Improve Software Quality by
Reusing Knowledge and Experience

Victor R. Basili ¢ Gianluigi Caldiera

I E APPROACHES FOR IMPROVING QUALITY IN MANUFACTURING PROCESSES t
DON’T WORK ESPECIALLY WELL FOR SOFTWARE DEVELOPMENT. THE AU-
thors provide a quality improvement paradigm for the software industry that

builds on manufacturing models but focuses on reused learning and experience

Victor R. Basili is a professor and Gianluigi
Caldiera is a research associate at the Institute
for Advanced Computer Studies, Department
of Computer Science, University of Maryland.

by establishing “experience factories.” Their iterative process enables an organi- \
zation to acquire core competencies to support its strategic capabilities. &

’ I Yhe quality movement that has had such a dramatic
impact on all industrial sectors has finally reached
the systems and software industry. Although some

of the concepts of quality management originally devel-
oped for other products can be applied to software, as a
product that is developed and not produced, it requires a
special approach. In this paper, we introduce a quality par-
adigm specifically tailored to the systems and software in-
dustry. We discuss the reuse of knowledge, products, and
experience as a feasible solution to the problem of develop-
ing higher-quality systems at a lower cost. In other words,
how can an organization build models or package them so
that it can reuse them in other projects?

Companies often achieve quality improvement by de-
fining and developing an appropriate set of strategic capa-
bilities and supporting core competencies. We propose a
quality improvement paradigm (QIP) for developing core
competencies. This process must be supported by a goal-
oriented approach to measurement and control, and an or-
ganizational infrastructure that we call an experience factory.

In this paper, we introduce the major concepts of our
proposed approach, discuss their relationship with other
approaches in the industry, and present an example of an
organization that successfully applied those concepts.

Why Is Software Development Different?

Software is present in almost every activity and institution
of our society. Our dependence on software becomes evi-

SLOAN MANAGEMENT REVIEW/FALL 1995

dent when software problems — system shutdowns, new
product delays, and assorted glitches — become newspa-
per headlines. The business community is aware of these
problems but does not truly understand their causes. Such

roblems offen arise when
companies Iry to transfer the
quality lessons learned in
the manufacturing process to the
software development process.

misunderstanding extends to the software business com-
munity itself, especially when it deals with the philosophies
of quality improvement.

Problems often arise when companies try to transfer the
quality lessons learned in the manufacturing process to the
software development process. Quite often, manufacturers
develop quality models by collecting great amounts of data
from work locations where the same function is repeated
over and over. In such a context, statistical quality con-
trol can be accomplished based on numerous repetitions
of the manufacturing process. Because software is devel-
oped once, this type of control is impossible. Software de-
velopment models, therefore, cannot be built the same
way as manufacturing models, with their dependence on

BasiLt & CALDIERA 55

lessons learned from massive repetitions of the same pro-
cess. Software models provide something less definitive
— the ability to learn from other software development
projects. To accomplish this learning, we have to distin-
guish what is different about these projects.

A company can manage the quality of a software sys-
tem in two ways. First, it can improve the effectiveness of
the software development process by reducing the amount
of rework and by reusing software artifacts across seg-
ments of a project or different projects. Second, it can de-
velop and implement plans for controlled, sustained, and
continuous improvement based on facts and data.

A major problem with software engineering is that
data regarding a system’s quality can be observed and
measured only when the system is implemented. Unfor-
tunately, at that stage, correcting a design defect requires
the expensive redesign of sometimes large, complex com-
ponents. To prevent expensive defects from occurring in
the final product, quality management must focus on
the early stages of the engineering process. At those early
stages, however, the process is less defined and control-
lable with quantitative data. Therefore, software engi-
neering projects do not regularly collect data and build
models based on them.

There are many successful software projects from a
quality point of view. Quality. management’s goal is to
repeat this success in other projects by transferring the
knowledge and experience at the roots of that success to
the rest of the organization. A software organization that
manages quality should have a corporate infrastructure
that links together and transcends the single projects by
capitalizing on successes and learning from failures.

Organizations need to have a strategic approach to
software quality management as a part of a corporate
strategy for software, aimed at pursuing and improving
quality on an organizational level. There is no solution
that can be mechanically transferred and applied to every
organization (the famous “silver bullet”). Every organiza-
tion can use our proposed approach, however, after ap-
propriate customization, to improve software quality in a
controllable way.

The Problem of Software Quality

How does a company improve quality in a development
environment instead of a production environment? The
key is to build or package models so that they are reusable
by other projects in the organization — that is, to reuse
knowledge and experience.

In many disciplines, quality issues are well understood.
Because of the relative newness of the software business,

56 Basil & CALDIERA

definitions or trade-offs aren’t clear. Software users often
can't articulate what qualities they really want. Do they
care about reliability, user-friendliness, or ease of modifi-
cation? Software doesnt really break in the normal sense,
but it has to evolve. Today’s system won' satisfy the user
three years from now because there are constantly chang-
ing expectations.

Because software is a new field, and good, sound mod-
els are hard to build, companies have not built models to
reason about what things are, how they work, and what
they should look like. Quality isn't defined so that both
the developer and the user can understand it and com-
municate it.

Of the approaches to software quality available, there are
various paradigms, mostly from manufacturing. Some or-
ganizations apply an improvement process to their software
processes based on the Shewart-Deming cycle.! This four-
stage approach provides a way to manage change through-
out the production process by analyzing the change’s im-
pact on the data derived from the process:

1. Plan — define quality improvement goals and targets
and determine methods for reaching those goals; pre-
pare an implementation plan.

2. Do — execute the implementation plan and collect
data.

3. Check — verify the improved performance using the
data collected from the process and take corrective ac-
tions when needed.

4. Act — standardize the improvements and install them
into the process.

Some organizations use the total quality management
(TQM) approach, which is derived from the Shewart-
Deming method and applied to all the company’s business
processes.? Another approach is benchmarking, in which
organizations model their improvement on an external
scale that represents the best practices in quality. The goals
of the improvement program are, in this case, not inter-
nally generated but suggested by the best practices.

The software industry has used these approaches —
and variations on them — with mixed outcome. The
major problem is that these approaches do not deal specif-
ically with the nature of a software product. Or if they
do, they assume a consistent picture of a good software
product or process. This is not adequate because, to be re-
ally effective, a software quality program should deal with
the nature of the software business itself. There is no such
thing as an explicit, consistent picture of a good software
product.

Our approach reflects an attempt to learn from the
successes of the different paradigms and to avoid prob-
lems when they are applied to software environments.

SLOAN MANAGEMENT ReVIEW/FALL 1995

Table 1 Traditional and Expanded Focus of Software
Development

Traditional Focus Expanded Focus

Delivering specific products
and services

Developing capabilities

Decomposing a complex problem Unifying different solutions
into simpler ones into more general ones

Designing and implementing Analyzing and synthesizing
Detailing Abstracting from detail

Validating and verifying Experimenting

We rely on the lean enterprise concept by concentrating
production and resources on value-added activities that
represent an organization’s critical business processes.’

Toward a Mature Software Organization

Successful management strategies of the past ten years all
call for long-term investments and top management spon-
sorship.* They advocate establishing a permanent struc-
ture to develop and support the reuse of strategic capabili-
ties. This strategy is new for the software industry, which
is predominantly driven by its business units and therefore
has little ability to capitalize on experiences and capabili-
ties.

Companies that develop software have sought to apply
recent management strategies in the following ways:

1. The company must understand the software process
and product.

2. The company must define its business needs and its
concept of process and product quality.

3. The company must evaluate every aspect of the busi-
ness process, including previous successes and failures.
4. The company must collect and use information for
project control.

5. Each project should provide information that allows
the company to have a formal quality improvement pro-
gram in place, i.e., it should be able to control its pro-
cesses, tailor them to individual project needs, and learn
from its own experiences.

6. Competencies must be built in critical areas of the
business by packaging and reusing clusters of experience
relevant to the company’s business.

Software companies need to expand their focus on a
new set of problems and the techniques for solving
them. Unfortunately, a software project is traditionally
based on a case-by-case, problem-solving approach; the
development of strategic capabilities is based instead on
experience reuse and organizational sharing. (Table 1

SLOAN MANAGEMENT REVIEW/FALL 1995

{

outlines the traditional focus of software development
and problem solving, along with the expanded focus.)

A Strategy for Improvement

At the center of an improvement strategy is the need for
reusable experience. Next we present the framework of
our strategy through a process we call the quality im-
provement paradigm. We discuss an approach to quality
improvement based on the development of strategic capa-
bilities, on a control tool (the goal-oriented approach to
measurement that addresses the support of the improve-
ment process with quantitative information), and on an
organizational tool (an infrastructure aimed at capitaliza-
tion and reuse of software experience and products).’

Are there any practical models a company can use to de-
velop a strategy with the new focus? Later we illustrate with
an example of a practical model, which we chose because it
is a unique blend of an organizational strategy aimed at
continuous improvement, a data-based approach to deci-
sion making, and an experimental paradigm, along with
many years of continuous operation and data collection.

The Quality Improvement Paradigm

A common problem of software development companies
is that they don't think software is their business. They
think they are building “telephone systems” or “switch-
ing systems” when they are really building telephony
software and switching software. They have little under-
standing of strategic capabilities and core competencies.

In the software business, companies determine strate-
gic capabilities by knowing whether they can reuse archi-
tectures and designs, what functionality their product
has, and how to estimate the cost of adding new features
or changing existing ones. Strategic capabilities are al-
ways supported by core competencies — technologies
tailored to the specific needs of the organization in per-
forming business processes.

The goal of the process we present here is the acquisi-
tion of core competencies that support strategic capabil-
ities. The organization must own, control, and properly
maintain competencies as state of the art and know how
to tailor them to the characteristics of specific projects
and business units.

The quality improvement process occurs in six steps
(see Figure 1). By characterizing, a company builds models
of the current environment. Next it sets goals for what it
wants to achieve for the next product and learn about the
business. To satisfy the goals relative to the current envi-
ronment, it chooses processes, methods, techniques, and tools,
tailors them to fit the problem, and execuzes them. During

BasiLi & CALDIERA 57

Figure 1 The Quality Improvement Paradigm

Package and
store experience

Analyze
results

Provide process

Project h
with feedback

learning

Analyze
results

Characterize
and understand learning

Choose
processes,
methods,
techniques,
and tools

Corporate

tifacts that are applicable to other projects and
are improved based on the analysis.

An organizations use of the quality improve-
ment paradigm is an iterative process that re-
peatedly characterizes the environment, sets
appropriate goals, and chooses the process for
achieving those goals. It then proceeds with
the execution and analytical phases. At each it-
eration, it redefines and improves characteris-

tics and goals (see Figure 2).

Goal-Oriented Measurement

The goal/question/metric (GQM) approach
provides a method to identify and control key
business processes in a measurable way.® A
company can use it to define metrics during
the software project, process, and product so
the resulting metrics are tailored to the organi-
zation and its goals and reflect the quality val-
ues of different viewpoints (developers, users,
operators, and so on).

A GQM model is a hierarchy starting with

execution, it analyzes the intermediate results and asks if it
is satisfying the goals and using appropriate processes.
This feedback loop is project learning. Finally, the compa-
ny analyzes what happened and learns from it. Then it
stores and propagates the knowledge, i.c., packaging.

Each cycle results in better models in terms of characteri-

zation of the software business, a better artic-
ulation of goals, and a better understanding
of the relationship between processes and
their effects. Each time through the loop is a
corporate learning event.

The quality improvement paradigm im-
plements two major cycles:
* The control cycle is the feedback to the
project during the execution phase. It pro-
vides analytic information about project
performance at intermediate stages of devel-
opment by comparing project data with the
nominal range for similar projects. This in-
formation is used to prevent and solve prob-
lems, monitor and support the project, and
realign the process with the goals.
* The capitalization cycle is the feedback to
the organization. Its purpose is to understand
what happened, by capturing experience and
devising ways to transfer that experience
across application domains and to accumulate
reusable experience in the form of software ar-

58 BasiLl & CALDIERA

a goal (specifying purpose of measurement, ob-

ject to measure, issue to measure, and viewpoint from which
to take the measurement). Suppose a company wants to im-
prove the timeliness of change-request processing during the
maintenance phase of a systems life cycle. The resulting goal
will specify a purpose (improve), a process (change-request
processing), a viewpoint (project manager), and a quality

Figure 2 The Quality Improvement Paradigm as an lterative Process

First iteration

Package
Analyze @
Execute

Package
Analyze @
Execute

Characterize
existing environment
Second
iteration Characterize
Set goals changed
Package environment
Choose\A
process Analyze Set
goals
Characterize
environment Execute
changed again Choose
/ process
Set goals
Third
iteration

Choose process

SLOAN MANAGEMENT REVIEW/FALL 1995

T S

Table2 Goal/Question/Metric Model

Goal Purpose
Issue
Object (process)

Viewpoint

Improve

the timeliness of

change-request processing

from the project manager's viewpoint

Question Is the performance of the process

improving?
Metrics Current average turnaround time
Baseline average turnaround time

Subjective rating of manager's
satisfaction

Is the distribution of resources
changing?

Question

Metrics Percent effort spent on:

* Problem analysis

« Solution identification

« Solution implementation

* Solution testing

issue (timeliness). It then refines the goal into several ques-
tions that usually break the issue down into its major com-
ponents. In the example we discuss later, the goal of the
Software Engineering Laboratory can be refined to a series of
questions about, for instance, turnaround time and resources
used. It then refines each question into metrics. The ques-
tions in the example can be answered by metrics comparing
specific turnaround times with an average.

J of experience and collective learning become a corporate
- concern like the business portfolio or company assets. The
experience factory is the organization that supports reuse
of experience and collective learning by developing, updat-
ing, and providing, on request, clusters of competencies to
be used by the project organizations.” We call these clus-
ters of competencies “experience packages.” The project
organizations supply the experience factory with the prod-
ucts, plans, processes, and models used in their develop-
ment and the data gathered during development and oper-
ation; the experience factory transforms them into reusable
units and supplies them to the project organizations, to-
gether with specific monitoring and consulting support.

The experience factory’s activities must be clearly iden-
tified and independent from those of the project organiza-
tion. At the same time, the synergy and interaction be-
tween the experience factory and project organizations
must be constant and effective. The project organization’s
goal is to produce and maintain software. The experience
facrory provides direct feedback to each project, together
with goals and models tailored from similar projects.
(Figure 3 shows the experience factory organization and
highlights activities and information flows among the
component suborganizations.)

The project organization provides the experience facto-
ry with project and environment characteristics, develop-
ment data, resource usage information, quality records,
and process information. This provides feedback on the
actual performance of the models that the experience

(The goal/question/metric model for our . .] L .
. . Figure 3 Synergies between Project Organization and Experience Factory
example is shown in Table 2.)
A company can also use the GQM ap-

proach for long-range corporate goal set- 1
ting and evaluation. It can enhance the Characterize EEVIror;mt.anth .
evaluation of a project by analyzing it in the Set goals characiensies Project
context of several other projects. It can ex- Choose < su‘;ipon
pand the level of feedback and understand- process Goals, processes, Package
; ; : ; tools, products,
ing by defining the app‘roprlate‘synthesm Execution esonte models
procedure for transforming specific, valu- ‘

. .. plans defect models w
able information into more general pack- Lo ,
ages of experience. In implementing the - Data, lessons | APerience

: < ' base g)
quality improvement paradigm, the com- E:‘::::: leamed 7
pany can formally learn more about the P <
definition and application of the GQM \ AR
approach, just as it would about any other Project | Analyze
experiences. analysis
. Project organization Experience factory

The Experience Factory:
A Capability-Based Organization

In a capability-based organization, reuse

SLOAN MANAGEMENT REVIEW/FALL 1995

Basili & CALDIERA 59

Table3 Core Competencies and Corresponding Technologies

trol framework, and on the experience factory
side, a support plan also associated with a

Core Competencies

« Use of an integrated software
engineering environment tailored
to one or more specific application

« Tool integration

« Availability of reusable components
(modules, algorithms, architectures) methods
and tools portable across different

« Availability and use of a software
management environment based on analysis
"local” data for estimate, contraol,
and prediction of projects

and analysis

Aggregate Technologies

» Domain analysis and architectures
« Data sharing and communication
domains in heterogeneous environments

* Reuse libraries, mechanisms, and

» Domain analysis and architectures
platforms « Object-oriented techniques

* Measurement and data collection and

+ Data and process modeling
« Defect counting, categorization,

management control framework. The project
plan describes the project’s goals, phases, and
activities, with their products, mutual depen-
dencies, milestones, and resources. For the ex-
petience factory side, the plan describes the
support that it will provide for each phase and
activity and expected improvements.

In the fourth phase (execute), the opera-
tion focuses on delivering the product or
service assigned to the project organization.
The project organization again has a lead-
ing role, supported by the experience facto-
1y. The outcome of this phase is the prod-
uct or service, which is associated with a set

factory processes and the project utilizes. The experience fac-
tory produces and provides baselines, tools, lessons learned,
and data, parameterized in some form to adapt to a project’s
specific characteristics. Support personnel sustain and facilitate
the interaction between developers and analysts by saving and
maintaining the information, making it efficiently retrievable,
and controlling and monitoring its access.

The main products of the experience factory are core com-
petencies packaged as aggregates of technologies. (For some ex-
amples of core competencies and the corresponding aggrega-
tion of technologies, see Table 3.) A company can implement
core competencies in various formats or experience packages.
Their content and structure vary based on the kind of experi-
ence dustered within. There is generally a central element that
determines what the package is, such as a software life-cycle
product or process, an empirical or theo-

of potentially reusable products, processes,
and experiences.

In the fifth and the sixth phases (analyze and package),
the operation concentrates on capturing project experi-
ence and making it available to future similar projects.
The experience factory has a leading role and is supported
by the project organization that is the source of that expe-
rience. The outcomes of these phases are lessons learned
with recommendations for future improvements, and new
or updated experience packages incorporating the experi-
ence gained during the project execution.

Structuring a software development organization as an
experience factory offers the ability to learn from every
project, constantly increase the organization’s maturity, and
incorporate new technologies into the life cycle. In the
long term, it supports the overall evolution of the organiza-

retical model, a database, and so on.

Figure4 A Map of the Quality Improvement Paradigm for the Whole Organization

The synergy of the project organiza-

tion and the experience factory is based

on the quality improvement paradigm

. : Project organization Experience factory
we introduced previously. Each compo-
nent performs activities in all six steps, Characterize Characterize Experience
but, for each step, one component has a base
lf:adershlp role. (Figure 4‘ shc?ws an out- Set goals Set goals Project
line of the whole organization and its data
mapping on the QIP) Choose process Choose process —

. xperience

In the first three phases (characterize, Execute Execute packages
set goals, and choose process), the opera-
tion focuses on planning, The project or- Analyze Analyze
ganization has a leading role and is sup- Support
ported by the experience factory analysts. Package Package operation

The outcome of these three phases is, on

Note: Bold type indicates that the specific component has the lead on that specific task.

the project organization side, a project
plan associated with a management con-

60 Basiu & CALDIERA

SLOAN MANAGEMENT REVIEW/FALL 1995

tion from project-based, where all activi-
ties are aimed at the successful execution

Table 4 Focus of the Software Engineering Lab’s Three Components

of current project tasks, to capability-
based, which capitalizes on task execu-
tion.

An organization benefits from its
structure as an experience factory by:
* Establishing a software improve-
ment process substantiated and con-
trolled by quantitative data.

* Producing a repository of software
data and models that are empirically
based on everyday practice.

Single application

into simpler ones

Tailor and apply the
process

Dévelopers' Focus
Software development

Decompose a problem

Validation and verification ~ Experimentation

Analysts’ Focus Support Infrastructure’s Focus

Experience packaging Support developers and analysts

Application domain Organization

Generalize and formalize ~ Categorize and organize

solutions and products

Store and retrieve the process
information

Analyze and synthesize
the process

Efficient retrieval

* Developing an internal support or-
ganization that limits overhead and provides substantial
cost and quality performance benefits.

* Providing a mechanism for identifying, assessing, and in-
corporating into the process new technologies that have
proven valuable in similar contexts.

* Incorporating and supporting reuse in the software de-
velopment process.

Improvement in Practice: A NASA
Engineering Laboratory

Next we offer a practical example of an experience factory
organization — the Software Engineering Laboratory
(SEL) at NASA Goddard Space Flight Center — and show
how its operation uses the quality improvement paradigm.®

The SEL was established in 1976 as a cooperative effort
among the Department of Computer Science of the Uni-
versity of Maryland, the National Aeronautic and Space
Administration Goddard Space Flight Center (NASA/
GSFC), and Computer Sciences Corporation (CSC). The
lab’s goal was to understand and improve key software de-
velopment processes and products in a specific organiza-
tion, the Flight Dynamics Division.

The goals, structure, and operation of the SEL have
evolved from an initial stage — a laboratory dedicated to
experimentation and measurement — to a full-scale organiza-
tion aimed at reusing experience and developing strategic ca-
pabilities. The SELs structure is based on three components:
* Developers, who provide products, plans used in de-
velopment, and data gathered during development and
operation (the project organization).

* Analysts, who transform the objects that the develop-
ers provide into reusable units and supply them to the
developers; they support the projects on use of the ana-
lyzed, synthesized information, tailoring it for a current
software effort (the experience factory proper).

* Support infrastructure, which provides services to the

SLOAN MANAGEMENT REVIEW/FALL 1995

developers by supporting data collection and retrieval, and
to the analysts by managing the library of stored informa-
tion and its catalogs (the experience base support).

(For an outline of the differences in focus among the
three suborganizations, see Table 4.)

In the late 1980s, the software engineering communi-
ty was considering the use of the Ada programming lan-
guage environment and technology, which the U.S. De-
partment of Defense had developed.” NASA thought of
using Ada technology for some major projects such as
the space station. Its application was also being consid-
ered in areas outside the Department of Defense. If more
and more systems used Ada as a development environ-
ment, more organizations would be involved with it, and
Ada would have to be transformed from simple technol-
ogy to core competence for the software development
organizations within NASA.

Associated with Ada was the issue of object-oriented
technologies. Some basic characteristic elements of the
object-oriented approach are:'

* A system is seen as a set of objects with a defined behav-
ior and characteristics. :

* Objects interact with each other by exchanging messages.
* Objects are organized into classes based on common
characteristics and behaviors.

* All information abour the state or the implementation of
an object is held in the object itself and cannot be deliber-
ately or accidentally used by other objects.

From the beginning, the SEL thought that the two tech-
nologies (Ada and object technology) should be packaged
together into a core competence supporting the strategic
capability of delivering systems with better quality and
lower delivery cost. After it recognized that this capability
had a strategic value for the organization, the SEL selected
Ada and the object-oriented design technology for sup-
porting it, measured its benefits, and provided data in sup-
port of its decision to use the technology.

BasiLt & CALDIERA 61

Figure 5 Trends of Significant indicators

for comparison. Its expectations in-

cluded —

A. Cost of Software

BB Cost to Deliver
1.20

1.20

0.6

0.4

Hours per Statement

0.2

0.0

Past 1985-1986 1987-1988 1988-1989

B. Defects in Software

3.90

40

pw W
o o v

2.10
1.80

—_
(2]

0.90

—_
o

Defects per 1,000 Lines of Code
N
o

o
(3,

Cost to Develop

1990-1991

IR Error Density

* An increase in effort on early phases
of development activities (design) and
a decrease on late phases (testing).

* Increased reuse of software modules.
¢ Decreased maintenance costs due to
the better quality, reusable compo-
nents.

* Increased reliability as a result of
lower global error rates, fewer high-
impact interface errors, and fewer de-
sign errors.

3. Choose process. The SEL decided to
approach the development of the de-
sired core competence by experiment-
ing with Ada and object-oriented de-
sign in a “real” project. It developed
two versions of the same system. Sys-
tem A used FORTRAN and followed
the standard methodology based on
functional decomposition. System B
used Ada and followed an object-
oriented methodology called HOOD.
The SEL compared the data derived
from the development of system B
with those from system A. It devoted
particular attention to quality and pro-
ductivity data.

4, Execute. The SEL implemented sys-
tems A and B and collected the desired

metrics.

0.50

(=]
D

Past 1985-1986 1987-1988 1988-1989

5. Analyze. The data showed an in-

crease in the cost to develop due to

1990-1991

The SEL followed these steps, according to the QIP:

1. Characterize. In 1985, the SEL developed a baseline of
how the Flight Dynamics Division developed software. It
defined the development processes and built models to
improve the processs manageability. It integrated the stan-
dard development methodology, based on the traditional
design-and-build approach, with concepts aimed at contin-
uously evolving systems by successive enhancements.

2. Set goals. Realizing that object-oriented techniques im-
plemented in the design and programming environments
offered potential for major improvements in productivity,
quality; and reusability of software products and processes,
the SEL decided to develop a core competence around ob-
ject-oriented design and Ada. First, it set up expectations and
goals against which it measured results. The SELs well-es-
tablished baseline and measures provided an excellent basis

62 Basiu & CALDIERA

the organization’s inexperience with
the new technology and to the technology’s intrinsic
characteristics. The data also showed an increase in cost
to deliver due to the same causes. The overall quality of
system B showed an improvement over system A in terms
of a substantially lower error density.

6, Package. The laboratory tailored and packaged an in-
ternal version of the methodology that adjusted and ex-
tended HOOD for use in a specific environment and on
a specific application domain. Commercial training cours-
es, supplemented with limited project-specific training,
constituted the early training in the techniques. The labo-
ratory also produced experience reports on the lessons
learned using the new technology and recommendations
for refinements to the methodology and standards.
Results of the Process. The data collected from the first

execution of the process were encouraging, especially on

SLOAN MANAGEMENT REVIEW/FALL 1995

Figure 6 Relationships between Strategic Capabilities and Core Competencies

Strategic Capabilities

¢ Cycle time reduction
and acceptability

« Cost reduction and acceptability

« Quality improvement and
acceptability

o Software planning, estimating,

Core Competencies

Use of an integrated software
engineering environment tailored
to one or more specific application
domains

Availability of reusable components
(modules, algorithms, architectures)
and tools portable across different
platforms

Availability and use of a software
management environment based on
"local" data for estimate, control, and

However, because of the high reuse rates
obtained through the object-oriented
paradigm, the cost to deliver a system in
the new environment has significantly
decreased and is now well below the old
cost.

The reliability of the systems de-
veloped in the new environment has
improved during the maturing of the
technology. The error rates were sig-
nificantly lower than the traditional
ones and have continued to decrease.
Again, the high level of reuse in the
later systems is a major contributor to
this greatly improved reliability.

Because of the technology’s stabiliza-

and management predictability prediction of projects

tion and apparent benefit, the object-
oriented development methodology

has been packaged and incorporated

the quality issue, but inconclusive. The SEL decided on
new executions to be continued in the future. Along with
the development methodology, it developed a program-
ming language style guide that provided coding stan-
dards for the local Ada environment.

The SEL has completed at least ten projects using an
object-oriented technology derived from the one used for
system B but constantly modified and improved. The size
of single projects, measured in thousands of lines of source
code, ranges from small to large. Some characteristics of an
object-oriented development, using Ada, emerged early
and have remained rather constant. No significant change
has been observed, for instance, in the effort distribution
or in the error classification. Other characteristics emerged
later and took time to stabilize. Reuse has increased dra-
matically after the first projects, going from a traditionally
constant figure of 30 percent reuse across different projects,
. toa current 96 percent (89 percent reuse). (See Figure 5.)

Over the years, use of the object-oriented approach
and expertise with Ada have matured. Source code analysis
of the systems developed with the new technology has re-
vealed a maturing use of Ada’s key features that has no
equivalent in the programming environments NASA tradi-
tionally uses. The SEL used such features not only more
often in more recent systems, but also in more sophisticated
ways, as revealed by specific metrics for this purpose. More-
over, the use of object-oriented design and Ada features has
stabilized during the past three years, creating an SEL base-
line for object-oriented developments.

The cost to develop code in the new environment has re-

mained higher than the cost to develop code in the old one.

SLOAN MANAGEMENT REVIEW/FALL 1995

~ into the current technology baseline
and is a core competence of the organization. Although the
SEL will continue to refine the technology of object-orient-
ed design, HOOD has now progressed through all stages,
moving from a trial methodology to a fully integrated,
packaged part of the standard methodology, ready for fur-
ther incremental improvement.

The SEL example also illustrates the relationship be-
tween a competence (object-oriented technology) and a
target capability (deliver high quality at low cost) and
shows how innovative technologies can systematically
enter the production cycle of mature organizations. Al-
though the topic of technology transfer is not specifically
within our scope here, it is clear that the model we derive
from the SEL example outlines a solution to some major
technology-transfer issues. The purpose of an experience
factory organization, however, goes beyond technology
transfer to encompass capability transfer and reuse.

Conclusion

For software, the remainder of the 1990s will be the era
of quality and cycle time. There is a growing need to de-
velop or adapt quality improvement approaches to the
software business. Our approach to software quality im-
provement is based on the exploitation and reuse of an
organizations critical capabilities across different projects
based on business needs.

The relationship between core competencies and strate-
gic capabilities is established by the kind of products and
services the organization wants to deliver and is specified
by the strategic planning process. (Figure 6 gives a possible

Basmi & CALDIERA 63

map for an organization whose main business is systems
and software development for user applications.) The SEL
example shows that these ideas are feasible and have been
successfully applied in a production environment to create
a continuously improving organization. Such an organiza-
tion can manipulate its processes to achieve various prod-
uct characteristics. It needs to have a process and organiza-
tional structure to:

* Understand its processes and products.

* Measure and model its business processes.

* Define process and product quality explicitly and tailor
the definitions to the environment.

* Understand the telationship between process and prod-
uct quality.

» Control project performance with respect to quality.

* Evaluate project success and failure with respect to
quality.

* Learn from experience by repeating successes and avoid-
ing failures.

By using the quality improvement paradigm/experience
factory approach, an organization has a good chance to
achieve all these capabilities and improve quality faster be-
cause it focuses on its strategic capabilities and value-added
activities. The experience factory organization is the lean
enterprise model for the system and software business. ¢

References

We acknowledge the contributions of all those who participated in the ex-
periences and discussions that originated the concepts presented here.
Particular acknowledgment goes to the personnel of the Sofiware
Engineering Laboratory at NASA Goddard Space Flight Center and
Frank McGarry, Jerry Page (CSC), Tony Jordano (SAIC), Bob

64 Basiui & CALDIERA

Yacobellis (Motorola), Paolo Sigillo (Italsiel), and Mike Deutsch (Hughes
Information Technology Corporation).

1. W. Edwards Deming, Out of the Crisis (Cambridge, Massachusetts:
MIT Press, Center for Advanced Engineering Study, 1986).

2. AV. Feigenbaum, Toml Quality Control New York: McGraw Hill,
1991).

3.].P. Womack, D.T. Jones, and D. Roos, The Machine Thar Changed
the World (New York: Rawson Associates, 1989).

4. G. Stalk, P. Evans, and L.E. Shulman, “Competing on Capabilities:
The New Rules of Corporate Strategy,” Harvard Business Review,
March-April 1992, pp. 57-69.

5. V.R. Basili, “Quantitative Evaluation of a Software Engineering
Methodology” (Melbourne, Australia: Proceedings of the First Pan-
Pacific Computer Conference, September 1985); and

V.R. Basili, “Software Development: A Paradigm for the Future”
(Orlando, Florida: Proceedings of COMPSAC °89, September 1989),
pp. 471-485.

6. V.R. Basili and D.M. Weiss, “A Methodology for Collecting Valid
Software Engineeting Data,” IEEE Transactions on Software Engineering,
November 1984, pp. 728-738; and

V.R. Basili and H.D. Rombach, “The TAME Project: Towards
Improvement-Oriented Software Environments,” [EEE Transactions
on Software Engineering, June 1988, pp. 758-773.

7. Basili (1989).

8. V.R. Basili, G. Caldiera, F. McGarry, R. Pajerski, J. Page, and S.
Waligora, “The Software Engineering Laboratory — An Operational
Software Experience Factory” (Melbourne, Australia: Proceedings of
the Fourteenth International Conference on Software Engineering,
May 1992).

9. ANSI/MIL-STD-1815A 1983: Reference Manual for the Ada Program-
ming Language.

10. L. Sommerville, Soffware Engineering (Wokingham, England: Addison-
Wesley, 1992).

Reprint 3715

Copyright © 1995 by the SLOAN MANAGEMENT REVIEW Association.
All rights reserved.

SLOAN MANAGEMENT REVIEW/FALL 1995

