nested inside one another. The selected level of ABC for a particular construct
determines exactly what the scope of each segment is. Note also that the defined
bindings are those established through execution and not through elaboration (such
as through initializations or default value assignrments}).

A two-dimensional mairix is used as the recording mechanism for all occurrences
of data bindings among the ABCs of a system. This data binding matrix is used
as input to a mathematical taxonomy that determines the several clusters. This is
discussed in the next section.

4. Mathematical Taxonomy

A Mathematical Taxonomy (or Cluster Analysis) is used to group similar objects.
The similarity of objects is based on properties of the objects. The role of clus-
tering is muitiple. It groups, displays, summarizes, predicts and provides a basis
for understanding. Items (or objects) are grouped to create more general and ab-
stract entities that sharve properties and have identical behavior in the context of
the system from which they are derived. -Clusters of objects are displayed so that
differences and similarities become apparent. Properties of clusters are highlighted -
by hiding properties of individuals. What is expected in general from a mathe-
matical taxonomy is that clusters present similar properties. Thus, clusters easily
isolated offer a basis for understanding, and speculations can be derived about the
structure of the system. Unusual formulations may reveal anomalies.

In this paper, Mathematical Taxonomy is used as the tool to produce ABCs
groups. These groups form the basis for a classification scheme for evaluating the -
system design and future partial system reuse. A great number of algorithms for
Mathematical Taxonomy has been proposed in the literature [23, 15, 17, 20]. Given
that programs are often organized as hierarchies of elements and the two-level
flexibility that the ABC scheme provides, a bottomaup clustering algonthm appears
to be the most appropriate [19, 23].
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In general, the initial rew data collected on a set of n objects (having m
attributes) constitutes a matrix M with size n x m.

i1 12 - F1,m
- H2,1 M2 - H2m
M= ’
Hil Hi g

Hna - 7 Ham

Element g;; is the score of the i~th object for the j~th characteristic. The first
computation of the Cluster Analysis method is to produce a matrix ¥ out of matrix
M. Matrix N is called the distance matriz (informally, it expresses how far away
every object is from all others) and has size n x n. This distance matrix is passed
over to an iterative algorithm that constructs the objects’ dendrogram [23, 15]. The
rest of this section describes in detail the formulation of the initial as well as the
distance matrix and discusses the iterative algorithm that is used.

The clustering of Ada data Binding Components matrix M is formulated with
the use of data bindings. In this case, m = n = number of ABCs and the properties
correspond to the number of data bindings every ABC maintains with all the rest
(ie., p:; is the number of any direction bindings between components ¢ and j).
M is a symmetric matrix. The transformation of M into the distance matrix N is
performed using the formula:

e Bk 3 ey — 2pi
T Tk ik Lo prg = i

“The nurnerator of the expression is the number of bindings in which either the i—
th or the j—th component participates but not both. The denominator expresses the
number of data bindings in which either the i~th or the j—th componen} participates,
or both. Their fraction N;; represents the probability that a data binding chosen
from the set of bindings that involve either i or j is not in their common set of
bindings. If 4;,; = 0 (no bindings occur between the two ABCs) then N;; = 100.
This expresses that the dissimilarity (or distance) between i and j is as large as
possible. Consequently, the more bindings between any two components the smaller
their distance is. o _

" For example given the matrix M with elements (a,b,¢c, 4, e):

* 100 -

0 2°0 21
2013 2
M= 01 0 2 1
2320 2
12120
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the corresponding distance matrix ¥ is symmetric with elements (a, b, c, d, e):

0
81 0

N=| 100 90 0
8 78 81 0

90 83 88 8 0

The clustering process continues in a bottom-up fashion. It proceeds in a series
of successive fusions of the = ob jects intor clusters, to reduce the size of the distance
matrix. The grouped objects are those with the smallest distance (therefore, those
whose strength of coupling is higher, because they have the largest number of com-
mon data bindings). From the initial matrix ¥ the objects b, d are the ones to be
grouped. Subsequently, they are fused with the nearest groups/objects. The dis-
tances between the newly created cluster (b, d} and the objects a, ¢, e are calculated
as follows:

N(b,d),a = m-in(Nb,a,Nd’d) =81
Ns,a),c = min{Nj ., Ng o) = 81
N,d),e =min(N; ., Ny ) = 83

The group (b, d) is considered as a single object whose distance to other cbjects
in the system is defined as the distance to the closest element of the group. After
the first iteration the matrix becomes N with elements a, (b, d), c, e:

0

81 0
M= 100 81 0

90 83 88 0

During the second iteration cluster (b, d) is grouped with objects a and ¢ at level
81 forming a new cluster (a, ¢, (,-d)). Note that ¢ and ¢ are drawn into the (b, d)
cluster, even though they have no bindings to each other. The distance matrix at
the latest iteration becomes N with elements (a, ¢, (b, d)) and e. '

0
_Nz‘(s3 o)

Finally, object e is fused into cluster (a, ¢, (5, d}) at level 83. Graphically, the
created clusters are depicted as a dendrogram in Fig. 1.

Mathematically, cluster analysis has some weak points. It is based on limited
knowledge of the objects (i-e., some specific object characteristics) and it is not
based on very sound probability models. The counterargument to the latter is that
if the classification pattern for characteristics of the measured objects is reasonable,

* the chance that the taxonomy leads to meaningful results with respect to these
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;1

78

Fig. 1. Sample system dendrogram.

* characteristics, is increased [17]. In this study the introduction of Ada Bindi.ng
Components, along with the definitions of data bindings, offers a clearly defined
classification scheme for measurement of data use and visibility. It is also worth
mentioning that in our analysis and in agreement with the above presented example
we have not used any weighting scheme for the various data bindings.

4.1. An example

A small example is shown below. The package EXAMPLE contains 4 subprograms,
BAR, COO, FOO and ZOO. ZOQ is the entry point for the package.

package EIAMPLE is .
Procednre BAR(X : in INTEGER);
fanction COOCY : in INTEGER) raturn INTEGER;
procedure FO0(Z : in INTEGER);
procedure ZOGQ ;

end EXIAMPLE;
package body EIAMPLE is
A, B, D : INTEGER;
c + IFTEGER :=0;
procedura BAR(X : in INTEGER) is
begin .
. C:=xI+B;
end BAR;

function COO(Y : in INTEGER) return IETEGER is
TEMP : INTEGER := 0O;

bagin -
TEMP := Y + C;
return (TENP);

end COQ;

procedurs FOO(Z : in TETEGER) is

"bagin :

D = Z%;
A = COO(D) + C;
BAR(A); '

and FOO;

procedure 200 is
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begin
D= 1;
B = 2;
FOO{D);
end 200; :
begin
nall;
end EIAMPLE;

According to the definitions, the data bindings found in this piece of code are:
(200,D,FOQ), (Z00,B,BAR), (FOO,A,BAR), (BAR,C,C00), (FOO,D,C00),
(BAR,C,FOO), (FOO,C00,C00). The last one of the above bindings is due to
a returned function value. Figure 2 illustrates the clustering tree of the package
ABCs. COO and FOO are the most tightly coupled and are clustered first. BAR
is grouped next and finally, ZOO comes in to complete the system.

Fig. 2. Clustering structure.

5. Design Outline of the dbt Tool

The basic computations to be performed by the data binding tool are: 1) Identi-
fication of Ada data Binding Components (ABCs), 2) Computation of Data Bind-
ings among the various ABCs, and 3) Application of the Mathematical Taxonomy
method. The first two functions are performed simultaneously when the source code
of an Ada program is parsed. Their output consists of the data binding matrix M
whose size is equal to the number of identified ABCs. _ o
The tool has been developed using an Ada grammar adapted for Lex [26] and
Yacc [22] specifications. The generated compiler was used to parse the input
programs. The challenge was that implementing source code metrics using Yacc
specifications alone is not sufficient for complex structured languages such as Ada.
Intermediate language representations are necessary for an efficient measurement
brocess. The definitions of bindings and the handling of procedure and function
calls require information about the use of globals and the association of program
entities to correspondent ABCs. Therefore, a pertinent symbol table for the parsed
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program needs to be created. The main idea behind the design of the tools is that the
Ada source program be transformed into an “intermediate” representation, which
is comprised of an interconnected set of tables, called frames or cells. Each lexical
scope maintains such a frame. Every subprogram, nested subprogram and package
has its own frame in the structure of this intermediate representation. Frames are
connected according to their scope position in the program. The resulting structure
is memory resident. The format of a frame is as follows: '

struct abcframe {

v char . name [MAX LEN] ;
char *type;
char *roturns;
int : —nom_id;
tbl of_parma Jin;
tbl.of _parms -ont;
thl of parms -in_out;
thlof_vars loc_vars;
tbl.of.vars eXp.vars;

typedescstruct loc.types;
typedesc.struct exp_types;
struct abe. frame *3ubord;
struct abc.frame =*super;
struct abc.frame smnext;
struct abc_frame sprev;
struct abc_frame .#*ren.frame H
spec.purp.tbl special;

1

Each frame maintains information about the ABC it describes. Among others,
it includes the following: the name of the elaborated ABC, the type of the frame
(ie., subprogram, package, gen.package, function, etc.), a unique numeric frame
identifier num id which is used by the searching routines of the tools. Naviga-
tion pointers that assist in traversing the structure are provided such as *gubord,
*superior, *next, etc. For example, *subord is a pointer providing access to
ABCs nested in the current component. Every frame maintains a list of the
formal parameters (wherever applicable) along with their types (-n,-out, inout).
Information about local types is kept in a list (pointed to by loc_types). Types
visible from the outside of the frame environment are pointed to by exp_types. The

“handling of local (Yoc_vars) and exported (exp_vars) variables is done similarly.

Variables are depicted by an object name and their type descriptor. For example,
the intermediate representation for the package described below is shown in Fig. 3:

Package COMPLEX NUMBER is
type COMPLEX is private;
function "+"(X,Y:COMPLEI) return COMPLEX ;
function “-(X,Y:COMPLEX) return COMPLEX;
function “#"(I,Y:COMPLEX) return COMPLEX;
function */"{X,Y:COMPLEY) return COMPLEX ;
-private type COMPLEX is ' :
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racord
REAL.PART, IMAG.PART: REAL;
end record;

end COMPLEX. FUMBER;

package body COMPLEI NUMBER is

function "+"(X,Y:COHPLEX) return COMPLEX is

begin

‘roturn(I.REAL PART+Y.REAT _PART,X.IMAG PART+Y. IMAG PART);

end;

end COMPLEX WUMBER;

recurne ] coroiox ]

Ln ——

Bsue -

_in_ouc -]

loa_vare -

awp_typea |

—
—
loc typme ol
Fremtae
m—
—

axp, vace .

1

e

Funmation

funoelon

funczion

Fig. 3. Intermediate representation of an Ada package.

A reasonably sized Ada program consists of a number of packages and subpro-

293

grams compiled in a predefined order to produce object code. So far, only the
description of simple ABCs has been discussed. The “partial” representations of
packages and subprograms need to be connected in a way that establishes visibility
via WITH and USE clauses. A top level structure that provides the capability to join
the structure of the relevant compilation units is proposed at this point, termed the
web. For example, consider a system consisting of three library units (two packages

and one procedure) set up as follows:

package A is ....

end A;

with 4 ; use &;

package B is ...,

-
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end B;

with B ;
subpregram main is .

b.proc();

end main;

Figure 4 shows the top level structure and how vistbility is maintained. This web
permits the identification of ABCs coming from different compilation units. For
instance, procedure b_proc() invoked in main establishes bindings between these
two involved ABCs. In order to compute the number of data bindings, the frame
of bproc(} needs to be found. Package B is searched first as the most likely unit
fo contain b_proc(), because main is WiTHed to B. If not found there, the next
WITHed package is examined. Since package B is also WITHed to A, package A is
the next place to look for b_proc(), etc. The tool contains the appropriate search
routines to navigate through the structure and identify the correct frame within a
hierarchy of representation frames. .

n
link A
PITH i PAaSKagw
CELHE e F eroc_a fun_a
—Rexcfo— g 7T l pProced. Tunction
b _prav Bubord )
Bupex DR B
- Haxt subord S = lorr ol —f
| auper AP T ——
nNneaxT 4 Rext .

=
Eink

BTG Package
= I-—-.-,m_.
LT . proced.
= _Prev Bulrord .
L
o
pe s

Supar =

nexe BubDOora =g

——ts P

main
Tink maln

WITH o
P e

_naxt -
T . subord o

f:
9

I

Fig. 4. Top level data structure ( Web).
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In general, the frame of an invoked ABC is required to be found before the
counting of data bindings commences. For every formal parameter of type IN or
OUT one binding is counted. Two bindings are counted for every formal parameter
of type IN_QUT. The former parameters provide a unidirectional way of information
flow; the latter gives a bidirectional information flow. While parsing the body of
an ABC, a record of what is being either referenced or assigned is maintained. The
goal of this record is to assist in the computation of bindings especially when global
variables are involved. At the end of every library unit parsing, data bindings due
to globals may be determined. Unresolved references and assignments are stored to
be resolved at the end of the program parsing when information about all units is
available. _

The complex structure of Ada causes several problems in this phase of the tool
design. Some of the more important ones are: separate compilation, renaming,
generics and overloading. ' -

The tool accepts as input all compilation units described by the name of the files
they reside in. Files are opened and closed in the order given in the command line.
It is also assumed that files are given in the correct compilation order. The problem
that still remains to be solved is that of subunits. A rather simple approach to
overcome it would be to pre-process and expand the source code of the program
with the subunit bodies. Another approach, lazy subunit elaboration, would be to
postpone the processing of subunits until their files are encountered. Whenever an
ABC declaration is parsed the tool sets up its corresponding frame. The information
given in the separate clause along with the name of the ABC {both found in the
stub file) assist in tracking the ABC’s frame in the program representation structure.
While the body is being elaborated, bindings due to ABC calls can be easily derived.
On the other hand, bindings due to globals require complicated Drocessing since lists
of assigned and referenced objects need to be kept even after the end of parsing of
library units. The first solution (of code expansion) was adopted as more natural
and easier to implement compared to the lazy subunit elaboration.

Renaming can be applied to variables, exceptions, subprograms, task entries and
~ packages. Renaming of variables can be accommodated by having pointers to the
structure of the renamed object. Renaming of subprograms and task entries as well
as packages can be handled in a similar way. For a renamed ABC, a new frame
is set up in the system Tepresentation of type “renamed” and the field ren_frame
points to the renamed ABC (otherwise it is NULL). The cell is created within the
scope where the renaming was encountered.

Generics are kept in a separate structure, where explicit references about the
imported types and subprograms are maintained. Since bodies of generics are elab-
orated before instantiation, the tool keeps a record of which imported subprograms
are invoked in the bodies of the generic. The field special of the template keeps
this information. Imported ABC frames (i.e., imported functions and subprograms)
are designed to be at the same lexical level as that of the generic unit in the struc-
ture. Figure 5 shows how frames are set up during the elaboration of the generic
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FORMATTER package. The outline of the package is:

generic
type WORD is private;
type LIRE i3 private; . . :
with function VALUEOF(THENORD : in WORD) retucn STRING;

with function IMAGE OF (THE_LIKE : in LINE) return STRING;
package FORMATTER is

procedure SET.UP;
procedure APPEND ( THENWORD : in WORD;
THELISE : in LINE );
procedure CRE DOC;
end FORMATTER;

package body FORMATTER is ...

end FORMATTER;

TORMATTER
gen_package] | woRD LINE
private | private
lac_types .
subord -t VALUE _GF o IHAGE OF (P FCRMATTER
sper 39 | fonction function package T 0% | THE LTV
STRING STRING
next o O
prev [ET TR BN N SRS I I R
special subord P~ subord ~—fw| subord SET_UF | of APREND [ CRE_DCC
| Juper ["T~ super [l super proced, proced, proced,
fext -1 asxt --J next 0 F | | -
~—= prev prev prev . _in [
special special special subord —die] subord g | subord =g
super I-- super ]__super
nexc --I next = next
prev k4~ prev el prev
apecial , special special |

Fig. 5. Frame description of a generic package.

‘The instantiation of a generic unit is basically a copy of the frame constructed
in the generic form having imported subprograms and types changed accordingly.
Upon a generic instantiation, bindings ameng the instantiated ABCs and the im-
ported ABCs can be easily computed. Bindings occurring among the instantiated
ABCs and the rest of the system’s ABCs are calculated whenever needed thereafter.
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Thus, the instantiation of the FORMATTER package

package INST_FORMATTER is new FURMATTER
( WORD => WORD.STR, LINE => LINE.STR,
VALUE_OF => A.VALUEOF, IMAGE.OF => 4.INAGE.OF):

creates a copy of the structure starting from the FORMATTER frame (prev is set equal
to NULL). This substructure has all the types changed to WORD_STR and LINE_STR.
Since imported subprograms are visible at this point, data bindings can be collected
right away. This is possible because the information for subprogram invocations is
kept in the structures described by the special fields.

Overloading is perhaps the most challenging problem to be dealt with in the
design of an Ada based tool. Type information collected throughout the parsing
phase and stored in the intermediate representation of an Ada program is used
to disambiguate the invocation of overloaded ABCs. A variation of the algorithm
proposed in [12] is used to achieve resolution given that the proposed representation
resembles a decorated tree. The current version of the tool does take some effort to
disambignate overloaded ABCs, but is rather limited. However, this does not affect
the validity of our experiments since the examined systems did use very limited
overloading. '

6. Use of the dbt Tool

. In this section, we first review a number of issues on reusability and discuss the

examined design methodologies. We set goals to be reached through the use of the
tool and present the conchusions of our experiments with a set of Ada systems.

6.1. Isaues tn reusabélity and ezamined design methods

It has long been recognized that reusable components assist in the consiruction of
quality software and in the avoidance of the late delivery problem [35]. Reusability
may occur as soon as a computing environment is well understood by its system
designers and/or programmers. . This maturity comes with time and with better
understanding of the way people conduct their system development efforts. In this
paper, we are concerned with the reusability of products and in particular with

‘that of the source code. The fundamental question is what can be reused from an
- existing software system and how easy it is.

Modular designs have been proposed [11] as a flexible means to promote reusabil-
ity. Booch (8] claims that greater gains are obtained from the reuse of archived
designs and subsystems than from individual components or objects. This does not
occur unless there is some specialization in the problem domain. For example, con-
sider a software factory: although there might be some diversity in the type of the
developed software, the domain of the applications is not expected to change often
and drastically. In this case, certain software component categorizations can re-

sult into systems whose many functionalities are reused continually and in a rather
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controlled way [31]. The degree of deviation of an undertaken project from the
major domain of development in such an organization dictates the granularity of
reused objects. '

A software component/subsystem cannot migrate to another environment with-
- out its operational context. The operational context is defined by the data struc-
tures that are either accessed or assigned by the component in question and the
token dala structures that are being passed from one component to the other in
the form of parameters. A major problem with this type of software construction is
that a change in the data structures may send a ripple effect throughout the number
of elements to be reused. Object~Oriented-like systems similar to those developed
in Ada partially prevent this problem. Although a set of data structures along
with its manipulating routines usually form a good reuse object, understanding its
interaction with other components is equally important to its extraction.

A reuse process cycle consists of the following activities: 1) Search, which tries
to find the candidates for reuse, 2) Identification, which deals with naming, external
references, isolation of the involved data structures and the operational space, and

3) Qualification which performs careful semantic analysis such as finding the support
- packages, functionality, test cases, etc. This study basically provides a novel way to
assist during the first step of this process model and partially during the second using -
the combination of data binding metric and cluster analysis. Data bindings provide
'@ way to quantify the interaction of components with each other either through a
direct (token passing) or an indirect fashion (through common data structures).

Having even a small size system (less than 5K lines of code), it is rather tedious
to browse through and try to find what can be reused and in what way. The
output of the data binding tool-as it is shown later—offers two opportunities. First,
it gives an abstract, yet accurate glance of the potentially reusable objects and
second, it partially reveals the scope of the operational context of an object. With .
a number of experiments performed on Ada systems, a possible classification of the
produced dendrograms can be derived. The correlation of this classification scheme
to both Search and Identification phases could serve as an extremely useful tool for
the isolation of the code to be reused, Dendrograms alone cannot help during the
qualification phase though. A metric oriented approach for this phase is presented
in [10]. However, it is the general belief that the qualification phase requires a lot of
human intervention [25, 3]. The measurement based technique given in [10] could
be improved considerably if the basic reusability attribuies were enhanced with more
diverse metrics [14]. '

Design involves a substantial effort to reduce complexity and facilitates the res-
olution of implementation problems in a system under development. The design
process involves the transformation of requirements into a model of the software
system upon which the implementation may be based. The design model may be
analyzed for qualities such as functionality, performance, reliability and maintain-
ability to provide an indication of problem areas. Based on these analyses, correc-
tive action can be taken at an early stage. Several design methodologies have been
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proposed over the years. Most of these techniques can be classified as either top-
down decomposition (TDD) or bottom-up composition (BUC).

The essential theme in top~down decomposition methods is that systems are
decomposed into a set of cooperating parts, with each part at the same level of
abstraction. The design at each level hides the details of the design at lower lev-
els, since only the data and control flow across the components of that level are
depicted. If needed, this decomposition process is applied as many times as is ap-
propriate. The details of the design of low-level components are thus postponed
until the last stages of design. [ssues like implementation feasibility and ability to
manage the components decide the level of nesting. Functional decomposition is
an example of a top~down, hierarchical method. Here, the designer separates the
system into its top level functions. Each of these functions is similarly decomposed
until the appropriate level of decomposition has been reached. Breaking up the
system according to functions is enly one method for decomposing a system. The
Jackson System Development technique recommends a top-down decomposition of
the system according to data structure (11], and the Yourdon-Constantine Struc-
tured Design recommends a decomposition according to data flow [38]. The common -
idea in these methods is that the refinement is done in a top—down manner, which
focuses attention on designing solutions to the whole problem before concentrating
on designing solutions to the sub-problems.

On the other hand, bottom-up design techniques embrace the idea that the
designer’s primary concern is the development of the elementary system’s units.
The designer determines the most critical units based on experience, intuition or
a simple analysis. These parts are the focus of the process, and the remainder of
the design is tailored to accommodate the design of these critical parts (34]. Hence,
certain virtual machines and abstractions can be constructed. A rapid prototyping
method often utilizes BUC, to allow for the early development of the critical parts,
and for an early assessment of the design feasibility. These techniques are generally
not recornmended alone, but if they are to be used, they should only be used to
Imvestigate the critical parts, followed by a top—down approach for the final design
[34]. BUC is appropriate where the elementary units are of primary concern, such
as in the development of sets of utility packages. There seems to be a relationship
between BUC and reuse-oriented design, i that the focus is on the elementary
units, and how these units can be Integrated to generate the desired system.

Another technique that has received a lot of attention recently is the paradigm of
Object-Oriented Design (OOD). The main idea is that instead of trying to partition
- the system according to architectural, functional or informational boundaries, the
system is structured around objects. Each system module stands for either an object
or a group of objects along with their operations in a problem subspace. Objects
are extracted from a model of the real world problem that needs to be automated.
The application of Object-Oriented design is accompanied by the use of abstract
data types. OOD has been influenced by the techniques used in Object—Oriented
programming. Broadly speaking, an OOD system could be categorized as such if the
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following attributes are present [24}: (1) objects, (2) object classes, (1) inheritance
of properties of one class to its subordinates, (4) dynamic binding, or the association
of the correct code to be executed at run time, and (5) polymorphism, or the ability
of a reference to be bound to more than one class object instance over time.

We need to recognize that Ada is limited in terms of its support of these at-
tributes. More specifically, objects and classes are directly supported by the lan-
guage constructs and its design rationale. Objects are the run~time elements that
depict the real-world entities. Classes are sets of possible objects. It can be ad-
vocated that generics offer support for classes. The rest of the properties are not
directly or implicitly supported by the Ada rationale. Ada is predominantly an
“encapsulation language”, but as was pointed out, it maintains a certain number
of characteristics that enable pragmatic Object—Oriented design [8]. In most cases,
a set of fundamental system objects that model a problem are identified. Subse-
quently, their operations, interfaces, interactions and structures are designed. In
contrast with the previous two approaches, this methodology tends to be more “lo-
calized” as far as changes are concerned, since extensive use of abstract data types
and state machines is advocated. Constructs such as the Ada package make this
type of design feasible, as localized data structures, invisible types and their im-
plementations are supplied. Generics are another means for facilitating OOD, by

‘furnishing parameterized object templates.

Many design techniques borrow concepts from several of the above classes (ie.,
TDD, BUC, OOD). These concepts and the way they are combined distinguish
the variants. For instance, incorparation of a reuse oriented process into an object—
oriented design paradigm will also affect the resulting process model, as the designer
will be concerned with both the objects that are modeled and the objects that are
stored within the repository. Therefore, when assessing design, one has to consider
how the techniques are combined.

6.2. Source reusability and design assessment goals

Several guidelines have been proposed on how to reuse software product components
[10, 35] and how to assess design in a practical manner [21]. The Goal/Question/
Metric paradigm (G/Q/M), as discussed in [2], provides such a framework for eval--
uation of products and processes viewed from different perspectives. The main idea
is that in order to evaluate factors (goals) we need to refine them into a set of
questions. Those questions deal with concepts and ideas on how to achieve these
goals. In the next step down, the framework’s questions are further decomposed
to metrics. Metrics are designed around measurable entities which affect either the
reuse atiributes or the design process and they may present the means for the au-

tomated measurement. Results of metrics can be examined to answer the questions

asked and thus, to validate the quality factors at the first level. The validation of
the G/Q/M decision tree is carried out in a bottom-up way. '
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The goal to reuse software objects could be analyzed to a number of questions
that likely qualify some of the existing ones as candidates {13). Some of them could -
be stated as follows: : .

e What isthe distribution of the several ABCs of a library unit throughout the
system dendrogram?

¢ Which library units are involved in the formulation of the several dendrogram
clusters and what is the reason for that?

¢ Where do ABCs which interact with their outer environment appear on the
dendrogram? : ' ' ' .

® Does a particular dendrogram have a specific cluster formulation that allows
reuse? ‘

¢ Does the majority of clusters contain ABCs from all the library units and if so
what are the implications for the code to be identified and reused?

o If the user is familiar with the code and there are some discrepancies between

- what the dendrogram presents and what is expected, what are the possible (if
any) explanations for that? :

The distribution of the ABCs of a library unit into several clusters is used as
a way to recognize their operational context. For instance, if a cluster contains
elements from three library units then the operational context of each of these units
can be found very easily by looking up the way these units are WITHed to each
other. The indirect interaction of different ABCs through library units (with visible

entities to all interested parties) is also an integral part of the dendrogram layout.

Isolating independent subtrees in a system dendrogram is of great importance to
reuse. That would facilitate the exploration for stand-alene source code in an
existing system. Another question to be answered would be if different dendrogram
formulations give varying degrees of reusability. By default, some parts of software
systems are written in such a specialized and rigid manner that is not possible to
be re—engineered. Would it be possible to easily isolate such {sub)systems within a

_ dendrogram? Finally, people who maintain some knowledge about the system would

be extremely interested to see a similar picture of the system on the dendrogram.
If this is not the case, they should try to explain this irregular behavior and its
implications on the system’s reusability.

. Design assessment is used to obtain an indication of the product quality, allowing
for corrective action to be taken if necessary. Goals of a quality modular design
include inter-module independence and intra-module integrity {29]. A well rated
design should present a balance of these two major quality factors. Questions that
can be asked for the above mentioned quality factors include the following:

_5 What is the relative coupling among ABCs?

s How cohesive are the involved ABCs?
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® Are there components with excessive external control flows? _
¢ Are the interfaces defined at the appropriate levei of abstraction?

Coupling measures the interaction between different software or design compo-
nents. By minimizing the interaction among different entities, a greater degree of
independence can be achieved. This independence helps to achieve the minimiza-
tion of the effect of a change. We identify two types of coupling, data coupling and
control coupling, dealing with inter~modyje data flows and control flows, respec-
tively. More specifically, data coupling appears whenever there is an interaction
of two or more components via a data element, while control coupling (unlike the
definition in [29]) can be found if there is transfer of control between two elements.
dbt has the capability to collect all data and some of the control couplings, thus,
providing a view of the system focused on its coupling.

Cohesion measures the relative strength of a component, or how well related
the internal objects are to one another. Using the dbt, we can obtain measures )
of two types of cohesion, data cohesion and control cohesion. Data cohesion is -
defined as the degree to which the internal objects utilize the same data elements
{similar to the communication cohesion defined by Myers), while control cohesion
measures the relative proximity of the internal ob Jects invocation times (much like
Myers’ temporal cohesion). Control cohesion can be found in modules that execute
predominantly in their locales. The call tree tool (ctt) reported in [14] detects
higher-level’ ABCs (package level and above) with control coherence by identifying
the location of the ABCSs’ subcomponents in a call tree. If they usually appear
together in the tree, one can conclude that the ABG exhibits control cohesion.
Examination of the system dendrogram can similarly provide indications of the
degree of data cohesion in a higher-level ABC. If the components of a particular
ABC are clustered together at an early stage, we may conclude that the ABC in
question is data cohesive. If, however, these components are grouped in separate
clusters then the ABC does not exhibit data cohesion.

In the design of the components, it is desired that they have a clear, focused

fan—out values may have too broad a purpose, and perhaps should be further de-
composed. . dbt identifies ABCs with fan-out exceeding a threshold, facilitating
further investigation. Evaluation of interfaces is essential in assessing design by
deriving outliers which use a great number of interface items that lack abstraction
and need to be redefined. : .

The dbt furnishes the means for the analysis of both data and control coupling,
By providing the capability to analyze modules of varying granularity, we can deter-
mine the interaction of subprograms within a'package and the interaction between
packages. Taking this one step higher, by grouping packages and procedures into .
subsystems, one can analyze interaction within and across subsystems. This is how
We see this tool being utilized for design assessment.
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6.3. Test data -

The software used in the analysis was supplied by the RAPID Center Library project
and the Software Engineering Group at the University of Maryland. The RAPID
Center Library consisted of 13 sets of Ada compilation units making up 15 systems
of various sizes. The University of Maryland software contains 3 sets of Ada com-
pilation units making up 4 systems. Their sizes range from a few hundred lines to
approximately five thousand lines of source code, Reuse is a primary objective for
the RAPID Center. Therefore, all of their systems were designed and implemented
~ for reuse. The three major design techniques outlined in a previous section were
utilized for the development of these systems. Programs provided by the Software
Engineering Group were developed using predéminantly Object~Oriented design.

6.4. Description of tool output

In this section we describe the output of the tool. The dbt produced dendrogram
is a tree structured representation of the clustering of sysiem components {ABCs).
A component in the dendrogram has three properties associated with it:

® its level in the tree
® the subtree to which it belongs
e the number associated with the cluster.

The dendrogram produced for one of the analyzed systems named
String_Utilities_Package is shown in Fig. 6. There are nineteen components, four
levels, and six unique cluster numbers.

The numbers represent the basses at which components were clustered, The
six unique cluster numbers indicate six iterations in the clustering process. The
components with the smallest number were clustered during the first pass of the
clustering. The number (divided by 100) associated with a cluster at every pass
represents the probability that a data binding chosen from the set of bindings that
involve an element of the cluster is not a binding among the comiponents of the
cluster. Thus, the components Leading_Nonblank_Position and String_End_Position
Tepresent the most tightly bound components in the system, with a .50 probability
that a binding to or from either one is to the other.

The number 0 associated with a cluster means that there are no bindings among
the elements of the cluster. Since this number occurs only at the highest level, it
also means that there is no actual data binding to any other components in the
system. In terms of data coupling, these components are completely independent
of the system. Some of them may present potential data bindings [19].

In the next pass of the clustering procéss, two new clusters were created (at 66).
At cluster number 71 one more cluster containing String_Equakties and
Change_Character.Case_Lower was formulated. Until this point 9 of the 19 compo-
nents have been clustered into 4 first-level independent clusters, as Fig. 6 depicts. At



310 A. Delis & V. R. Basil

PACKAGE String_Utiities_Package

ioo
]

Fill_String
- Cloar_String
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Change_String_Case_Upper
Change_Character_ Case _Upper
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String_Length
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5q°
- Leading_Nenbiank_Position
Siring_End_Position
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. Chanys_Sﬁng_Cass_Lawar

71
Sting_Equafites

Changs_ Characler_Case_Lower

75
Substitute_Substring

Substitute_Character

56
Substing_Fosition
Character_FPosition

Fig. 6. Example of dbt cutput.

75, two already existing clusters were bound together and another group contain-
ing Substitute_Substring and Substitute_Character was created and bound with an
existing group with cluster number 66 (note that components carrying out similar
computations or performing operations on the same data are grouped in the same
cluster). This creates two second-level clusters containing 11 components.

The numbers in a particular pass of the clustering process are defined in a
different context than the numbers in the prior pass (because of the transforma-
tion made), thus, numbers do not have a consistent meaning across passes. How-
ever, there is a partial ordering based upon bindings, defined among the clusters at
the same level. For instance, Leading_Non_Blank_Position and String_End_Position
are more tightly bound than Traz'lz'ng_Nanblanfc.Pasition, String_End_Position, and
Is_Empty_String. . : :
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The subtree to which a component belongs defines its clustering subgroup. For
example, the Substring_Posilion and Characler_Position cluster is grouped with the
components Substitute_Substring and Substitute_Character, creating a dendrogram
subtree (low part of Fig. 6). Finally, all the clusters coalesce into one clustering
group, representing the entire system.

6.3. Interpretation of dendrograms

Dendrograms are used to get an assessment of the strength and the coupling of the
various clusters in the syster. Dendrograms can be examined along the following.
guidelines:

® For any level n, each of the clusters at level n — 1 forms a subsystem usable for
building n and higher-level functions. If the binding within a cluster is strong,
(Le., the cluster number is small relative to the cluster number of the level n) then
this cluster exhibits close coupling among its components. This cluster would also
be evaluated as having loose coupling to the other clusters at that level.

e If, however, the binding within a cluster is weak, (i.e., the cluster number is close
to the cluster number at level n) then the top-level components of this cluster
do not exhibit tight coupling, which means that the cluster does not have high
strength. Also, its coupling to any other component at that level is weak. This
would imply that even minor changes to the system might change the dendrogram
structure with regard to the components in this cluster.

* In general, it could be said that for any level n of the dendrogram, the individual
components at level n are auxiliary. They use clusters at n — 1 as “core” com-
ponents to build on. They add functionality to the system at level » and may
themselves be used as building blocks for level n + 1. If the number of siblings at
every level of the dendrogram is small, e.g., at most 2, independent of the depth
or cluster numbers, then a highly nested structure has been encountered.

6.6. Analysis of reusability results

Examining each of the Ada systemns from the reusability point of view, we analyzed
the types of extensions as well as the potentially reusable subsystems that are
available for future system development. Consider the dendrogram of Fig. 6. At
the top level, each one of the clusters is independent. Any of the 0, level components
may be deleted or new ones may be added without changing any of the existing
clusters (unless some interaction with the ABCs of these clusters is introduced).
Under the assumption of no control coupling?, O-level ABCs are there only to
support potential user services and, from the point of view of the existing system,
are not needed. This provides a simple but still fundamental basis for enhancing or
redﬁcing the functionality of a system. For example, the function Js_NV: umeric_Siring

*Control couplings can be easily found using the ctt tool [14].
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can be deleted without any effect on other components. Theréfore, package size
can shrink if that function is not required. Also, new components that use any
component from the clusters at level 75 and 80 may be exclusively added to the
system to enhance its functionality without worrying about the effects on the other
clusters. These components define 2 class of components that can be easily added
into a system.

Since each of the clusters at level 75 and 80 are also independent of each other
and do not use any of the ABCs from the 0 level, they themselves form reusable
subsystems. Fig. 7 provides a cluster view of the system of Fig. 6. The notation
offered by this view can be explained as follows: the group depicted by 71 contains
two ABCs namely, String_Equalities and Change_Character_Case_Lower. A design
that offers a large number of clusters at the top level provides a large set of inde-

pendent ABCs that can be used as the basis for developing other systems. In total,

RAPID offers fifteen reusable systems with a total of 31 reusable subsystems while
4 UM systems offer 7 reusable subsystems.

reusabtle

Fig. 7. A view of the clustered system.

Although we noticed that ABGs from relevant library units were grouped in
the same or related clusters, we observed some discrepancies in the distribution of
some ABCs in the system dendrogram. For example, one ABC from a library unit
would only cluster with another set of Ada data Binding Components, while the
rest would cluster somewhere else. We found two explanations for that: either there
was heavy implicit interaction through a third library unit, or the number of the
ABC parameters (token daia siructures) was extremely large. The latter affected
the outcome of the clustering process and produced the above unexpected result. -
No abstract interfaces are responsible for such unusual distributions of ABCs.

Our attention turns now to the classification of dendrograms and their charac-
teristics in the context of reusability. Groups of ABCs — as mentioned before ~—
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are identified by rating the three characteristics mentioned above: depth, cluster
number, and number of sibling subtrees. Plateaus represent groups of ABCs which
constitute either sets of stand—alone components or groups where it is extremely
difficult to isolate individual reusable candidates. Low and high types of plateaus
were identified throughout the experiments.

Low plateaus demonstrate small cluster numbers (less than 20). Their depth is
shallow. Low plateaus suggest components that perform computations with intense
interaction with the rest of the ABCs. They correspond to small-sized compu-
tational tasks which are well understood and are called a lot of times from the
upper-level ABCs. Therefore, they can be reused without major rework. A set
of zero cluster number plateaus in a system made of reusable code, reveals ABCs
of negligent role in the viability of the new system as a whole. Thus, they could
be eliminated. In certain situations, it was noticed that such plateaus constitute
half the code of utilized packages. Some of the functions of the system depicted in
Fig. 6 belong to this category. Components such as Fill String, Nezt_Blank_Position,
Is_Numeric_String, etc., appear in the system listing but are never called and so they
never establish bindings with the non—zero cluster numbered ABCs.

In contrast, high plateaus are characterized by high cluster numbers (in the range
of 85~100) and a large number of sibling subtrees. Their depth is usually shallow. ..
High plateaus are formulated when low-level logical components are heavily used
mn a system. Lower-level ABCs of such a plateau are essential for the computations
performed by higher-leveled components. Reusability of a small depth ABC needs
to be accompanied by those heavily used low-level components. High plateaus
represent systems that do not prompt “clear” groups of ABCs. Poor module design
is probably to be blamed for it. Three systems were found to present plateau
properties from the examined sofiware.

Vertically revolving clusters describe systems structured in a very nested fashion.
Their depth is deep. Cluster numbers fall almost always in the whole range {20~
100) and the number of sibling subtrees is definitely small. Consequently, isolating
reusable subsystems is impossible and reuse is limited to the system as a whole.
‘This is due to the fact that there is certain difficulty in isolating portions of the
code from its environment. Two systems presented clearly nested structure. Such
systems are used “as provided” and need major rework in the case of intended
partial reuse,

Regularly revolving systems encompass most of the examined software. Their
structure is around a major cluster that undertakes the role of the main component
in the system. They are organized in a multiple (but not extremely deep) level
fashion. Typically, they maintain a large number of sibling subtzees and their cluster
numbers fall in the range of 40-100. When reusing a cluster from such systems, it
is absolutely essential that all the contained cluster components migrate to the new
environment,. Besides, it was noticed that certain pieces of sibling clusters (due to
the partial ordering mentioned earlier) may be required.
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6.7. Design assessment results

Designing with one of the top-down methods produces systems with dendrograms
resembling the functional decomposition that was followed. The components of
a module predominately exhibit a high degree of data and control flow amongst
themselves, implying that they are data and control cohesive. At a higher level,
coupling is minimized, and is used to present the means for interconnection among
groups of ABCs, providing a clear separation of component functionality. Although
an exact match between the trees and the design decomposition was not found, it
was possible to identify the general trend followed by the decomposition process.
To summarize, for the TDD systems, if there is close resemblance between the
decomposition and the tree, then the reviewer may have greater confidence in the
quality of the design.

Systems created with the bottom—up techniques tend to have fewer levels of
depth and therefore exhibit a flatter structure. In most cases, BUC systems start
either with partlal reuse of already existing systems or with exploratory develop-
ment of low-level functionalities. The remaining parts of the systems are built
around these pieces. From the analyzed software, we have seen that such systems
are in all examined cases of utilitarian purpose (utility subprograms). Examination
of dendrograms showed that cohesive objects were supplied at the bottom-level
furnishing groups of these utility ABCs. Increased coupling was found among the
higher-level ABCs. One of the difficulties in designing a system bottom—up is the
excessive growth due to unused code. As mentioned before, dbt clusters, at zero
level, all ABCs not involved in data flow, and enumerates all actually called com-
ponents. These two results determine unused subprograms within a system. Given
that typically the size of an Ada system is rather large, eliminating such code would
significantly decrease compilation times. _

Object—Oriented systems tend to be built as sets of packages located in layers.
It is also expected that these layers are relatively flat, in the sense that they do
not contain a great deal of language construct nesting (i.e., packages within other
‘packages, etc.). The findings for systems designed with this method are much
different from those described above. Examination of the trees for such systems
reveals low data and control cohesion (of package level ABCs). However, inspection
of the packages in question showed that they are “conceptually cohesive”, meanmg
that they consist of logically related entities.

Dendrograms of such systems group these sequénces of procedure calls thal: carry.
out semantically related computations through the levels of abstraction. Figure 8
shows such a system with three layers and four objects. Each of them consists of a
number of ABCs. The encapsulating bubbles indicate the clustered ABCs as they
were generated by the dbt. These clusters go across the borders of the object in the
system hierarchy. This indicates that the system was designed around conceptually
coherent objects rather than minimization of coupling,
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Fig. 8. Clustering across object boundaries.

Unlike TDD and BUC systems, where there was a clear tendency by dbét to
cluster low-level call tree components before high-level ABCs, OOD systems show
a greater mix in their groups. Both high- and low-level components were clustered
early by dbt, which implies a more even distribution of the computational effort
across the system.

On the other hand, a small number of systems produced trees that did not com-
ply with the followed hierarchical methods (TDD and BUC). Possible explanations
for these deviations include: '

e Many parameterless calls: To utilize such techniques for carrying out a design
may be valid but the dbt is unable to establish bindings (due to nonexistent
data interfaces). Therefore, the clustering gives an altered picture of the system.
The call tree tool ctt [14] could give a Precise picture of such a system since
its very role is to identify sequences of subprogram calls. In such a system,
use of bindings does not reveal the accurate decomposition and there is certain
discrepancy between call trees and dendrograms. : _

* Use of large global data structures: This is a direct result of the large number
of implicit data bindings derived from the interaction of the system ABCs with
a particular data area. Figure 9(a) illustrates such a system. Solid lines indi-
cate conirol flows among ABCs and dashed lines interaction with a global data
store. The conformance between the dendrogram and the decomposition of the
system was “altered” due to the large number of bindings established through
the common data area. o

* Non-—abstract interfaces: Their side effect is similar to that of the global data
structures. An excessive number of interface items results in many bindings which
alter the picture of the system under examination. Many simple bindings may
force ABCs to cluster much earlier than would be expected. A possible means
of alleviating this problem is to adapt to a weighting scheme for the differently-
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typed interface parameters. For the time being, dbt has been modified so that
it reports components that exceed a threshold number of interface items, but no
weighting has been used. _ :

‘e Poor design performed: As Fig. 9(b) depicts, there exist calls of components from
deeper ABCs to shallower ones providing a mix in the procedure/function call
ordering. The usefulness of the trees in the understanding of systems-apart from
the fact of verifying the poor design—is very limited.
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Fig. 9. Irregular system structumres,

7. Conclusions

In this paper, we have presented the data binding tool (dbt) and demonstrated
its use in Ada source code reusability and system design assessment. The tool was
built around the metric of data bindings. Data bindings are utilized for measuring
the inter-component interactions. The classic definition of the data binding met-
rics along with the modified one for an Ada environment were presented. We have
proposed a flexible scheme for the characterization of Ada components — ABC
model. The model allows the user to define the granularity of the examined com-
ponents at their own will. Elementary components of the mode] are subprograms,
function and task entries. Mathematical taxonomy is used to cluster related ABCs
to groups of components, by providing the system dendrogram. The design of the
tool was discussed briefly and the major problems encountered were described. The
main challenge for the design was to isolate as much information as needed from
the source code of an Ada system. The issue of intermediate program represen-
tation, particularly that oriented towards Imeasurement purposes, requires further
vestigation. _ :

The dendrograms were used as the vehicle to reason about reusability, design
assessment and in general to understand the way participating ABCs interact. The
goals for Ada source code reusability and design assessment were decomposed to



Ada Reusability and System Design Assessment -.. 317

quantifiable questions which the output of the tool helped to answer. Several classes
of systems dendrograms were identified and types of extensions as well as reusable
(sub)systems were accounted for. The implications of different design methodologies
used to developed the test software were discussed and explanations for the several
types of dendrogram formulations were given. Another important benefit of the
tool is that it may be used throughout the. design process, so that design can be
assessed at an early stage as well as upon completion. . '

As future work, we plan to examine the issue of 2 more efficient intermediate rep-
resentation for Ada systems geared towards measurement, to analyze more complex
systems and systems designed with hybrid methodologies, and to adapt a weight-
ing data binding scheme that Tepresents in a more precise manner the established
bindings. A prototype of the tool was developed as part of the TAME (2] and the
CARFE [10] projects at the University of Maryland.
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