
A Method for Documenting Code Components

Victor R. Basili and Salwa K. Abd-El-Hafiz
Department of Computer Science, University of Maryland, College Park, Maryland

We propose a set of criteria for facilitating the rigor-

ous understanding of code components via documen-

tation and evaluate existing notations and approaches

with respect to these criteria. We present an overview

of an analysis approach designed to generate program

documentation that satisfies these criteria. Because of

the inherent difficulty and importance of reasoning

about loops, we focus on understanding and docu-

menting loops. We decompose loops into their compo-

nent parts and obtain formal specifications of the

resulting loop fragments by use of a knowledge base.

We build this knowledge base for a specific applica-

tion domain by designing plans that allow us to recog-

nize stereotyped code patterns and associate them

with their formal specifications. Finally, we synthesize

a consistent and accurate specification of the whole

loop construct from the specifications of its fragments.

To evaluate our loop analysis approach, a case study

was performed on a preexisting program of reason-

able size. Results concerning the analyzed loops and

the plans designed for them are given. To generate

formal documentation of complete program modules,

we briefly describe how to integrate our loop analysis

approach with an existing program analysis tool, FSQ,,

which uses user-supplied loop specifications.

1. INTRODUCTION

Program understanding plays an important role in
nearly all software-related tasks. It is vital to devel-
opment, maintenance, and reuse activities. Program
understanding is indispensable for improving the
quality of software development. Several develop-
ment activities, such as code reviews, debugging, and
some testing approaches, require programmers to
read and understand programs. Maintenance activi-
ties cannot be performed without a deep and correct
understanding of the component to be maintained.
Program understanding is vital to the reuse of code

Address correspondence to Prof Salwa K Abd-El-Ha@, Depati-
ment of Engineering Mathematics, Faculty of Engineering, Cairo
Uniuersity, Giza, Egypt.

components because they cannot be used without a
clear understanding of what they do. If a candidate
reusable component needs to be modified, an under-
standing of how it is designed is also required.

Because of the importance of program under-
standing, considerable research has been concerned
with its automation. Different automation ap-
proaches generate program documentation that as-
sists in the understanding process and in recording
the results of this understanding. Some of these
approaches generate informal program documenta-
tion that gives expressive and intuitive descriptions
of the code (Bertels et al., 1993; Harandi and Ning,
1990; Hartman, 1991; Johnson and Soloway, 1985;
Quilici, 1993; Letovsky, 1987; Rich and Wills, 1990).
However, there is no semantic basis that makes it
possible to determine whether the documentation
has the desired meaning. This lack of a firm seman-
tic basis makes informal natural language documen-
tation inherently ambiguous. Other approaches gen-
erate formal and semantically sound documentation
that annotates programs according to the formal
semantics of a specific model of correctness (Abd-
El-Hafiz, 1990; Kemmerer and Eckmann, 198.5). A
common drawback of the systems that implement
these approaches is that they rely on the user in the
ingenious task of annotating the loops with their
invariants or functions.

In this article, we describe and compare some of
the formal and informal languages available for doc-
umenting code components. We argue that it is
possible to produce readable abstract specifications
that have an underlying sound mathematical founda-
tion. We present an analysis approach that performs
this task.

First, we briefly describe a prototype specifier that
we developed to utilize user-supplied loop specifica-
tions in producing formal specifications of complete
programs. However, most users find it hard to de-
duce such loop specifications because of the inher-
ent reasoning difficulties involving repeated program

J. SYSTEMS SOFTWARE 1996; 34:89-104
0 1996 by Elsevier Science Inc.
655 Avenue of the Americas, New York, NY 10010

0164-1212/96/$15.00
SSDI 0164-1212(9%00070-H

90 J. SYSTEMS SOFTWARE
1996; 34:89-104

V. R. Basili and S. K. Abd-El-Hafiz

state modifications. Because of this difficulty and the
fact that loops affect the ability to understand pro-
grams (Soloway et al., 1983), we focus on the prob-
lem of generating formal loop specifications.

We introduce a knowledge-based approach to the
analysis of loops. In this approach, we classify loops
according to their complexity levels. Based on this
taxonomy, we design the analysis techniques that
best fit each of these classes. In general, we analyze
loops by decomposing them into their component
parts. This decomposition is based on the structural
dependencies among the different loop fragments.
To deduce the formal abstractions of these loop
fragments, we use a knowledge base of plans. After
deducing the abstractions of the loop fragments, we
synthesize a consistent and accurate abstraction of
the whole loop construct from the understanding of
its constituents.

Finally, we describe how we designed the plans for
the analysis of loops in a preexisting program of
some practical size and complexity. We give the
number of designed plans and show how the experi-
ence gained in the application domain affected the
size of the knowledge base.

2. DOCUMENTING CODE COMPONENTS

To assist in the understanding of a code component,
its documentation language should have many char-
acteristics. Readability, expressiveness, semantic
soundness, and automatability are all of particular
importance (Rich and Waters, 1989). Readability fa-
cilitates the understanding of complicated and large
code components. Expressiveness enables the use of
the documentation language in documenting as many
different code components as possible. Semantic
soundness increases the confidence in the documen-
tation because it allows correctness conditions to be
stated and verified if desired. Automatability facili-
tates the efficient generation and manipulation of
the resulting documentation.

In the remainder of this section, we discuss dif-
ferent possible documentation languages and tech-
niques. In Section 2.1, a representative subset of the
various documentation languages used in augment-
ing code components is described and evaluated in
light of the aforementioned characteristics. In Sec-
tion 2.2, we explain the relative strengths and weak-
nesses of the current documentation techniques. In
our discussions, we focus on documentation used to
understand the programming domain. Although ap-
plication domain understanding is not discussed ex-
plicitly, the commonly occurring parts of the result-
ing programming domain documentation can be

made to correspond to application domain primi-
tives. The use of such application domain primitives
to replace complicated terms in the documentation
can improve its readability.

2.1 Alternatives for a Documentation Language

Given the wide range of documentation techniques
available, the choice of a language suitable for docu-
menting code is crucial. Documentation languages
can range from free-form natural languages to ab-
stract formal specifications. We demonstrate and
compare the different choices using the bubble sort
example shown in Figure 1.

Documenting programs using natural languages is
an informal technique that gives an intuitive descrip-
tion of the code (Harandi and Ning, 1990; Rich and
Wills, 1990). As pointed out by Rich and Waters
(1989), the greatest strength of natural languages is
their expressiveness, because they may be used to
document any kind of component. However, there is
no semantic basis that makes it possible to deter-
mine whether the documentation has the desired
meaning. This lack of a firm semantic basis makes
informal natural language documentation inherently
ambiguous. With respect to readability, natural lan-
guages might appear to be easy to read just using
intuition. But since they are inherently ambiguous,
one must be careful not to misinterpret some state-
ments. Because of its informal nature, judging the
conciseness and clarity of natural language docu-
mentation is a difficult task that is dependent on the
experience and talent of both the writer and reader.
For instance, Figure 2 shows a possible English
documentation of the bubble sort algorithm of Fig-
ure 1. Although the documentation in Figure 2 has
some problems that are not inherent to any natural
language documentation, it demonstrates that natu-

1 mim_of_roans: intega,
2 L is lew_qwcW integer;
3 fxpacily: alTey[1 mm_rooms] of integer;

II k .= mtm_of_rams - 1;

I2 whilekZ-Idotqin
13]:=I;
14 while j <= k do begin

15 ifcz?c&ry[i]>cqponlylitl]thcnbegin
16 renq_L?qJa&y := cvpaci~l];
17 cqcucily[i+l] := capaci~];
18 w=Nvril := Icmp_aqaci(y
19 end;
20 j:=j+l

21 end;
22 k:=k- 1
23 end

Figure 1. A bubble sort algorithm.

A Method for Documenting Code Components

ral languages do not prevent the occurrence of such
problems. This documentation gives a description of
what is performed by the algorithm interleaved with
information on how it is performed. To understand a
large program, one does not usually go through the
details of every part. Although information about
what an algorithm does can be sufficient in some
program parts, additional information on how the
algorithm is designed can be useful in other parts.
Thus, interleaving the two kinds of information
throughout the documentation of the whole pro-
gram is bound to represent an over documentation
for some readers. In addition, the parts of the array
capacity that are ordered first and the bounds of the
variables j and k are not accurately stated, which
might lead to misinterpretations. With respect to
automatability, English text is not amenable to auto-
matic manipulation in any significant way.

The documentation shown in Figure 3 is written
in a formal specification language that uses predi-
cate logic to produce Hoare-style annotations
(Hoare, 1969). An advantage of formal specifications
is that they accurately state what is performed by a
program segment. Semantic soundness and expres-
siveness are key advantages of the predicate logic
annotations. They have no trouble in representing
diffuse program components and allow correctness
conditions to be stated and proven if desired. Using
such a mathematically sound formalism provides
support for checking the consistency between the
documentation and its implementation.

However, formal specifications do not give details
of how a program part is designed. In case such
detailed information is required, the program docu-
mentation technique should be capable of separately
providing it. Moreover, when annotating compli-
cated and large components, formal specifications
become hard to read and understand. The readabil-
ity of such formal specifications can be enhanced if
they are further abstracted. This abstraction can be
performed by replacing a formal statement with
another one that is formulated in terms of a more
widely known and understood concept (France and
Basili, 1991). An example of these abstractions is
shown in Figure 4, which abstracts the annotations
in Figure 3 by introducing the predicates

This is a bubble SOI? algorithm that repeatedly scans adjacent pairs of items in an
array segment from one location (front) to another (end) It interchanges those items
that are found lo be out of orda The array cqacit~(1 mm_of_room] is sorted in
ascending order by repeatedly placing the maximum towards the end of the scanned
segment

Figure 2. English documentation of the bubble sort algo-
rithm.

J. SYSTEMS SOFTWARE
1996; 34:89-104

outa IooLl imariult:

91

11

Inner loo0 bMriant.

perm(AI, AZ) asserts that Al is II permutation ofA.?.

nrr, denoted the iuitial v&e of a variable wv just before the start
of the loop.

Figure 3. Hoare-style specification of the bubble sort algo-
rithm.

maximum_at_edge(capacity[l . . j - 11, j) and up-
sorted(capacity[l . . num_of_rooms], k + 2) to re-

place capacityI jl 2 capacity11 . . j - 11 and Vk + 2 5
irzd 5 num_of_rooms: capacityfind] ;z capacity[l . .
ind - 11, respectively.

Domain abstractions can further abstract the for-
mal annotations with concepts specific to the appli-
cation domain. The annotation of programs with
their assertions using predicate logic, algebraic spec-
ifications, and A abstractions are examples of formal
specifications. When these specifications use nota-
tions that are dependent on the application domain,
for example, using largest_room_at_.edge and up-
sorted-rooms instead of maximum_.at_edge and
upsorted, respectively, they can become more under-
standable in their domain.

The automatic generation of specifications similar
to those shown in Figures 3 and 4 is a well-known
problem for the current specifiers and provers (Abd-
El-Hafiz, 1990; Kemmerer and Eckmann, 1985;
Good, 1985). These systems require the user to
provide the loop annotations, an ingenious task that
requires expert knowledge. On the other hand, the
automatic manipulation of formal specifications is
easier than that of informal documentation. This
can be mainly attributed to the well-defined syntax
and semantics of formal specifications.

In summary, formal specification languages can
satisfy the aforementioned four characteristics if the

Inner loou invuiallt:

Figure 4. Abstract specification of the bubble sort algo-
rithm.

92 J. SYSTEMS SOFTWARE
1996; 34~89-104

V. R. Basili and S. K. Abd-El-Hafiz

documentation technique has three features. The
first feature is to separately provide, when desired,
information on how some program part is designed.
The second feature is allowing the use of well-known
and/or domain-specific abstract terms to improve
the documentation readability. The third feature is
the ability to automatically generate loop annota-
tions. On the other hand, it is very difficult to
overcome the inherent ambiguity and lack of seman-
tic soundness of informal documentation languages.

In the next subsection, we review the current
documentation techniques and explain why further
research is needed to produce documentation that
best assists in the understanding of code compo-
nents.

2.2 Alternatives for a Documentation Technique

To automatically generate documentation that facili-
tates the understanding of computer programs, vari-
ous analysis approaches have been developed. These
approaches can be classified into two broad cate-
gories: knowledge-based approaches and algorithmic
approaches.

Knowledge-based approaches modularize experts’
knowledge in the form of plans that can be accessed
mechanically. In these approaches, the generation of
a component’s documentation usually involves two
main tasks: the recognition of stereotyped parts in
the program (Soloway and Ehrlich, 1984) and deriv-
ing their annotations using the plans stored in the
knowledge base. Within these knowledge-based ap-
proaches, several analysis techniques are adopted.
The transformational technique is similar to the
transformational paradigm of automatic program
synthesis but with the application direction of the
transformation rule reversed (Letovsky, 1987; Ward
et al., 1989). The problem with this technique is that
it either cannot analyze nonadjacent program con-
structs (Letovsky, 1987) or it requires the user to
choose the fragments to be analyzed and, in some
cases, the transformation rules to be applied to them
(Ward et al., 1989). In the graph-parsing technique
(Rich and Wills, 19901, it becomes too expensive to
perform an exhaustive graphical parsing of a pro-
gram. This is because the number of subgraphs is
exponential, and subgraph isomorphism is, in gen-
eral, NP complete (Brassard and Bratley, 1988).
Other techniques (Harandi and Ning, 1990) are
based on heuristic methods that trade accuracy for
simplicity. Both the graph-parsing and heuristic
techniques output documentation more or less in
the form of structured English text, which does not
have a sound semantic basis.

The algorithmic approaches, on the other hand,
usually annotate programs according to the formal
semantics of a specific model of correctness (Abd-
El-Hafiz, 1990; Kemmerer and Eckmann, 1985). By
utilizing user-provided loop annotations, they offer
mechanical assistance in proving the correctness of
these annotations and in producing the specifica-
tions of a complete program.

In the next section, we present a hybrid approach
for mechanical generation of rigorous program doc-
umentation. It combines and builds on the strengths
of both the knowledge-based and algorithmic ap-
proaches. In addition to using expert-designed plans
to automatically generate intelligent analysis results,
it produces formal and unambiguous specifications.

3. A HYBRID ANALYSIS APPROACH

To generate a documentation language that has the
four characteristics mentioned in the previous sec-
tion, our approach uses the recent advances in
knowledge-based program understanding research
to enhance the formal algorithmic approaches.
Knowledge-based approaches are used to solve the
problem of automatic generation of loop invariants
or functions. This problem is regarded as formidable
in algorithmic approaches. A practical program de-
composition method (Waters, 1979) is used to facili-
tate the annotation of loops with their invariants as
well as to provide insight into how they are designed.
By combining the use of algorithmic and knowledge-
based approaches, we satisfy the expressiveness, se-
mantic soundness, and automatability characteris-
tics. We improve the readability of the resulting
formal specifications by replacing complicated for-
mal statements with ones that are formulated in
terms of more widely known or domain-specific con-
cepts.

We have developed a prototype specifier that sup-
ports the derivation of programs’ specifications. It is
the second in a series of prototype tools developed
under the general name FSQ (functional specifica-
tion qualifier; Abd-El-Hafiz, 1990; Abd-El-Hafiz
et al., 1991; Qian, 1989). By utilizing user-supplied
loop annotations, FSQ, uses an algorithmic ap-
proach to analyze complete programs. In a typical
session, a user derives the formal specification of a
program using stepwise abstractions. The user starts
by providing trial specifications of every loop in the
program as a separate entity. Then, FSQ, assists the
user in verifying whether or not the lops meet those
trial specifications. After finding the actual specifi-
cations of all the loops, the correct specification of
the whole program is automatically found. This

A Method for Documenting Code Components

method of stepwise abstraction enables the software
engineer to concentrate on small pieces of code, one
at a time, and to mitigate in this way the difficulty of
specifying the whole program. However, this proto-
type does not provide any assistance in a major and
difficult task: annotating the loops with their func-
tions or invariants. To intelligently assist in the
understanding of computer programs, a technique
that can enhance a specification tool, such as FSQ,,
by mechanically annotating loops is needed.

Substantial research has been performed on the
specific topic of analyzing loops. The heuristic loop
analysis methods can be used to guide the search for
an invariant. The research performed by Dunlop
and Basili (19841; Katz and Manna (1976), Remmers
(19841, and Wegbreit (1974) is representative of these
heuristic approaches. Although these heuristic ap-
proaches can be helpful in some cases, they can give
misleading results. After applying them for a consid-
erable amount of time, one may or may not succeed
in finding a correct invariant. Other works focus on
developing algorithmic approaches for finding the
invariants (functions) of simple loops. Examples of
the latter approaches can be found in the work of
Basu and Misra (19751, Dunlop and Basili (1982),
Katz and Manna (1976), Mills (19751, Misra (19781,
and Morris and Wegbreit (1977).

A more practical approach, which analyzes loops
by decomposing them into fragments, was proposed
by Waters (1979). The key feature of this analysis
method is that it uses control and data flow informa-
tion to break the loop apart in a mechanical way.
This decomposition can facilitate both understand-
ing and the correctness analysis process. Even though

J. SYSTEMS SOFTWARE 93
1996; 34:89-104

Waters’ approach does not address the issue of how
to use this decomposition to mechanically annotate
loops, it is especially interesting because of its prac-
ticality.

Hausler et al. (1990) suggested the use of program
slicing to decompose loops and allow the abstraction
of loop functions one variable at a time. They of-
fered no detailed investigation or discussion of this
idea. Even though the resulting loop slices are inde-
pendent, each slice must include all the statements
affecting the modification of the current variable.
This can result in loop slices that are large in size
because of the repetition of some statements in
multiple slices. The identification of stereotyped
slices and their analysis can, in turn, be difficult, and
a large knowledge base might be needed to compen-
sate for this problem.

It should be noted that all the loop analysis ap-
proaches mentioned earlier use formal, semantically
sound, and unambiguous notation. Although they
provide guidelines on how to mechanically generate
loop invariants or functions, they were not actually
used to implement automatic analysis systems. Con-
sequently, we present in the next subsection a
knowledge-based loop analysis approach that me-
chanically annotates loops with their abstract speci-
fications.

3.1 A Knowledge-Based Approach to
Loop Analysis

In this subsection, we introduce a technique based
on the idea of analyzing programs by decomposition

I
I Functional ;

_pwlmtionI
rof ti Wholes
I While Loop I
I I L-----4

Figure 5. Overview of the analysis strategy.

94 J. SYSTEMS SOFTWARE
1996; 34~89-104

V. R. Basili and S. K. Abd-El-Hafiz

(Basili and Mills, 1982; Hartman, 1991; Hausler
et al., 1990; Waters, 1979). It annotates loops with
their functional abstractions in a step-by-step pro-
cess as depicted in Figure 5. The analysis of a loop
starts by decomposing it into fragments. This decom-
position is based on the structural dependencies
among the different loop parts. The resulting frag-
ments are analyzed using plans stored in a knowl-
edge base to deduce their functional abstractions.
The functional abstraction of the whole loop is then
synthesized from the functional abstractions of its
fragments.

We start by introducing the notation used
throughout the rest of this section.

Definition 1. Let the abstract representation of the
while loop be while B do S where the condition B
has no side effects and the statements S are repre-
sentable by a single-entry single-exit control-flow
graph.

This representation abstracts from the syntax of the
specific imperative programming language being
used. Even though the approach described here
applies to all loops having this abstract representa-
tion, examples and illustrations are given using PAS-
CAL.

Definition 2. A control variable of the while loop
is a variable that exists in the condition B and gets
modified in the body S.

Definition 3. A concurrent assignment is a state-
ment in which several variables can be assigned
simultaneously. It has a list of variables at the left-
hand side of an assignment operator and an equally
long list of expressions at its righthand side (i.e.,

Ul, $9 f f f , v, := e,, e2,. . . , e,). Every ith expression
from the righthand list is assigned to its correspond-
ing ith variable from the lefthand list (Gries, 1981;
Mills et al., 1987).

Definition 4. A conditional assignment is a set of
one or more guarded concurrent assignments sepa-
rated by commas ‘0”. Every guarded concurrent as-
signment has a Boolean expression as an antecedent
of an implication sign and a concurrent assignment
as its consequent (i.e., b * s) (Abd-El-Hafiz et al.,
1991; Gries, 1981). When the Boolean expression b
is satisfied, the modifications performed on a vari-
able are given by the concurrent assignment s. Simi-
lar to Gries’ definition of the alternative command,
all the guards must be well defined (Gries, 1981).
However, it is possible that none of the guards
evaluates to true. In this case, no variable is modi-

fied [i.e., the conditional assignment evaluates to a
skip command (Gries, 1981)]. It should also be noted
that because we are only analyzing deterministic
programs, all the guards are mutually exclusive.

Definition 5. Any variable assigned in a condi-
tional assignment defines the data flow out of the
statement.

Definition 6. Any variable referenced by a condi-
tional assignment defines the data flow into the
statement.

3.1.1 Classification of loops. To design the analy-
sis techniques that best fit different levels of pro-
gram complexity, we classify the while loops along
three dimensions. The first dimension focuses on the
control computation part of the loop. The other two
dimensions focus on the complexity of the loop
condition and body. Along each dimension, a loop
must belong to one of two complementary classes, as
shown in Table 1.

Along the first dimension, we differentiate be-
tween simple and general loops. We get a simple
loop by imposing two restrictions: the loop has a
unique control variable, and the modification of the
control variable does not depend on the values of
other variables modified within the loop body.

Because the control computation of simple loops
is isolated from the rest of the loop, the sequence of
values assumed by the control variable can be easily
written. This is because the loop condition, the con-
trol variable’s initial value, and the net modification
done to the control variable in one loop iteration, if
any, provide sufficient information for writing this
sequence. This results in a definite behavior that is
similar to the behavior of for loops. Consequently,
we can represent their analysis knowledge with com-
patible definiteness and specificity.

However, this is not the case in general loops. In
many cases, the control computation part is not
isolated from the rest of the loop. For example,
while performing a binary search on a sorted array,
the modifications of the control variables are depen-
dent on the content of the array segment under

Table 1. The Three Dimensions Used for
Classifying Loops

Dimension Complementary Classes

Control computation
Complexity of condition

Complexity of body

Simple loop General loop
Noncomposite Composite

condition condition
Flat loop Nested loop

A Method for Documenting Code Components

consideration and the value being searched for. Thus,
it might not be easy, or possible, to write the se-
quence of values assumed by the control variables.

Simple loops cover more iteration constructs than
those covered by PASCAL for loops. The conditions
imposed on the set of PASCAL for loops, F, are
stronger because they restrict the type of the control
variable, and the control variable is only decre-
mented or incremented by a unit step (Jensen and
Wirth, 1985). That is why the set of simple loops, IV,,
is a proper superset of F, that is, F c W,. On the
other hand, if W denotes the set of PASCAL while
loops, then the set W, is a proper subset of W by
definition. That is, W, c W. This is because simple
loops are defined by imposing some restrictions on
while loops.

Within the second dimension, the complexity of
the loop condition B can vary between two cases. In
the noncomposite case, B consists of only one clause
of the conjunctive normal form (Rich and Knight,
1991). In the composite case, B consists of more
than one clause of the conjunctive normal form.
Along the third dimension, the complexity of the
loop body varies between flat and nested loop struc-
tures. In hat loop structures, the loop body cannot
contain any other loop inside it, which is not the
case in nested structures.

To analyze these loop classes, we have designed
formalisms for representing the program knowledge
as well as the plan knowledge. We have also de-
signed analysis techniques that can be applied to
these different loop classes in many domains.

3.1.2 Representation of program knowledge.
Loops are decomposed into smaller meaningful parts
that represent the knowledge obtained from the
program text. These parts are divided into two cate-
gories, namely, basic events and augmentation
events. While basic events are the parts that consti-
tute the control computation of the loop, augmenta-
tion events are the remaining building blocks of the
loop body.

Definition 7. A basic euent (BE) consists of three
parts: the condition, the enumeration, and the ini-
tialization.

1.

2.

The condition is one clause in the conjunctive
normal form (Rich and Knight, 1991) representa-
tion of the loop condition.
The enumeration is a set of conditional assign-
ments that assign to one or more of the control
variables used in the condition the net modifica-
tion done to them in one loop cycle, if any.

J. SYSTEMS SOFTWARE 95
1996: 34:89- 104

3. The initialization is a set of conditional assign-
ments that assign initial values to the control
variables modified in the enumeration part.

Definition 8. An augmentation event (AE) consists
of two parts: the body and the initialization.

The body is a set of conditional assignments that
assign the per-cycle modification taking place in
the loop body to some variables other than the
control variables.
The initialization is a set of conditional assign-
ments that assign initial values to the variables
modified in the body.

3.1.3 Representation of plan knowledge. The in-
formation stored in the plan knowledge base is di-
vided into two main categories: basic plans (BPS)
and augmentation plans (AI’s). The BPS are used to
analyze the parts of the loop that control its execu-
tion, that is, BEs. The APs are used to analyze the
other parts in the loop body, that is AEs.

The plans correspond to the usual rules used in a
rule-based system (Hayes-Roth, 1985). They can be
considered as inference rules. When a loop event
satisfies a unique plan antecedent, the rule is fired.
The instantiation of the information in the conse-
quent represents the contribution of this plan to the
loop assertions (Abd-El-Hafiz and Basili, 1993).

In general, an antecedent of a knowledge base
plan represents three kinds of knowledge (see Fig-
ures 6 and 7):

1. The list of control variables required for the
design of the plans’ consequents. This list, which
is maintained in the control-variables part, also

DBP, (upwwdaumation)

uD#
VW := wo#

w#R#npY
uw# := SUCC(ul#)
R#isrdationalopaatorttIatcqullls~or<A
w#isofadisueteordinallype~
Noncomposite loop condition

AsequenceofordinnlvahxssWingfromo
uptobwithiwxmmtsofaunitdcp
Tbe stl- of I.
The pre&a%so1 of I.
The identity timction ifR# eqw.ls <. Equals

PRED othawise

Figure 6. Example of a basic plan (BP).

96 J. SYSTEMS SOFIWARJZ
1996; 34:89-104

- Denotes irfdevant infomuItion.

Pr,
The result of substituting y for cacb tke occurrence
OfXinP.

sequcace. noal-seqncace Tbc Seq”mces assumed by the control variable vor#
as deduced Tom the analysis of its BE.

law The last element of the scq”ence +.

Figure 7. Example of an augmentation plan (API.

2.

3.

A

serves to facilitate the readability and the com-
prehension of the plans.
Knowledge necessary for the recognition of
stereotyped loop events. The BPS have the condi-
tion, enumeration, and initialization parts repre-
senting abstractions of the corresponding three
parts of stereotyped BEs. Similarly, the APs have
the parts body and initialization representing ab-
stractions of the corresponding parts of stereo-
typed AEs.
Knowledge needed for the correct identification
of the plans such as data type information,
whether or not a variable has been modified by a
previous event, or the previous analysis knowl-
edge of a variable. This knowledge is given in the
firing-condition.

consequent of a knowledge base plan represents
the following knowledge:

1. Knowledge necessary for the annotation of loops
with their Hoare-style (Hoare, 1969) specifica-
tions. This is maintained in precondition, invari-
ant, and postcondition parts, where precondition
and invariant have the usual meaning (Hoare,
1969). The postcondition is only included in case
of plans that analyze simple loops. It gives infor-
mation about the variables’ values after the loop
execution ends. It is correct provided that the
loop executes at least once. If the loop does not
execute, then no variables get modified.

2. In case of a simple loop, the constraint imposed
on the control variable results in a definite behav-
ior of the loop control computation similar to

V. R. Basili and S. K. Abd-El-Hafiz

that of for loops. This definite behavior is cap-
tured, in the sequence and final-sequence parts of
the BPS, to produce specification with compatible
definiteness. These parts give knowledge about
the sequence of values assumed by the control
variables during and after the loop execution,
respectively.

Figures 6 and 7 show two plans: a BP (DBP,) and
an AP (SLAP,), respectively. To convey the basic
analysis ideas within a reasonable space limit, we
only show simplified versions of the plans. The suffix
“#” is used to indicate terms in the antecedent (or
consequent) that must be matched (or instantiated)
with actual values in the loop events.

The plan DBP, (Figure 6) represents an enumera-
tion construct that generates a sequence of values of
a discrete ordinal type in an ascending order with a
unit step. The initialization indicates that the initial
value of the unique control variable var#, just be-
fore the start of the loop, is var,#. Because the
firing-condition ensures that the relational operator
R# equals I or <, the condition means that the
final value assumed by var# is determined by the
expression exp#. The enumeration states that var#
is incremented by a unit step. Incrementing uur# is
possible because the firing-condition ensures that it
is of a discrete ordinal type. In the consequent,
SUCC(x) and PRED(x) are defined to be the suc-
cessor and predecessor of x, respectively. The pre-
condition, invariant, and postcondition give the
direct contribution of this plan to the loop specifica-
tion. They assert the following: if uar,# I (or <)
SUCC(exp#) is true when the loop starts, then
uur,# 5 var# 5 (or <> SUCC(e_x~#) remains true
through successive iterations of the loop, and var#
= SUCC(exp#> (or exp#) is true when the loop
terminates. Because the loop condition is noncom-
posite, sequence and final-sequence give the values
assumed by the control variable during and after the
loop execution. These values are uar,# . . PRED
(uar#) and var,# . . exp# [or PREHexp#)l, respec-
tively. By saving the values of sequence and final-
sequence for each simple loop under consideration
and using them in the design of the augmentation
plans consequents, they contribute indirectly to the
loop specification.

The plan SLAP, (Figure 7) swaps successive ele-
ments of an array segment, if needed, so that the
maximum element is located at one of its edges.
Depending on which clause of the firing-condition is
satisfied, the maximum is located at either the start
or the end of the array segment. If the control
variable var# is analyzed by DBP,, the array seg-

A Method for Documenting Code Components J. SYSTEMS SOFIWARE 97
1996;34:89-104

ment is scanned in ascending order. In this case,
FUNC# is the predecessor function PRED. Conse-
quently, the body means that if an array element
arruy#[exp#] is less than its predecessor
array#[PRED(exp#)l, then they are swapped so that
the maximum is always located at the end. If the
control variable uar# is analyzed by DBP,, then the
array segment is scanned in descending order. In
this case, FUNC# is the successor function SUCC.
Consequently, the body means that if an array ele-
ment urruy#[exp#] is less than its successor
urruy#[SUCC(exp#>l, then they are swapped so that
the maximum is always located at the start. The
invariant and postcondition assert these facts by
using two predicates. The predicate perrn(x, y) as-
serts that the array x is a permutation of the array
y. The predicate mauimum_ut_edge(x, i) asserts that
the maximum of the array segment x is located at
the edge specified by the index i. For instance, the
first predicate of the postcondition perm(un-uy#,
urruy,#) asserts that when the loop terminates, the
array urruy# is a permutation of the initial array,
an-uy,#, at the start of the loop. The second
predicate maximum _ut_edge(urruy#[(FUNC#
(exp#)>l~~~~~,,,,.,,1, e~p#l~~#(fi”~l.~equenee)) has as the
first argument the array segment, which is scanned
by the successive loop iterations. It is obtained by
substituting every free occurrence of the control
variable vur# in the expression array #
[(FUNC#~_X~#)] with the final-sequence of the sim-
ple loop under consideration. The second argument
specifies the edge that holds the maximum. It is
obtained by substituting every free occurrence of the
control variable vur# in the expression exp# with
the last element of the final-sequence.

When performing analysis of loops in a large
domain, the size of the knowledge base becomes an
important issue. A large increase in the number of
plans leads to a large increase in the knowledge base
size. To reduce the number of plans in such cases,
improvements on their structure and/or the knowl-
edge represented in them can be performed.

Knowledge representation improvements, called
abstractions, involve replacing some of the terms in a
plan with more abstract ones that cover more cases.
For example, the plan SLAP, in Figure 7 can be
abstracted by handling arrays whose elements can be
of the record type.

Structural improvements to a plan modify the
basic structure into a tree structure, which allows
the inclusion of several similar plans in one tree-
structured plan. The tree-structured plan consists of
a single antecedent and several consequents orga-
nized in tree structures, as shown in Figure 8. To

Figure 8. The tree structure of a plan.

select a specific tree-structured plan, a match with
the antecedent should occur first. Then, firing-con-
dition 0 must be satisfied. Within the plan, local
firing-conditions of the consequents guide the search
for a suitable consequent. The more general a con-
sequent, the closer it is to the root of its tree.
Consequents located at the same level have mutu-
ally exclusive firing-conditions. This means that only
forward search is needed and no backtracking is
required. When an event matches an antecedent and
firing-condition 0 of the tree-structured plan is satis-
fied, the search for an appropriate consequent starts
at the appropriate root, going down in the tree as far
as possible. The path between a parent and a child
can only be taken if the firing-condition associated
with the child consequent is satisfied.

3.1.4 The basic analysis strategy. We have de-
signed analysis techniques to provide mechanical
assistance for the generation of formal specifications
of different loop classes in many domains. We have
applied these analysis techniques to some loops in
the domain of scheduling university courses and the
domain of basic algorithmic structures (Abd-El-
Hafiz, 1994). It should be emphasized that our goal
is to have analysis techniques that are automatable
and flexible enough to be tailored to the needs of
many domains. It is not our goal, even if it were
possible, to handle all the cases that can occur in all
possible domains. We have demonstrated the feasi-
bility of automating our knowledge-based analysis
approach by designing a prototype tool that anno-
tates loops with predicate logic annotations (Abd-
El-Hafiz, 1994; Abd-El-Hafiz and Basili, 1994).

In this article, we only describe the analysis of flat,
simple while loops with noncomposite conditions.
This description conveys the basic ideas behind our
analysis strategy and demonstrates how to automati-
cally generate formal specifications to assist in the
understanding of code components in a specific do-

98 J. SYSTEMS SOFTWARE
1996; 3489-104

V. R. Basili and S. K. Abd-El-Hafiz

main of interest. The analysis of the other loop
classes is described elsewhere (Abd-El-Hafiz, 1994).

Flat, simple loops with noncomposite conditions
are annotated with their functional abstractions in a
step-by-step process consisting of several phases, as
depicted in Figure 9.

The first analysis phase, which is the symbolic
execution of the loop body, abstracts a program’s
language- and implementation-specific features. For
a detailed description of how to perform this sym-
bolic execution, the reader is referred elsewhere
(Abd-El-Hafiz, 1990; Mills et al., 1987; Zelkowitz,
19901. Using the notation introduced by Harandi
and Ning (1990) about the possible abstraction levels
of a program, this phase maps the source code to an
implementation abstraction of the loop.

The second phase performs data flow analysis to
produce an explicit representation of the dependen-
cies among loop components in the form of BEs and
AEs. Although this decomposition is different from
the loop decomposition method introduced by Wa-
ters (19791, it was inspired by his work. Using the
aforementioned notation introduced by Harandi and
Ning (1990), this analysis phase reveals the structure
of a loop and maps its implementation abstraction to
a structural abstraction.

Finally, an analysis of the BEs and AEs, using a
plan knowledge base, transforms the structural ab-
straction of a loop into a functional abstraction. The
functional abstraction reveals the logical, as opposed
to the syntactical or structural, details of the loop
using predicate logic assertions.

The details of the analysis method are explained
below. The descriptions of the analysis steps are
interspersed with their application on the loop shown
in Figure 10, which is the inner loop of the bubble
sort algorithm. This loop is simple because the vari-
able j is a unique control variable, and its modifica-
tion is independent of the values of any other vari-
ables modified within the loop.

The first analysis phase symbolically executes the

lmpl-trdim S- Flnctional
Abstraction Absilaciion Absiraction

Source
Code Symbolic Data Flow Event

Execution Analysis Analysis
f

Et3 owkdge

Figure 9. Analysis of flat, simple loop structures.

Figure 10. Example of a flat, simple loop with noncompos-
ite condition.

body of the loop. This symbolic execution summa-
rizes the effect of the body on each of the variables
assigned in the loop. As a result, the net modifica-
tion performed on each variable, in one loop itera-
tion, is given in the form of a conditional assign-
ment. For instance, assume that the loop body has 12
execution paths and a,, a,, . . . , a, are the concur-
rent assignments that modify the variable u on each
path. If p1,p2,. . . , p,, are the corresponding mutu-
ally exclusive predicates that determine which path
should be taken, then the net modification per-
formed on the variable u is given in the form (pl =$
a,), (p* => aJ,...,(p, * a,). If some ui does not
modify u, then we remove the corresponding guarded
concurrent assignment (pi * a,) to simplify the con-
ditional assignment.

Applying this analysis phase on the loop of Figure
10 yields the following set of conditional assign-
ments. Each conditional assignments independently
encapsulates the effect of the body on a unique
variable. These statements represent an implemen-
tation abstraction of the loop body, which eliminates
a program’s language- and implementation-specific
features.

true -j :=j + 1

cupucity[j] > cupacity[j + 11 3 temp_cupacity :=
cupucityt j + 11

cupucity[j] > cupfxity[j + 11 3 cupucity[j + 11, cu-
pucily[j] := cupucity[jl, cupucity[j + 11

The second phase decomposes the loop using data
flow analysis to produce an explicit representation of
the dependencies among loop components in the
form of BEs and AEs. That is why the output of this
phase is called a structural abstraction of the loop.

The BE of the loop is constructed by taking the
loop condition B as its condition. If the variable uur
is the control variable, then the enumeration is the
part of the symbolic execution outcome that modi-
fies var. The initialization, if any, provides the initial
value of the control variable before the start of the
loop. The BE of the loop is recognized first because

A Method for Documenting Code Components

the analysis of the remaining loop events depends
on the result of its analysis.

The symbolic execution result is decomposed into
AEs by first removing the enumeration part of the
BE. Then, the minimal sets of conditional assign-
ments, which are interdependent with respect to
data flow and do not have data flowing out of them
into other parts of the loop body, are recursively
identified and isolated (Waters, 1979). The initializa-
tion, if any, provides the initial values of the vari-
ables modified in the augmentation body. The result-
ing AEs are ordered, after the BE, such that the
ones identified first are analyzed last.

The application of the second analysis phase to
our example yields the three ordered events given
below. Because the variable j is responsible for the
data flow out of the BE conditional assignment and
into the AE’s conditional assignment, the BE is
ordered first. Similarly, because capacity is responsi-
ble for the data flow out of the second AE condi-
tional assignment and into the third event condi-
tional assignment, they have this specific order. This
ordering makes it possible to propagate the effect of
analyzing an event to the analysis of other events
dependent on it.

BE
condition: j I k
enumeration: j := j + 1
Initialization: j := 1
AEl
body: capacity[jl > capacity[j + 11 j capacity[j
+ 11, capacity[jl := capacityfjl, capacityf j + 11
initialization:-
AE2
body: capacity[j] > capacity[j + 11 2 ternp_
capacity := capacity[j + 11
initialization: -

Finally, we try to match the loop events with the
antecedents of the plans stored in the knowledge
base. The matching results are the name of the
unique plan matched along with the unification of
the # terms in the plan with the actual values in the
event. To represent these event-matching results, we
use the analysis knowledge notation. The analysis
knowledge (AK) of a variable modified by a certain
event consists of an n-tuple where n is dependent
on the specific plan matched. The first term of the
tuple is the name of the plan matched. The remain-
ing (n - 1) terms are the results of matching the #
variables with the actual values in the event.

The instantiation of the consequents of the
matched plans with the actual values gives the con-
tribution of each individual event to the assertions

J. SYSTEMS SOFIWARE 99
1996; 34:89-104

of the loop. The parts of the loop that cannot be
matched with a plan antecedent are printed to the
user as parts that could not be handled. The knowl-
edge base manager can consider adding plans to
help in translating these events later.

Applying the third analysis phase to the results of
the data flow analysis matches the first two events
with the antecedents of the plans shown in Figures 6
and 7, respectively. The third event is matched with
a plan that is not shown here due to space limita-
tions. This plan discards the temporary variable,
temp_capacity, information by having true predi-
cates as annotations. The analysis knowledge of the
variables j and capacity are as follows:

1. AK(j) = (DBP,, var#: j, var,#: I, R#: I: ,
exp#: k)

2. AK(capacity) = (SLAP,, var#: j, array#: capac-
ity, exp#: j + 1, FUNC#: PRED)

Instantiating the consequents of the identified
plans with the actual values yield the following re-
sults:

1. precondition

invariant

postcondition

sequence
final-sequence

2. precondition

invariant

postcondition

The functional abstraction of the loop is synthe-

Osk
l<j<k+l

j=k+l
l..j - 1
l..k
true
perm(capacity, capacity,) A
maximum _at -edge
(capacityfl . . j - 11, jl
perm(capacity, capacity,) A
maximum_at_edge
(capacity11 . . kl, k + 1)

sized from the instantiated plans’ consequents. The
precondition, invariant, and postcondition are con-
structed by taking the conjunction of the corre-
sponding parts in the instantiated consequents. For
instance, the functional abstraction of the loop in
Figure 10 is given below. These are the specifica-
tions of the inner loop of Figure 1 if it is analyzed in
isolation of the outer loop surrounding it. When we
analyze the whole nested construct, some predicates
might be added to the inner loop specifications, as
explained in the next subsection.

Precondition: Osk
Invariant: 1 5 j 2 k + 1 A perm(capacity,

capacity,) A
maximum _at_edge(capacity[l . . j
- 11, j)

100 J. SYSTEMS SOFTWARE
1996:34:89-104

V. R. Basili and S. K. Abd-El-Hafiz

Postcondition: j = k + 1 A perm(capacity, capac-
ity,) A
maximum_at_edge(capacity[l . . kl,
k + 1)

One advantage of the resulting specifications is
that they explain the function of the algorithm in
concise terms without any ambiguities. They explain
what the algorithm does without interleaving it with
information on how it does it. To further investigate
the details of how a specific loop is designed, the
decomposition,of the loop into events and the aug-
mentation of the individual events with their individ-
ual specifications can be used. In other words, this
documentation technique supports a top-down strat-
egy of program understanding (Brooks, 1983). In this
strategy, a general understanding of a loop, which is
formed using the formal specifications, can be re-
fined and elaborated based on information extracted
from the loop decomposition and analysis results of
the individual events.

The readability of the resulting specifications is
improved without affecting their semantic sound-
ness. This is because each new term still has an
underlying rigorous definition that can be used if
desired. To further improve the readability of these
abstract specifications in a specific domain of inter-
est, some of the commonly occurring predicates can
be replaced with domain-specific ones. For example,
in the domain of scheduling university courses, these
specifications can be written in terms of the predi-
cate largest_room_at_edge instead of maximum_
at-edge.

The domain-specific replacements can be done
explicitly by producing the abstract and then the
domain-specific ones. Otherwise, they can be implic-
itly performed by designing the plans such that their
consequents are directly written in terms of the
domain-specific terms. In the former case, the
knowledge base plans are more general and can be
used in several different domains. The last stage,
which performs the higher level abstractions, can be
tailored to the needs of different domains and thus
enhances the portability of the system. The latter
approach, however, is easier to implement mechani-
cally but reduces the generality of the plans.

3.1.5 Beyond the basic analysis strategy. The
analysis of general loops and loops with composite
conditions is performed using steps similar to those
described in the previous section (Abd-El-Hafiz,
1994; Abd-El-Hafiz and Basili, 1993). The formation
of the events and the synthesis of the event analysis

results take into account the fact that there might be
more than one control variable and/or BE. In gen-
eral loops, we can produce loop preconditions and
invariants that assist in the understanding and veri-
fication activities. Because the control computation
of general loops is not as determinate and isolated
as in the case of simple loops, we do not produce
some of the specific analysis results that were pro-
duced for simple loops. The sequences of values
assumed by the control variable(s) and the program
state at the end of the loop are usually dependent
on combined indeterminate effects of several events
and the values of some program variables (Abd-El-
Hafiz and Basili, 1993). As a result, the plans that
analyze general loops neither include the aforemen-
tioned sequences nor use them in writing loop speci-
fications. The postcondition can only be deduced
after the synthesis of the loop invariant. The post-
condition is formed by taking the conjunction of the
loop invariant and the negation of the loop condi-
tion (Hoare, 1969). Using this method to obtain the
loop postcondition yields predicates that might not
be as informative and concise as those of simple
loops. This, in turn, makes the resulting postcondi-
tion less easy to read and understand. Here, the
simplification of the resulting predicates and the use
of domain-specific abstractions are even more im-
portant.

Nested loops are analyzed by recursively analyzing
the innermost loops and replacing them with se-
quential constructs that represent their functional
abstraction (Abd-El-Hafiz, 1994). The resulting spec-
ifications of the outermost loop, as well as those for
the inner ones, are used to understand the whole
nested construct. However, if we are interested in
more than understanding and documentation and
want to enable the proof of Hoare verification con-
ditions (Hoare, 1969)Jhen the inner loop specifica-
tions might need some modifications. Because our
recursive analysis approach is performed bottom-up,
and complete knowledge of the inner loop functions
is available during the analysis of outer loops, the
generated outermost loop specifications enable the
proof of Hoare verification conditions. On the other
hand, inner loops are analyzed in isolation of the
outer ones enclosing them; consequently, their in-
variants might not be strong enough to satisfy some
Hoare verification conditions. An additional adapta-
tion phase is, hence, designed to strengthen inner
loops invariants by adding some context-related
predicates to them. For instance, when the inner
loop of the bubble sort example is analyzed in isola-
tion, as in the previous subsection, its invariant does

A Method for Documenting Code Components J. SYSTEMS SOFI’WARE 101
1996: 34:89- 104

not include any information about the sorted seg-
ment of the array capacity. Thus, the adaptation
phase strengthens the inner loop invariant by adding
the predicate Vk + 2 I ind I num_of_rooms: ca-
pacity[ind] 2 capacity[l . . ind - 11, which can be ab-
stracted to upsorted(cupacity[l . . num_of_rooms],
k + 2) (Figures 3 and 4). By providing information
about the sorting context of the inner loop, this
predicate enables the verification of the whole nested
construct. However, the addition of the correct pred-
icates to the inner loop invariants is not always
possible in the case of nested constructs in which an
inner loop is preceded by statements other than
assignment and conditional statements (e.g., loops or
procedure calls). Thus, this theoretical limit affects
the ability to prove the resulting specifications. For
more details on the analysis of nested loops and the
limitations of our approach, see Abd-El-Hafiz (1994).

3.1.6 Evolution of the knowledge base. The suc-
cess of the developed analysis techniques in a spe-
cific application domain is dependent, to a great
extent, on the design of efficient and correct plans.
That is why the tasks of designing plans and manag-
ing the knowledge base for a specific domain of
interest should be performed by someone expert in
both the desired domain and formal specifications.

To create a knowledge base, the desired domain
should be analyzed to design an initial set of plans
believed to cover a considerable number of loop
constructs that might occur in it. After adding this
initial set, the knowledge base should evolve over
time. It should undergo a process of controlled
usage in which the knowledge base manager needs
to closely monitor its use.

The basic understanding of a domain is repre-
sented in the initial set of plans constituting the
knowledge base. Further use of the knowledge base
is apt to reveal inadequacies in it with respect to the
sufficient number of plans, their structure, and their
abstraction level. This use is also likely to improve
the understanding of the domain and increase the
knowledge of its details. That is why a controlled use
of the knowledge base is needed to adapt the plans
and make their abstraction level, structure, number,
and naming conventions suitable for the domain
under consideration. For example, a failure to iden-
tify the specification of a loop event indicates that
either the event is erroneously designed and re-
quires modification, or that there is a missing plan,
which should be added to the knowledge base. The
user needs to check the unspecified event to see if

he or she can modify it. If no error is detected, then
the knowledge base manager is notified. Whenever a
new plan needs to be added to the knowledge base,
it should be investigated whether to add it as an
independent plan or to improve on the structure
and/or the knowledge represented in the existing
plan(s) to cover the new case.

We performed a case study manually on a com-
plete set of loops in a real program of some practical
value. Thus, case study results are not affected by an
implementation limits. This case study served to test
our analysis techniques and evaluate their strengths
and weaknesses within a specific application domain.
Given this fixed set of loops, the small number of
plans needed to analyze them demonstrated the
positive effect our analysis techniques could have on
the size of the knowledge base.

The program chosen for the case study is in the
domain of scheduling university courses (Jalote,
1991). It has 1,400 executable lines of code and 77
loops. This program deals with scheduling a set of
courses. During this case study, we had to analyze
and specify loops that use data types such as point-
ers and that have a variety of PASCAL statements.

We gradually populated the knowledge base with
plans. First, we decomposed every loop under con-
sideration into the BEs and AEs. Then, we analyzed
every event in order to design a plan suitable for it.
If no plan was available in the knowledge base to
match the event under consideration, or a similar
event, then we designed a new plan with initial
specifications. We then modified the plan and tai-
lored it to give correct specifications by trying to
prove the loop invariant using Hoare techniques
(Hoare, 1969). If a plan that matched a similar
event, but not the exact one under consideration,
existed in the knowledge base, then we considered
further improvements on the structure and/or
knowledge represented in the existing plan.

Out of the 77 loops, we completely analyzed 65
(84.4%) and partially analyzed 12. We only designed
48 plans to analyze the 213 events of the completely
analyzed loops and 22 events from the partially
analyzed ones. We decided not to specifically design
plans for the analysis of 12 loops in the case study.
The unique and complex nature of these loops sug-
gested that the effort needed to design plans for
their analysis highly outweighs the advantages that
could be gained by using the plans in this specific
application domain. These 12 loops were analyzed
using the available set of plans to determine whether
useful partial specifications could be obtained. If
these loops were common in another domain, it

102 J. SYSTEMS SOFJWARE
1996; 34:89-104

V. R. Basili and S. K. Abd-El-Hahz

Table 2. Numbers and Percentages of Completely Analyzed Loops Along the Three Dimensions

Dimension

1 2 3

Analysis statistics Simple Loop General Loop Noncomposite Condition Composite Condition Flat Body Nested Body

Available number 52.0 25 46.0 31.0 53.0 24.0
Number analyzed 48.0 17 42.0 23.0 52.0 13.0
Percentage analyzed 92.3 68 91.3 74.2 98.1 54.2

would have been worthwhile to invest some effort in
designing their plans.

Table 2 gives the number of completely analyzed
loops in each class defined by our taxonomy. Along
each dimension, the variation between the percent-
ages of completely analyzed loops in the two com-
plementary classes is somewhat large. A possible
interpretation for these variations is that they indi-
cate what classes are more appropriately (or easily)
analyzed by our analysis techniques. The variations
along the three dimensions indicate that simple (flat)
loops are considerably easier to analyze than general
(nested) loops. They also indicate that composite
loop conditions make the analysis harder than non-
composite conditions.

Table 3 shows the number of plans designed and
the number of events they analyze. Table 4 shows
the same information for the abstracted/tree-struc-
tured plans. The average and standard deviation of
the number of utilizations of the 48 plans are 4.9
and 7.97, respectively. The average and standard
deviation of the number of utilizations of the 10
abstracted/tree-structured plans are 14.9 and 11.8,
respectively. More specifically, the 10 abstracted/
tree-structured plans (20.8%) analyzed 149 events
(63.4%) out of the 235 events analyzed in this study.
These plans have a total of 24 consequents and
underwent 8 abstractions. This means that the expe-

Table 3. Utilization of the Designed Plans

Plan Category

Analysis Statistics BP AP

Number of plans 11 37
Number of utilizations 95 140

Table 4. Utilization of the Abstracted and/or
Tree-Structured Plans

Analysis Statistics

Number of plans
Number of utilizations

Plan Category

BP AP

4 6
75 74

rience gained during this case study enabled us to
encapsulate the knowledge of at least 32 (24 + 8)
simple plans into 10 deep and well-developed ones.
This encapsulation, in turn, led to a considerable
reduction in the size of the knowledge base. Coming
up with such a set of abstracted/tree-structured
plans should be the objective of any analysis per-
formed in a specific application domain. Gaining
experience in the domain should lead to the evolu-
tion of more concise and useful plans.

To examine the limits of our loop analysis ap-
proach, we investigated the characteristics of the 12
partially analyzed loops. Almost all of them (11 out
of 12) are nested and contain procedure and func-
tion calls (10 out of 12). The average number of
procedure and function calls per loop is 4.6 (stan-
dard deviation, 2.6). In Table 5, variations between
the characteristics of the partially analyzed loops
and the completely analyzed ones are highlighted.
For more details on the differences between the 12
partially analyzed loops and the 65 completely ana-
lyzed ones, see the source code listings in Abd-El-
Hafiz (1994) and Jalote (1991).

The 12 partially analyzed loops contain relatively
high numbers of events, lines of code, modified
variables, and procedure and function calls. These
factors increase the difficulty of designing the invari-
ants and, consequently, the plans. For instance, to
design plans for the analysis and specification of a
loop containing procedure and function calls, all the
procedures and functions called must first be for-
mally analyzed using Hoare techniques (Hoare,

Table 5. Comparison Between the Completely and
Partially Analyzed Loops

Characteristics*
Completely Partially

Analyzed Loops Analyzed Loops

Events

Executable SLOC

Modified variables

3.28 11.92
(SD = 2.05) (SD = 4.77)

10.45 43.2
(SD = 8.29) (SD = 15.7)

3.42 12.4
(SD = 2.45) (SD = 4.9)

* In terms of average numbers

A Method for Documenting Code Components J. SYSTEMS SOFIWARE 103
1996; 34189-104

1971). The theoretical limit discussed in the previous
section, which is related to the adaptation of inner
loop specifications in nested loops for the purpose of
proving their correctness, occurred in only one loop.
That is, the partial analysis of the remaining 11
loops in this case study is attributed to practical
limits. These practical limits stem from the plan

designer’s inability to formally analyze complicated
loops and find their invariants despite the fact that
these invariants exist theoretically.

4. CONCLUSION

We have discussed the documentation language
characteristics that are required to facilitate the
understanding of a code component. To mechani-
cally generate program documentation that has these
characteristics, we have presented a hybrid analysis
approach that combines the use of knowledge-based
and algorithmic analysis approaches. The knowl-
edge-based analysis approach produces formal loop
specifications that can be used by the algorithmic
approach to produce formal specifications of com-
plete program modules. Our hybrid analysis ap-
proach generates formal specifications that have the
required semantic soundness and expressive power.
This is because they have a sound mathematical
basis and can abstract a wide variety of problems.
The readability of the resulting specifications is im-
proved by abstracting them using high-level and/or
domain-specific terms. Furthermore, the systematic
techniques that we developed for producing these
specifications improve their automatability (Abd-El-
Hafiz, 1990, 1994).

To assist in the algorithmic analysis of complete
programs, we focused on explaining how to analyze
loops to produce documentations that are more for-
mal and accurate than those produced by other
approaches (Harandi and Ning, 1990; Hartman, 1991;
Rich and Wills, 1990). Our approach analyzes stere-
otyped loop fragments that have nonadjacent parts
and, consequently, avoids the large size of the
knowledge base needed to compensate for this draw-
back (Letovsky, 1987). It presents well-defined meth-
ods for selecting the fragments to be analyzed and
for choosing the rules that analyze them. Hence, it
relieves the user from the difficulty of having to
perform this task on a code that is not well under-
stood (Ward et al., 1989).

Our analysis approach supports software develop-
ment by providing code abstractions that can help in
both reviewing and debugging code. In many cases,
it can also help in proving the correctness of loop
implementations. By assisting in the rigorous under-

standing of loops, our approach facilitates code
maintenance. Although our approach is useful for
analyzing and understanding most loops, our case
study showed that the analysis of some loops may be
beyond the endurance of the analyzer. However, a
maintainer who needs to understand a particular
code segment may be more willing to pursue the
analysis further or settle for less formal understand-
ing. With respect to software reuse, our approach
facilitates the population of a software repository
with well-documented code components.

By performing a case study, we were able to study
the effect of the analysis techniques on the size of
the knowledge base and to package our experience
in the design and use of plans for a specific domain.
We have developed a prototype tool that imple-
ments the knowledge-based loop analysis approach
(Abd-El-Hafiz and Basili, 1994). We had earlier re-
ported a prototype tool that uses user-supplied loop
annotations for analyzing complete programs (Abd-
El-Hafiz et al., 1991). The integration of these two
tools to develop a larger system that performs intel-
ligent analysis of complete program modules needs
to be investigated. The practicality of our approach
should be further investigated by testing them in
various domains and developing domain-specific ab-
stractions.

ACKNOWLEDGMENTS

We thank Gianluigi Caldiera, Sandro Morasca, and Dieter
Rombach for their helpful contributions to a variety of as-
pects of this article.

This research was supported in part by Office of Naval
Research grant N00014-87-k-0307 to the University of
Maryland.

REFERENCES

Abd-El-Hafiz, S. K., A Tool for Understanding Programs
Using Functional Specification Abstraction, Master’s
Thesis, University of Maryland, College Park, Maryland,
1990.

Abd-El-Hafiz, S. K., A Knowledge-Based Approach to
Program Understanding, Ph.D. Thesis, IJniversity of
Maryland, College Park, Maryland, 1994.

Abd-El-Hafiz, S. K., and Basili, V. R., Documenting pro-
grams using a library of tree structured plans, in Pro-
ceedings of the Conference of Software Maintenance, 1993,
pp. 152-161.

Abd-El-Hafiz, S. K., and Basili, V. R., A tool for assisting
the understanding and formal development of software,
in Proceedings of the Sixth International Conference on
Software Engineering and Knowledge Engineering, 1994,
pp. 36-45.

Abd-El-Hafiz, S. K., Basili, V. R., and Caldiera, G., To-
wards automated support for extraction of reusable

104 J. SYSTEMS SOFTWARE
1996;34:89-104

V. R. Basili and S. K. Abd-El-Hafiz

components, in Proceedings of the Conference of Software
Maintenance, 1991, pp. 212-219.

Basili, V. R., and Mills, H. D., Understanding and Docu-
menting Programs, IEEE Trans. Software Eng. SE-8,
270-283 (1982).

Basu, S. K., and Misra, J., Proving Loop Programs, IEEE
Trans. Software Eng. SE-l, 76-86 (1975).

Bertels, K., Vanneste, P., and De Backer, C., A cognitive
approach to program understanding, in Proceedings of
the Working Conference on Reverse Engineering, 1993, pp.
l-7.

Brassard, G., and Bratley, P., Algorithmics: Theory &
Practice, Prentice-Hall, 1988.

Brooks, R., Towards a Theory of the Comprehension of
Computer Programs, Int. J. Man-Machine Stud. 18,
5433.554 (1983).

Dunlop, D. D., and Basili, V. R., A Comparative Analysis
of Functional Correctness, Comp. Sum. 14, 299-244
(1982).

Dunlop, D. D., and Basili, V. R., A Heuristic for Deriving
Loop Functions, IEEE Trans. Sofhyare Eng. SE-lo,
275-285 (1984).

France, R. B., and Basili, V. R., A Pattern-Driven Ap-
proach to Code Analysis for Reuse, Technical Report
CS-TR-2802, Department of Computer Science, Univer-
sity of Maryland, College Park, Maryland, 1991.

Good, D., Mechanical proofs about computer programs, in
Mathematical Logic and Programming Languages
(C. A. R. Hoare and J. C. Shepherdson, eds.), Prentice-
Hall International, 1985, pp. 55-75.

Gries, D., The Science of Programming, Springer-Verlag,
1981.

Harandi, M. T., and Ning, J. Q., Knowledge-Based Pro-
gram Analysis, IEEE Software 7, 74-81 (1990).

Hartman, J., Understanding natural programs using proper
decomposition, in Proceedings of the 13th International
Conference on Software Engineering, 1991, pp. 62-73.

Hausler, P. A., Pleszkoch, M. G., Linger, R. C., and
Hevner, A. R., Using Function Abstraction to Under-
standing Program Behavior, IEEE Software, 7, 55-63
t 1990).

Hayes-Roth, F., Rule-Based Systems, Commun. ACM 28,
921-932 (1985).

Hoare, C. A. R., An Axiomatic Basis for Computer Pro-
gramming, Commun. ACM 12, 576-580, 583 (1969).

Hoare, C. A. R., Procedures and parameters: An ax-
iomatic approach, in Symposium on the Semantics of
Algorithmic Languages, 1971, pp. 102-116.

Jalote, P., An Integrated Approach to Software Engineering,
Springer-Verlag, 1991.

Jensen, K., and Wirth, N., Pascal User Manual and Report,
Springer-Verlag, 1985.

Johnson, W. L., and Soloway, E., PROUST: Knowledge-

Based Program Understanding, IEEE Trans. Software
Eng. SE-11, 267-275 (1985).

Katz, S., and Manna, Z., Logical Analysis of Programs,
Commun. ACM 19, 188-205 (1976).

Kemmerer, R. A., and Eckmann, S. T., UNISEX: A
UNIX-based Symbolic Executor for Pascal, Software
Pratt. Exp. 15, 439-458, (1985).

Letovsky, S., Program understanding with the lambda cal-
culus, in Proceedings of the 10th International Joint Con-
ference on AZ, 1987, pp. 512-514.

Mills, H. D., The New Math of Computer Programming,
Commun. ACM 18, 43-48 (1975).

Mills, H. D., Basili, V. R., Gannon, J. D., and Hamlet, R.
G., Principles of Computer Programming: A Mathematical
Approach, Allyn and Bacon, 1987.

Misra, J., Some Aspects of the Verification of Loop Com-
putations, IEEE Trans. Software Eng. SE-4, 478-486
(1978).

Morris, J. H., Jr., and Wegbreit, B., Subgoal Induction,
Commun. ACM 20, 209-222 (1977).

Qian, S. S., A Tool for Understanding Software Compo-
nents, Master’s Thesis, University of Maryland, College
Park, Maryland, 1989.

Quilici, A., A hybrid approach to recognizing program-
ming plans, in Proceedings of the Working Conference on
Reverse Engineering, 1993, pp. 126-133.

Remmers, J. H., A Technique for Developing Loop Invari-
ants, Inf. Proc. Lett. 18, 137-139 (1984).

Rich, C., and Waters, R. C., Formalizing reusable software
components in the programmer’s apprentice, in Sof&
ware Reusability, vol. II (T. J. Biggerstaff and A. J. Perlis,
eds.), ACM Press, 1989.

Rich, C., and Wills, L. M., Recognizing a Program’s De-
sign: A Graph-Parsing Approach, IEEE Software 7,
82-89 (1990).

Rich, E., and Knight, K., Artificial intelligence, McGraw-
Hill, 1991.

Soloway, E., and Ehrlich, K., Empirical Studies of Pro-
gramming Knowledge, IEEE Trans. Software Eng. SE-10
(1984).

Soloway, E., Bonar, J., and Ehrlich, K., Cognitive Strate-
gies and Looping Constructs: An Empirical Study, Com-
mun. ACM 26,853-860 (1983).

Ward, M., Calliss, F. W., and Munro, M., The maintainer’s
assistant, in Proceedings of the Conference on Software
Maintenance, 1989, pp. 307-315.

Waters, R. C., A Method for Analyzing Loop Programs,
IEEE Trans. Software Eng. SE-5,237-247 (1979).

Wegbreit, B.,‘The Synthesis of Loop Predicate, Commun.
ACM 17, 102-112 (1974).

Zelkowitz, M. V., The Functional Correctness Model of
Program Verification, IEEE Comp. 30-39 (November
1990).

