
A Method for Documenting Code Components 

Victor R. Basili and Salwa K. Abd-El-Hafiz 
Department of Computer Science, University of Maryland, College Park, Maryland 

We propose a set of criteria for facilitating the rigor- 

ous understanding of code components via documen- 

tation and evaluate existing notations and approaches 

with respect to these criteria. We present an overview 

of an analysis approach designed to generate program 

documentation that satisfies these criteria. Because of 

the inherent difficulty and importance of reasoning 

about loops, we focus on understanding and docu- 

menting loops. We decompose loops into their compo- 

nent parts and obtain formal specifications of the 

resulting loop fragments by use of a knowledge base. 

We build this knowledge base for a specific applica- 

tion domain by designing plans that allow us to recog- 

nize stereotyped code patterns and associate them 

with their formal specifications. Finally, we synthesize 

a consistent and accurate specification of the whole 

loop construct from the specifications of its fragments. 

To evaluate our loop analysis approach, a case study 

was performed on a preexisting program of reason- 

able size. Results concerning the analyzed loops and 

the plans designed for them are given. To generate 

formal documentation of complete program modules, 

we briefly describe how to integrate our loop analysis 

approach with an existing program analysis tool, FSQ,, 

which uses user-supplied loop specifications. 

1. INTRODUCTION 

Program understanding plays an important role in 
nearly all software-related tasks. It is vital to devel- 
opment, maintenance, and reuse activities. Program 
understanding is indispensable for improving the 
quality of software development. Several develop- 
ment activities, such as code reviews, debugging, and 
some testing approaches, require programmers to 
read and understand programs. Maintenance activi- 
ties cannot be performed without a deep and correct 
understanding of the component to be maintained. 
Program understanding is vital to the reuse of code 
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components because they cannot be used without a 
clear understanding of what they do. If a candidate 
reusable component needs to be modified, an under- 
standing of how it is designed is also required. 

Because of the importance of program under- 
standing, considerable research has been concerned 
with its automation. Different automation ap- 
proaches generate program documentation that as- 
sists in the understanding process and in recording 
the results of this understanding. Some of these 
approaches generate informal program documenta- 
tion that gives expressive and intuitive descriptions 
of the code (Bertels et al., 1993; Harandi and Ning, 
1990; Hartman, 1991; Johnson and Soloway, 1985; 
Quilici, 1993; Letovsky, 1987; Rich and Wills, 1990). 
However, there is no semantic basis that makes it 
possible to determine whether the documentation 
has the desired meaning. This lack of a firm seman- 
tic basis makes informal natural language documen- 
tation inherently ambiguous. Other approaches gen- 
erate formal and semantically sound documentation 
that annotates programs according to the formal 
semantics of a specific model of correctness (Abd- 
El-Hafiz, 1990; Kemmerer and Eckmann, 198.5). A 
common drawback of the systems that implement 
these approaches is that they rely on the user in the 
ingenious task of annotating the loops with their 
invariants or functions. 

In this article, we describe and compare some of 
the formal and informal languages available for doc- 
umenting code components. We argue that it is 
possible to produce readable abstract specifications 
that have an underlying sound mathematical founda- 
tion. We present an analysis approach that performs 
this task. 

First, we briefly describe a prototype specifier that 
we developed to utilize user-supplied loop specifica- 
tions in producing formal specifications of complete 
programs. However, most users find it hard to de- 
duce such loop specifications because of the inher- 
ent reasoning difficulties involving repeated program 
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state modifications. Because of this difficulty and the 
fact that loops affect the ability to understand pro- 
grams (Soloway et al., 1983), we focus on the prob- 
lem of generating formal loop specifications. 

We introduce a knowledge-based approach to the 
analysis of loops. In this approach, we classify loops 
according to their complexity levels. Based on this 
taxonomy, we design the analysis techniques that 
best fit each of these classes. In general, we analyze 
loops by decomposing them into their component 
parts. This decomposition is based on the structural 
dependencies among the different loop fragments. 
To deduce the formal abstractions of these loop 
fragments, we use a knowledge base of plans. After 
deducing the abstractions of the loop fragments, we 
synthesize a consistent and accurate abstraction of 
the whole loop construct from the understanding of 
its constituents. 

Finally, we describe how we designed the plans for 
the analysis of loops in a preexisting program of 
some practical size and complexity. We give the 
number of designed plans and show how the experi- 
ence gained in the application domain affected the 
size of the knowledge base. 

2. DOCUMENTING CODE COMPONENTS 

To assist in the understanding of a code component, 
its documentation language should have many char- 
acteristics. Readability, expressiveness, semantic 
soundness, and automatability are all of particular 
importance (Rich and Waters, 1989). Readability fa- 
cilitates the understanding of complicated and large 
code components. Expressiveness enables the use of 
the documentation language in documenting as many 
different code components as possible. Semantic 
soundness increases the confidence in the documen- 
tation because it allows correctness conditions to be 
stated and verified if desired. Automatability facili- 
tates the efficient generation and manipulation of 
the resulting documentation. 

In the remainder of this section, we discuss dif- 
ferent possible documentation languages and tech- 
niques. In Section 2.1, a representative subset of the 
various documentation languages used in augment- 
ing code components is described and evaluated in 
light of the aforementioned characteristics. In Sec- 
tion 2.2, we explain the relative strengths and weak- 
nesses of the current documentation techniques. In 
our discussions, we focus on documentation used to 
understand the programming domain. Although ap- 
plication domain understanding is not discussed ex- 
plicitly, the commonly occurring parts of the result- 
ing programming domain documentation can be 

made to correspond to application domain primi- 
tives. The use of such application domain primitives 
to replace complicated terms in the documentation 
can improve its readability. 

2.1 Alternatives for a Documentation Language 

Given the wide range of documentation techniques 
available, the choice of a language suitable for docu- 
menting code is crucial. Documentation languages 
can range from free-form natural languages to ab- 
stract formal specifications. We demonstrate and 
compare the different choices using the bubble sort 
example shown in Figure 1. 

Documenting programs using natural languages is 
an informal technique that gives an intuitive descrip- 
tion of the code (Harandi and Ning, 1990; Rich and 
Wills, 1990). As pointed out by Rich and Waters 
(1989), the greatest strength of natural languages is 
their expressiveness, because they may be used to 
document any kind of component. However, there is 
no semantic basis that makes it possible to deter- 
mine whether the documentation has the desired 
meaning. This lack of a firm semantic basis makes 
informal natural language documentation inherently 
ambiguous. With respect to readability, natural lan- 
guages might appear to be easy to read just using 
intuition. But since they are inherently ambiguous, 
one must be careful not to misinterpret some state- 
ments. Because of its informal nature, judging the 
conciseness and clarity of natural language docu- 
mentation is a difficult task that is dependent on the 
experience and talent of both the writer and reader. 
For instance, Figure 2 shows a possible English 
documentation of the bubble sort algorithm of Fig- 
ure 1. Although the documentation in Figure 2 has 
some problems that are not inherent to any natural 
language documentation, it demonstrates that natu- 

1 mim_of_roans: intega, 
2 L is lew_qwcW integer; 
3 fxpacily: alTey[ 1 mm_rooms] of integer; 

II k .= mtm_of_rams - 1; 

I2 whilekZ-Idotqin 
13 ]:=I; 
14 while j <= k do begin 

15 ifcz?c&ry[i]>cqponlylitl]thcnbegin 
16 renq_L?qJa&y := cvpaci~l]; 
17 cqcucily[i+l] := capaci~]; 
18 w=Nvril := Icmp_aqaci(y 
19 end; 
20 j:=j+l 

21 end; 
22 k:=k- 1 
23 end 

Figure 1. A bubble sort algorithm. 
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ral languages do not prevent the occurrence of such 
problems. This documentation gives a description of 
what is performed by the algorithm interleaved with 
information on how it is performed. To understand a 
large program, one does not usually go through the 
details of every part. Although information about 
what an algorithm does can be sufficient in some 
program parts, additional information on how the 
algorithm is designed can be useful in other parts. 
Thus, interleaving the two kinds of information 
throughout the documentation of the whole pro- 
gram is bound to represent an over documentation 
for some readers. In addition, the parts of the array 
capacity that are ordered first and the bounds of the 
variables j and k are not accurately stated, which 
might lead to misinterpretations. With respect to 
automatability, English text is not amenable to auto- 
matic manipulation in any significant way. 

The documentation shown in Figure 3 is written 
in a formal specification language that uses predi- 
cate logic to produce Hoare-style annotations 
(Hoare, 1969). An advantage of formal specifications 
is that they accurately state what is performed by a 
program segment. Semantic soundness and expres- 
siveness are key advantages of the predicate logic 
annotations. They have no trouble in representing 
diffuse program components and allow correctness 
conditions to be stated and proven if desired. Using 
such a mathematically sound formalism provides 
support for checking the consistency between the 
documentation and its implementation. 

However, formal specifications do not give details 
of how a program part is designed. In case such 
detailed information is required, the program docu- 
mentation technique should be capable of separately 
providing it. Moreover, when annotating compli- 
cated and large components, formal specifications 
become hard to read and understand. The readabil- 
ity of such formal specifications can be enhanced if 
they are further abstracted. This abstraction can be 
performed by replacing a formal statement with 
another one that is formulated in terms of a more 
widely known and understood concept (France and 
Basili, 1991). An example of these abstractions is 
shown in Figure 4, which abstracts the annotations 
in Figure 3 by introducing the predicates 

This is a bubble SOI? algorithm that repeatedly scans adjacent pairs of items in an 
array segment from one location (front) to another (end) It interchanges those items 
that are found lo be out of orda The array cqacit~( 1 mm_of_room] is sorted in 
ascending order by repeatedly placing the maximum towards the end of the scanned 
segment 

Figure 2. English documentation of the bubble sort algo- 
rithm. 
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outa IooLl imariult: 

91 

11 

Inner loo0 bMriant. 

perm(AI, AZ) asserts that Al is II permutation ofA.?. 

nrr, denoted the iuitial v&e of a variable wv just before the start 
of the loop. 

Figure 3. Hoare-style specification of the bubble sort algo- 
rithm. 

maximum_at_edge(capacity[l . . j - 11, j) and up- 
sorted(capacity[l . . num_of_rooms], k + 2) to re- 

place capacityI jl 2 capacity11 . . j - 11 and Vk + 2 5 
irzd 5 num_of_rooms: capacityfind] ;z capacity[l . . 
ind - 11, respectively. 

Domain abstractions can further abstract the for- 
mal annotations with concepts specific to the appli- 
cation domain. The annotation of programs with 
their assertions using predicate logic, algebraic spec- 
ifications, and A abstractions are examples of formal 
specifications. When these specifications use nota- 
tions that are dependent on the application domain, 
for example, using largest_room_at_.edge and up- 
sorted-rooms instead of maximum_.at_edge and 
upsorted, respectively, they can become more under- 
standable in their domain. 

The automatic generation of specifications similar 
to those shown in Figures 3 and 4 is a well-known 
problem for the current specifiers and provers (Abd- 
El-Hafiz, 1990; Kemmerer and Eckmann, 1985; 
Good, 1985). These systems require the user to 
provide the loop annotations, an ingenious task that 
requires expert knowledge. On the other hand, the 
automatic manipulation of formal specifications is 
easier than that of informal documentation. This 
can be mainly attributed to the well-defined syntax 
and semantics of formal specifications. 

In summary, formal specification languages can 
satisfy the aforementioned four characteristics if the 

Inner loou invuiallt: 

Figure 4. Abstract specification of the bubble sort algo- 
rithm. 
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documentation technique has three features. The 
first feature is to separately provide, when desired, 
information on how some program part is designed. 
The second feature is allowing the use of well-known 
and/or domain-specific abstract terms to improve 
the documentation readability. The third feature is 
the ability to automatically generate loop annota- 
tions. On the other hand, it is very difficult to 
overcome the inherent ambiguity and lack of seman- 
tic soundness of informal documentation languages. 

In the next subsection, we review the current 
documentation techniques and explain why further 
research is needed to produce documentation that 
best assists in the understanding of code compo- 
nents. 

2.2 Alternatives for a Documentation Technique 

To automatically generate documentation that facili- 
tates the understanding of computer programs, vari- 
ous analysis approaches have been developed. These 
approaches can be classified into two broad cate- 
gories: knowledge-based approaches and algorithmic 
approaches. 

Knowledge-based approaches modularize experts’ 
knowledge in the form of plans that can be accessed 
mechanically. In these approaches, the generation of 
a component’s documentation usually involves two 
main tasks: the recognition of stereotyped parts in 
the program (Soloway and Ehrlich, 1984) and deriv- 
ing their annotations using the plans stored in the 
knowledge base. Within these knowledge-based ap- 
proaches, several analysis techniques are adopted. 
The transformational technique is similar to the 
transformational paradigm of automatic program 
synthesis but with the application direction of the 
transformation rule reversed (Letovsky, 1987; Ward 
et al., 1989). The problem with this technique is that 
it either cannot analyze nonadjacent program con- 
structs (Letovsky, 1987) or it requires the user to 
choose the fragments to be analyzed and, in some 
cases, the transformation rules to be applied to them 
(Ward et al., 1989). In the graph-parsing technique 
(Rich and Wills, 19901, it becomes too expensive to 
perform an exhaustive graphical parsing of a pro- 
gram. This is because the number of subgraphs is 
exponential, and subgraph isomorphism is, in gen- 
eral, NP complete (Brassard and Bratley, 1988). 
Other techniques (Harandi and Ning, 1990) are 
based on heuristic methods that trade accuracy for 
simplicity. Both the graph-parsing and heuristic 
techniques output documentation more or less in 
the form of structured English text, which does not 
have a sound semantic basis. 

The algorithmic approaches, on the other hand, 
usually annotate programs according to the formal 
semantics of a specific model of correctness (Abd- 
El-Hafiz, 1990; Kemmerer and Eckmann, 1985). By 
utilizing user-provided loop annotations, they offer 
mechanical assistance in proving the correctness of 
these annotations and in producing the specifica- 
tions of a complete program. 

In the next section, we present a hybrid approach 
for mechanical generation of rigorous program doc- 
umentation. It combines and builds on the strengths 
of both the knowledge-based and algorithmic ap- 
proaches. In addition to using expert-designed plans 
to automatically generate intelligent analysis results, 
it produces formal and unambiguous specifications. 

3. A HYBRID ANALYSIS APPROACH 

To generate a documentation language that has the 
four characteristics mentioned in the previous sec- 
tion, our approach uses the recent advances in 
knowledge-based program understanding research 
to enhance the formal algorithmic approaches. 
Knowledge-based approaches are used to solve the 
problem of automatic generation of loop invariants 
or functions. This problem is regarded as formidable 
in algorithmic approaches. A practical program de- 
composition method (Waters, 1979) is used to facili- 
tate the annotation of loops with their invariants as 
well as to provide insight into how they are designed. 
By combining the use of algorithmic and knowledge- 
based approaches, we satisfy the expressiveness, se- 
mantic soundness, and automatability characteris- 
tics. We improve the readability of the resulting 
formal specifications by replacing complicated for- 
mal statements with ones that are formulated in 
terms of more widely known or domain-specific con- 
cepts. 

We have developed a prototype specifier that sup- 
ports the derivation of programs’ specifications. It is 
the second in a series of prototype tools developed 
under the general name FSQ (functional specifica- 
tion qualifier; Abd-El-Hafiz, 1990; Abd-El-Hafiz 
et al., 1991; Qian, 1989). By utilizing user-supplied 
loop annotations, FSQ, uses an algorithmic ap- 
proach to analyze complete programs. In a typical 
session, a user derives the formal specification of a 
program using stepwise abstractions. The user starts 
by providing trial specifications of every loop in the 
program as a separate entity. Then, FSQ, assists the 
user in verifying whether or not the lops meet those 
trial specifications. After finding the actual specifi- 
cations of all the loops, the correct specification of 
the whole program is automatically found. This 
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method of stepwise abstraction enables the software 
engineer to concentrate on small pieces of code, one 
at a time, and to mitigate in this way the difficulty of 
specifying the whole program. However, this proto- 
type does not provide any assistance in a major and 
difficult task: annotating the loops with their func- 
tions or invariants. To intelligently assist in the 
understanding of computer programs, a technique 
that can enhance a specification tool, such as FSQ,, 
by mechanically annotating loops is needed. 

Substantial research has been performed on the 
specific topic of analyzing loops. The heuristic loop 
analysis methods can be used to guide the search for 
an invariant. The research performed by Dunlop 
and Basili (19841; Katz and Manna (1976), Remmers 
(19841, and Wegbreit (1974) is representative of these 
heuristic approaches. Although these heuristic ap- 
proaches can be helpful in some cases, they can give 
misleading results. After applying them for a consid- 
erable amount of time, one may or may not succeed 
in finding a correct invariant. Other works focus on 
developing algorithmic approaches for finding the 
invariants (functions) of simple loops. Examples of 
the latter approaches can be found in the work of 
Basu and Misra (19751, Dunlop and Basili (1982), 
Katz and Manna (1976), Mills (19751, Misra (19781, 
and Morris and Wegbreit (1977). 

A more practical approach, which analyzes loops 
by decomposing them into fragments, was proposed 
by Waters (1979). The key feature of this analysis 
method is that it uses control and data flow informa- 
tion to break the loop apart in a mechanical way. 
This decomposition can facilitate both understand- 
ing and the correctness analysis process. Even though 
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Waters’ approach does not address the issue of how 
to use this decomposition to mechanically annotate 
loops, it is especially interesting because of its prac- 
ticality. 

Hausler et al. (1990) suggested the use of program 
slicing to decompose loops and allow the abstraction 
of loop functions one variable at a time. They of- 
fered no detailed investigation or discussion of this 
idea. Even though the resulting loop slices are inde- 
pendent, each slice must include all the statements 
affecting the modification of the current variable. 
This can result in loop slices that are large in size 
because of the repetition of some statements in 
multiple slices. The identification of stereotyped 
slices and their analysis can, in turn, be difficult, and 
a large knowledge base might be needed to compen- 
sate for this problem. 

It should be noted that all the loop analysis ap- 
proaches mentioned earlier use formal, semantically 
sound, and unambiguous notation. Although they 
provide guidelines on how to mechanically generate 
loop invariants or functions, they were not actually 
used to implement automatic analysis systems. Con- 
sequently, we present in the next subsection a 
knowledge-based loop analysis approach that me- 
chanically annotates loops with their abstract speci- 
fications. 

3.1 A Knowledge-Based Approach to 
Loop Analysis 

In this subsection, we introduce a technique based 
on the idea of analyzing programs by decomposition 

I 
I Functional ; 

_pwlmtionI 
rof ti Wholes 
I While Loop I 
I I L-----4 

Figure 5. Overview of the analysis strategy. 
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(Basili and Mills, 1982; Hartman, 1991; Hausler 
et al., 1990; Waters, 1979). It annotates loops with 
their functional abstractions in a step-by-step pro- 
cess as depicted in Figure 5. The analysis of a loop 
starts by decomposing it into fragments. This decom- 
position is based on the structural dependencies 
among the different loop parts. The resulting frag- 
ments are analyzed using plans stored in a knowl- 
edge base to deduce their functional abstractions. 
The functional abstraction of the whole loop is then 
synthesized from the functional abstractions of its 
fragments. 

We start by introducing the notation used 
throughout the rest of this section. 

Definition 1. Let the abstract representation of the 
while loop be while B do S where the condition B 
has no side effects and the statements S are repre- 
sentable by a single-entry single-exit control-flow 
graph. 

This representation abstracts from the syntax of the 
specific imperative programming language being 
used. Even though the approach described here 
applies to all loops having this abstract representa- 
tion, examples and illustrations are given using PAS- 
CAL. 

Definition 2. A control variable of the while loop 
is a variable that exists in the condition B and gets 
modified in the body S. 

Definition 3. A concurrent assignment is a state- 
ment in which several variables can be assigned 
simultaneously. It has a list of variables at the left- 
hand side of an assignment operator and an equally 
long list of expressions at its righthand side (i.e., 

Ul, $9 f f f , v, := e,, e2,. . . , e,). Every ith expression 
from the righthand list is assigned to its correspond- 
ing ith variable from the lefthand list (Gries, 1981; 
Mills et al., 1987). 

Definition 4. A conditional assignment is a set of 
one or more guarded concurrent assignments sepa- 
rated by commas ‘0”. Every guarded concurrent as- 
signment has a Boolean expression as an antecedent 
of an implication sign and a concurrent assignment 
as its consequent (i.e., b * s) (Abd-El-Hafiz et al., 
1991; Gries, 1981). When the Boolean expression b 
is satisfied, the modifications performed on a vari- 
able are given by the concurrent assignment s. Simi- 
lar to Gries’ definition of the alternative command, 
all the guards must be well defined (Gries, 1981). 
However, it is possible that none of the guards 
evaluates to true. In this case, no variable is modi- 

fied [i.e., the conditional assignment evaluates to a 
skip command (Gries, 1981)]. It should also be noted 
that because we are only analyzing deterministic 
programs, all the guards are mutually exclusive. 

Definition 5. Any variable assigned in a condi- 
tional assignment defines the data flow out of the 
statement. 

Definition 6. Any variable referenced by a condi- 
tional assignment defines the data flow into the 
statement. 

3.1.1 Classification of loops. To design the analy- 
sis techniques that best fit different levels of pro- 
gram complexity, we classify the while loops along 
three dimensions. The first dimension focuses on the 
control computation part of the loop. The other two 
dimensions focus on the complexity of the loop 
condition and body. Along each dimension, a loop 
must belong to one of two complementary classes, as 
shown in Table 1. 

Along the first dimension, we differentiate be- 
tween simple and general loops. We get a simple 
loop by imposing two restrictions: the loop has a 
unique control variable, and the modification of the 
control variable does not depend on the values of 
other variables modified within the loop body. 

Because the control computation of simple loops 
is isolated from the rest of the loop, the sequence of 
values assumed by the control variable can be easily 
written. This is because the loop condition, the con- 
trol variable’s initial value, and the net modification 
done to the control variable in one loop iteration, if 
any, provide sufficient information for writing this 
sequence. This results in a definite behavior that is 
similar to the behavior of for loops. Consequently, 
we can represent their analysis knowledge with com- 
patible definiteness and specificity. 

However, this is not the case in general loops. In 
many cases, the control computation part is not 
isolated from the rest of the loop. For example, 
while performing a binary search on a sorted array, 
the modifications of the control variables are depen- 
dent on the content of the array segment under 

Table 1. The Three Dimensions Used for 
Classifying Loops 

Dimension Complementary Classes 

Control computation 
Complexity of condition 

Complexity of body 

Simple loop General loop 
Noncomposite Composite 

condition condition 
Flat loop Nested loop 
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consideration and the value being searched for. Thus, 
it might not be easy, or possible, to write the se- 
quence of values assumed by the control variables. 

Simple loops cover more iteration constructs than 
those covered by PASCAL for loops. The conditions 
imposed on the set of PASCAL for loops, F, are 
stronger because they restrict the type of the control 
variable, and the control variable is only decre- 
mented or incremented by a unit step (Jensen and 
Wirth, 1985). That is why the set of simple loops, IV,, 
is a proper superset of F, that is, F c W,. On the 
other hand, if W denotes the set of PASCAL while 
loops, then the set W, is a proper subset of W by 
definition. That is, W, c W. This is because simple 
loops are defined by imposing some restrictions on 
while loops. 

Within the second dimension, the complexity of 
the loop condition B can vary between two cases. In 
the noncomposite case, B consists of only one clause 
of the conjunctive normal form (Rich and Knight, 
1991). In the composite case, B consists of more 
than one clause of the conjunctive normal form. 
Along the third dimension, the complexity of the 
loop body varies between flat and nested loop struc- 
tures. In hat loop structures, the loop body cannot 
contain any other loop inside it, which is not the 
case in nested structures. 

To analyze these loop classes, we have designed 
formalisms for representing the program knowledge 
as well as the plan knowledge. We have also de- 
signed analysis techniques that can be applied to 
these different loop classes in many domains. 

3.1.2 Representation of program knowledge. 
Loops are decomposed into smaller meaningful parts 
that represent the knowledge obtained from the 
program text. These parts are divided into two cate- 
gories, namely, basic events and augmentation 
events. While basic events are the parts that consti- 
tute the control computation of the loop, augmenta- 
tion events are the remaining building blocks of the 
loop body. 

Definition 7. A basic euent (BE) consists of three 
parts: the condition, the enumeration, and the ini- 
tialization. 

1. 

2. 

The condition is one clause in the conjunctive 
normal form (Rich and Knight, 1991) representa- 
tion of the loop condition. 
The enumeration is a set of conditional assign- 
ments that assign to one or more of the control 
variables used in the condition the net modifica- 
tion done to them in one loop cycle, if any. 
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3. The initialization is a set of conditional assign- 
ments that assign initial values to the control 
variables modified in the enumeration part. 

Definition 8. An augmentation event (AE) consists 
of two parts: the body and the initialization. 

The body is a set of conditional assignments that 
assign the per-cycle modification taking place in 
the loop body to some variables other than the 
control variables. 
The initialization is a set of conditional assign- 
ments that assign initial values to the variables 
modified in the body. 

3.1.3 Representation of plan knowledge. The in- 
formation stored in the plan knowledge base is di- 
vided into two main categories: basic plans (BPS) 
and augmentation plans (AI’s). The BPS are used to 
analyze the parts of the loop that control its execu- 
tion, that is, BEs. The APs are used to analyze the 
other parts in the loop body, that is AEs. 

The plans correspond to the usual rules used in a 
rule-based system (Hayes-Roth, 1985). They can be 
considered as inference rules. When a loop event 
satisfies a unique plan antecedent, the rule is fired. 
The instantiation of the information in the conse- 
quent represents the contribution of this plan to the 
loop assertions (Abd-El-Hafiz and Basili, 1993). 

In general, an antecedent of a knowledge base 
plan represents three kinds of knowledge (see Fig- 
ures 6 and 7): 

1. The list of control variables required for the 
design of the plans’ consequents. This list, which 
is maintained in the control-variables part, also 

DBP, (upwwdaumation) 

uD# 
VW := wo# 

w#R#npY 
uw# := SUCC(ul#) 
R#isrdationalopaatorttIatcqullls~or<A 
w#isofadisueteordinallype~ 
Noncomposite loop condition 

AsequenceofordinnlvahxssWingfromo 
uptobwithiwxmmtsofaunitdcp 
Tbe stl- of I. 
The pre&a%so1 of I. 
The identity timction ifR# eqw.ls <. Equals 

PRED othawise 

Figure 6. Example of a basic plan (BP). 
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- Denotes irfdevant infomuItion. 

Pr, 
The result of substituting y for cacb tke occurrence 
OfXinP. 

sequcace. noal-seqncace Tbc Seq”mces assumed by the control variable vor# 
as deduced Tom the analysis of its BE. 

law The last element of the scq”ence +. 

Figure 7. Example of an augmentation plan (API. 

2. 

3. 

A 

serves to facilitate the readability and the com- 
prehension of the plans. 
Knowledge necessary for the recognition of 
stereotyped loop events. The BPS have the condi- 
tion, enumeration, and initialization parts repre- 
senting abstractions of the corresponding three 
parts of stereotyped BEs. Similarly, the APs have 
the parts body and initialization representing ab- 
stractions of the corresponding parts of stereo- 
typed AEs. 
Knowledge needed for the correct identification 
of the plans such as data type information, 
whether or not a variable has been modified by a 
previous event, or the previous analysis knowl- 
edge of a variable. This knowledge is given in the 
firing-condition. 

consequent of a knowledge base plan represents 
the following knowledge: 

1. Knowledge necessary for the annotation of loops 
with their Hoare-style (Hoare, 1969) specifica- 
tions. This is maintained in precondition, invari- 
ant, and postcondition parts, where precondition 
and invariant have the usual meaning (Hoare, 
1969). The postcondition is only included in case 
of plans that analyze simple loops. It gives infor- 
mation about the variables’ values after the loop 
execution ends. It is correct provided that the 
loop executes at least once. If the loop does not 
execute, then no variables get modified. 

2. In case of a simple loop, the constraint imposed 
on the control variable results in a definite behav- 
ior of the loop control computation similar to 
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that of for loops. This definite behavior is cap- 
tured, in the sequence and final-sequence parts of 
the BPS, to produce specification with compatible 
definiteness. These parts give knowledge about 
the sequence of values assumed by the control 
variables during and after the loop execution, 
respectively. 

Figures 6 and 7 show two plans: a BP (DBP,) and 
an AP (SLAP,), respectively. To convey the basic 
analysis ideas within a reasonable space limit, we 
only show simplified versions of the plans. The suffix 
“#” is used to indicate terms in the antecedent (or 
consequent) that must be matched (or instantiated) 
with actual values in the loop events. 

The plan DBP, (Figure 6) represents an enumera- 
tion construct that generates a sequence of values of 
a discrete ordinal type in an ascending order with a 
unit step. The initialization indicates that the initial 
value of the unique control variable var#, just be- 
fore the start of the loop, is var,#. Because the 
firing-condition ensures that the relational operator 
R# equals I or <, the condition means that the 
final value assumed by var# is determined by the 
expression exp#. The enumeration states that var# 
is incremented by a unit step. Incrementing uur# is 
possible because the firing-condition ensures that it 
is of a discrete ordinal type. In the consequent, 
SUCC(x) and PRED(x) are defined to be the suc- 
cessor and predecessor of x, respectively. The pre- 
condition, invariant, and postcondition give the 
direct contribution of this plan to the loop specifica- 
tion. They assert the following: if uar,# I (or <) 
SUCC(exp#) is true when the loop starts, then 
uur,# 5 var# 5 (or <> SUCC(e_x~#) remains true 
through successive iterations of the loop, and var# 
= SUCC(exp#> (or exp#) is true when the loop 
terminates. Because the loop condition is noncom- 
posite, sequence and final-sequence give the values 
assumed by the control variable during and after the 
loop execution. These values are uar,# . . PRED 
(uar#) and var,# . . exp# [or PREHexp#)l, respec- 
tively. By saving the values of sequence and final- 
sequence for each simple loop under consideration 
and using them in the design of the augmentation 
plans consequents, they contribute indirectly to the 
loop specification. 

The plan SLAP, (Figure 7) swaps successive ele- 
ments of an array segment, if needed, so that the 
maximum element is located at one of its edges. 
Depending on which clause of the firing-condition is 
satisfied, the maximum is located at either the start 
or the end of the array segment. If the control 
variable var# is analyzed by DBP,, the array seg- 
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ment is scanned in ascending order. In this case, 
FUNC# is the predecessor function PRED. Conse- 
quently, the body means that if an array element 
arruy#[exp#] is less than its predecessor 
array#[ PRED(exp#)l, then they are swapped so that 
the maximum is always located at the end. If the 
control variable uar# is analyzed by DBP,, then the 
array segment is scanned in descending order. In 
this case, FUNC# is the successor function SUCC. 
Consequently, the body means that if an array ele- 
ment urruy#[exp#] is less than its successor 
urruy#[SUCC(exp#>l, then they are swapped so that 
the maximum is always located at the start. The 
invariant and postcondition assert these facts by 
using two predicates. The predicate perrn(x, y) as- 
serts that the array x is a permutation of the array 
y. The predicate mauimum_ut_edge(x, i) asserts that 
the maximum of the array segment x is located at 
the edge specified by the index i. For instance, the 
first predicate of the postcondition perm(un-uy#, 
urruy,#) asserts that when the loop terminates, the 
array urruy# is a permutation of the initial array, 
an-uy,#, at the start of the loop. The second 
predicate maximum _ut_edge(urruy#[(FUNC# 
(exp#)>l~~~~~,,,,.,,1, e~p#l~~#(fi”~l.~equenee)) has as the 
first argument the array segment, which is scanned 
by the successive loop iterations. It is obtained by 
substituting every free occurrence of the control 
variable vur# in the expression array # 
[(FUNC#~_X~#)] with the final-sequence of the sim- 
ple loop under consideration. The second argument 
specifies the edge that holds the maximum. It is 
obtained by substituting every free occurrence of the 
control variable vur# in the expression exp# with 
the last element of the final-sequence. 

When performing analysis of loops in a large 
domain, the size of the knowledge base becomes an 
important issue. A large increase in the number of 
plans leads to a large increase in the knowledge base 
size. To reduce the number of plans in such cases, 
improvements on their structure and/or the knowl- 
edge represented in them can be performed. 

Knowledge representation improvements, called 
abstractions, involve replacing some of the terms in a 
plan with more abstract ones that cover more cases. 
For example, the plan SLAP, in Figure 7 can be 
abstracted by handling arrays whose elements can be 
of the record type. 

Structural improvements to a plan modify the 
basic structure into a tree structure, which allows 
the inclusion of several similar plans in one tree- 
structured plan. The tree-structured plan consists of 
a single antecedent and several consequents orga- 
nized in tree structures, as shown in Figure 8. To 

Figure 8. The tree structure of a plan. 

select a specific tree-structured plan, a match with 
the antecedent should occur first. Then, firing-con- 
dition 0 must be satisfied. Within the plan, local 
firing-conditions of the consequents guide the search 
for a suitable consequent. The more general a con- 
sequent, the closer it is to the root of its tree. 
Consequents located at the same level have mutu- 
ally exclusive firing-conditions. This means that only 
forward search is needed and no backtracking is 
required. When an event matches an antecedent and 
firing-condition 0 of the tree-structured plan is satis- 
fied, the search for an appropriate consequent starts 
at the appropriate root, going down in the tree as far 
as possible. The path between a parent and a child 
can only be taken if the firing-condition associated 
with the child consequent is satisfied. 

3.1.4 The basic analysis strategy. We have de- 
signed analysis techniques to provide mechanical 
assistance for the generation of formal specifications 
of different loop classes in many domains. We have 
applied these analysis techniques to some loops in 
the domain of scheduling university courses and the 
domain of basic algorithmic structures (Abd-El- 
Hafiz, 1994). It should be emphasized that our goal 
is to have analysis techniques that are automatable 
and flexible enough to be tailored to the needs of 
many domains. It is not our goal, even if it were 
possible, to handle all the cases that can occur in all 
possible domains. We have demonstrated the feasi- 
bility of automating our knowledge-based analysis 
approach by designing a prototype tool that anno- 
tates loops with predicate logic annotations (Abd- 
El-Hafiz, 1994; Abd-El-Hafiz and Basili, 1994). 

In this article, we only describe the analysis of flat, 
simple while loops with noncomposite conditions. 
This description conveys the basic ideas behind our 
analysis strategy and demonstrates how to automati- 
cally generate formal specifications to assist in the 
understanding of code components in a specific do- 
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main of interest. The analysis of the other loop 
classes is described elsewhere (Abd-El-Hafiz, 1994). 

Flat, simple loops with noncomposite conditions 
are annotated with their functional abstractions in a 
step-by-step process consisting of several phases, as 
depicted in Figure 9. 

The first analysis phase, which is the symbolic 
execution of the loop body, abstracts a program’s 
language- and implementation-specific features. For 
a detailed description of how to perform this sym- 
bolic execution, the reader is referred elsewhere 
(Abd-El-Hafiz, 1990; Mills et al., 1987; Zelkowitz, 
19901. Using the notation introduced by Harandi 
and Ning (1990) about the possible abstraction levels 
of a program, this phase maps the source code to an 
implementation abstraction of the loop. 

The second phase performs data flow analysis to 
produce an explicit representation of the dependen- 
cies among loop components in the form of BEs and 
AEs. Although this decomposition is different from 
the loop decomposition method introduced by Wa- 
ters (19791, it was inspired by his work. Using the 
aforementioned notation introduced by Harandi and 
Ning (1990), this analysis phase reveals the structure 
of a loop and maps its implementation abstraction to 
a structural abstraction. 

Finally, an analysis of the BEs and AEs, using a 
plan knowledge base, transforms the structural ab- 
straction of a loop into a functional abstraction. The 
functional abstraction reveals the logical, as opposed 
to the syntactical or structural, details of the loop 
using predicate logic assertions. 

The details of the analysis method are explained 
below. The descriptions of the analysis steps are 
interspersed with their application on the loop shown 
in Figure 10, which is the inner loop of the bubble 
sort algorithm. This loop is simple because the vari- 
able j is a unique control variable, and its modifica- 
tion is independent of the values of any other vari- 
ables modified within the loop. 

The first analysis phase symbolically executes the 

lmpl-trdim S- Flnctional 
Abstraction Absilaciion Absiraction 

Source 
Code Symbolic Data Flow Event 

Execution Analysis Analysis 
f 

Et3 owkdge 

Figure 9. Analysis of flat, simple loop structures. 

Figure 10. Example of a flat, simple loop with noncompos- 
ite condition. 

body of the loop. This symbolic execution summa- 
rizes the effect of the body on each of the variables 
assigned in the loop. As a result, the net modifica- 
tion performed on each variable, in one loop itera- 
tion, is given in the form of a conditional assign- 
ment. For instance, assume that the loop body has 12 
execution paths and a,, a,, . . . , a, are the concur- 
rent assignments that modify the variable u on each 
path. If p1,p2,. . . , p,, are the corresponding mutu- 
ally exclusive predicates that determine which path 
should be taken, then the net modification per- 
formed on the variable u is given in the form (pl =$ 
a,), (p* => aJ,...,(p, * a,). If some ui does not 
modify u, then we remove the corresponding guarded 
concurrent assignment (pi * a,) to simplify the con- 
ditional assignment. 

Applying this analysis phase on the loop of Figure 
10 yields the following set of conditional assign- 
ments. Each conditional assignments independently 
encapsulates the effect of the body on a unique 
variable. These statements represent an implemen- 
tation abstraction of the loop body, which eliminates 
a program’s language- and implementation-specific 
features. 

true -j :=j + 1 

cupucity[j] > cupacity[j + 11 3 temp_cupacity := 
cupucityt j + 11 

cupucity[ j] > cupfxity[j + 11 3 cupucity[j + 11, cu- 
pucily[j] := cupucity[jl, cupucity[j + 11 

The second phase decomposes the loop using data 
flow analysis to produce an explicit representation of 
the dependencies among loop components in the 
form of BEs and AEs. That is why the output of this 
phase is called a structural abstraction of the loop. 

The BE of the loop is constructed by taking the 
loop condition B as its condition. If the variable uur 
is the control variable, then the enumeration is the 
part of the symbolic execution outcome that modi- 
fies var. The initialization, if any, provides the initial 
value of the control variable before the start of the 
loop. The BE of the loop is recognized first because 



A Method for Documenting Code Components 

the analysis of the remaining loop events depends 
on the result of its analysis. 

The symbolic execution result is decomposed into 
AEs by first removing the enumeration part of the 
BE. Then, the minimal sets of conditional assign- 
ments, which are interdependent with respect to 
data flow and do not have data flowing out of them 
into other parts of the loop body, are recursively 
identified and isolated (Waters, 1979). The initializa- 
tion, if any, provides the initial values of the vari- 
ables modified in the augmentation body. The result- 
ing AEs are ordered, after the BE, such that the 
ones identified first are analyzed last. 

The application of the second analysis phase to 
our example yields the three ordered events given 
below. Because the variable j is responsible for the 
data flow out of the BE conditional assignment and 
into the AE’s conditional assignment, the BE is 
ordered first. Similarly, because capacity is responsi- 
ble for the data flow out of the second AE condi- 
tional assignment and into the third event condi- 
tional assignment, they have this specific order. This 
ordering makes it possible to propagate the effect of 
analyzing an event to the analysis of other events 
dependent on it. 

BE 
condition: j I k 
enumeration: j := j + 1 
Initialization: j := 1 
AEl 
body: capacity[ jl > capacity[ j + 11 j capacity[ j 
+ 11, capacity[ jl := capacityfjl, capacityf j + 11 
initialization:- 
AE2 
body: capacity[ j] > capacity[ j + 11 2 ternp_ 
capacity := capacity[ j + 11 
initialization: - 

Finally, we try to match the loop events with the 
antecedents of the plans stored in the knowledge 
base. The matching results are the name of the 
unique plan matched along with the unification of 
the # terms in the plan with the actual values in the 
event. To represent these event-matching results, we 
use the analysis knowledge notation. The analysis 
knowledge (AK) of a variable modified by a certain 
event consists of an n-tuple where n is dependent 
on the specific plan matched. The first term of the 
tuple is the name of the plan matched. The remain- 
ing (n - 1) terms are the results of matching the # 
variables with the actual values in the event. 

The instantiation of the consequents of the 
matched plans with the actual values gives the con- 
tribution of each individual event to the assertions 
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of the loop. The parts of the loop that cannot be 
matched with a plan antecedent are printed to the 
user as parts that could not be handled. The knowl- 
edge base manager can consider adding plans to 
help in translating these events later. 

Applying the third analysis phase to the results of 
the data flow analysis matches the first two events 
with the antecedents of the plans shown in Figures 6 
and 7, respectively. The third event is matched with 
a plan that is not shown here due to space limita- 
tions. This plan discards the temporary variable, 
temp_capacity, information by having true predi- 
cates as annotations. The analysis knowledge of the 
variables j and capacity are as follows: 

1. AK(j) = (DBP,, var#: j, var,#: I, R#: I: , 
exp#: k) 

2. AK(capacity) = (SLAP,, var#: j, array#: capac- 
ity, exp#: j + 1, FUNC#: PRED) 

Instantiating the consequents of the identified 
plans with the actual values yield the following re- 
sults: 

1. precondition 

invariant 

postcondition 

sequence 
final-sequence 

2. precondition 

invariant 

postcondition 

The functional abstraction of the loop is synthe- 

Osk 
l<j<k+l 

j=k+l 
l..j - 1 
l..k 
true 
perm(capacity, capacity,) A 
maximum _at -edge 
(capacityfl . . j - 11, jl 
perm(capacity, capacity,) A 
maximum_at_edge 
(capacity11 . . kl, k + 1) 

sized from the instantiated plans’ consequents. The 
precondition, invariant, and postcondition are con- 
structed by taking the conjunction of the corre- 
sponding parts in the instantiated consequents. For 
instance, the functional abstraction of the loop in 
Figure 10 is given below. These are the specifica- 
tions of the inner loop of Figure 1 if it is analyzed in 
isolation of the outer loop surrounding it. When we 
analyze the whole nested construct, some predicates 
might be added to the inner loop specifications, as 
explained in the next subsection. 

Precondition: Osk 
Invariant: 1 5 j 2 k + 1 A perm(capacity, 

capacity,) A 
maximum _at_edge(capacity[l . . j 
- 11, j) 
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Postcondition: j = k + 1 A perm(capacity, capac- 
ity,) A 
maximum_at_edge(capacity[l . . kl, 
k + 1) 

One advantage of the resulting specifications is 
that they explain the function of the algorithm in 
concise terms without any ambiguities. They explain 
what the algorithm does without interleaving it with 
information on how it does it. To further investigate 
the details of how a specific loop is designed, the 
decomposition,of the loop into events and the aug- 
mentation of the individual events with their individ- 
ual specifications can be used. In other words, this 
documentation technique supports a top-down strat- 
egy of program understanding (Brooks, 1983). In this 
strategy, a general understanding of a loop, which is 
formed using the formal specifications, can be re- 
fined and elaborated based on information extracted 
from the loop decomposition and analysis results of 
the individual events. 

The readability of the resulting specifications is 
improved without affecting their semantic sound- 
ness. This is because each new term still has an 
underlying rigorous definition that can be used if 
desired. To further improve the readability of these 
abstract specifications in a specific domain of inter- 
est, some of the commonly occurring predicates can 
be replaced with domain-specific ones. For example, 
in the domain of scheduling university courses, these 
specifications can be written in terms of the predi- 
cate largest_room_at_edge instead of maximum_ 
at-edge. 

The domain-specific replacements can be done 
explicitly by producing the abstract and then the 
domain-specific ones. Otherwise, they can be implic- 
itly performed by designing the plans such that their 
consequents are directly written in terms of the 
domain-specific terms. In the former case, the 
knowledge base plans are more general and can be 
used in several different domains. The last stage, 
which performs the higher level abstractions, can be 
tailored to the needs of different domains and thus 
enhances the portability of the system. The latter 
approach, however, is easier to implement mechani- 
cally but reduces the generality of the plans. 

3.1.5 Beyond the basic analysis strategy. The 
analysis of general loops and loops with composite 
conditions is performed using steps similar to those 
described in the previous section (Abd-El-Hafiz, 
1994; Abd-El-Hafiz and Basili, 1993). The formation 
of the events and the synthesis of the event analysis 

results take into account the fact that there might be 
more than one control variable and/or BE. In gen- 
eral loops, we can produce loop preconditions and 
invariants that assist in the understanding and veri- 
fication activities. Because the control computation 
of general loops is not as determinate and isolated 
as in the case of simple loops, we do not produce 
some of the specific analysis results that were pro- 
duced for simple loops. The sequences of values 
assumed by the control variable(s) and the program 
state at the end of the loop are usually dependent 
on combined indeterminate effects of several events 
and the values of some program variables (Abd-El- 
Hafiz and Basili, 1993). As a result, the plans that 
analyze general loops neither include the aforemen- 
tioned sequences nor use them in writing loop speci- 
fications. The postcondition can only be deduced 
after the synthesis of the loop invariant. The post- 
condition is formed by taking the conjunction of the 
loop invariant and the negation of the loop condi- 
tion (Hoare, 1969). Using this method to obtain the 
loop postcondition yields predicates that might not 
be as informative and concise as those of simple 
loops. This, in turn, makes the resulting postcondi- 
tion less easy to read and understand. Here, the 
simplification of the resulting predicates and the use 
of domain-specific abstractions are even more im- 
portant. 

Nested loops are analyzed by recursively analyzing 
the innermost loops and replacing them with se- 
quential constructs that represent their functional 
abstraction (Abd-El-Hafiz, 1994). The resulting spec- 
ifications of the outermost loop, as well as those for 
the inner ones, are used to understand the whole 
nested construct. However, if we are interested in 
more than understanding and documentation and 
want to enable the proof of Hoare verification con- 
ditions (Hoare, 1969)Jhen the inner loop specifica- 
tions might need some modifications. Because our 
recursive analysis approach is performed bottom-up, 
and complete knowledge of the inner loop functions 
is available during the analysis of outer loops, the 
generated outermost loop specifications enable the 
proof of Hoare verification conditions. On the other 
hand, inner loops are analyzed in isolation of the 
outer ones enclosing them; consequently, their in- 
variants might not be strong enough to satisfy some 
Hoare verification conditions. An additional adapta- 
tion phase is, hence, designed to strengthen inner 
loops invariants by adding some context-related 
predicates to them. For instance, when the inner 
loop of the bubble sort example is analyzed in isola- 
tion, as in the previous subsection, its invariant does 
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not include any information about the sorted seg- 
ment of the array capacity. Thus, the adaptation 
phase strengthens the inner loop invariant by adding 
the predicate Vk + 2 I ind I num_of_rooms: ca- 
pacity[ ind] 2 capacity[l . . ind - 11, which can be ab- 
stracted to upsorted(cupacity[l . . num_of_rooms], 
k + 2) (Figures 3 and 4). By providing information 
about the sorting context of the inner loop, this 
predicate enables the verification of the whole nested 
construct. However, the addition of the correct pred- 
icates to the inner loop invariants is not always 
possible in the case of nested constructs in which an 
inner loop is preceded by statements other than 
assignment and conditional statements (e.g., loops or 
procedure calls). Thus, this theoretical limit affects 
the ability to prove the resulting specifications. For 
more details on the analysis of nested loops and the 
limitations of our approach, see Abd-El-Hafiz (1994). 

3.1.6 Evolution of the knowledge base. The suc- 
cess of the developed analysis techniques in a spe- 
cific application domain is dependent, to a great 
extent, on the design of efficient and correct plans. 
That is why the tasks of designing plans and manag- 
ing the knowledge base for a specific domain of 
interest should be performed by someone expert in 
both the desired domain and formal specifications. 

To create a knowledge base, the desired domain 
should be analyzed to design an initial set of plans 
believed to cover a considerable number of loop 
constructs that might occur in it. After adding this 
initial set, the knowledge base should evolve over 
time. It should undergo a process of controlled 
usage in which the knowledge base manager needs 
to closely monitor its use. 

The basic understanding of a domain is repre- 
sented in the initial set of plans constituting the 
knowledge base. Further use of the knowledge base 
is apt to reveal inadequacies in it with respect to the 
sufficient number of plans, their structure, and their 
abstraction level. This use is also likely to improve 
the understanding of the domain and increase the 
knowledge of its details. That is why a controlled use 
of the knowledge base is needed to adapt the plans 
and make their abstraction level, structure, number, 
and naming conventions suitable for the domain 
under consideration. For example, a failure to iden- 
tify the specification of a loop event indicates that 
either the event is erroneously designed and re- 
quires modification, or that there is a missing plan, 
which should be added to the knowledge base. The 
user needs to check the unspecified event to see if 

he or she can modify it. If no error is detected, then 
the knowledge base manager is notified. Whenever a 
new plan needs to be added to the knowledge base, 
it should be investigated whether to add it as an 
independent plan or to improve on the structure 
and/or the knowledge represented in the existing 
plan(s) to cover the new case. 

We performed a case study manually on a com- 
plete set of loops in a real program of some practical 
value. Thus, case study results are not affected by an 
implementation limits. This case study served to test 
our analysis techniques and evaluate their strengths 
and weaknesses within a specific application domain. 
Given this fixed set of loops, the small number of 
plans needed to analyze them demonstrated the 
positive effect our analysis techniques could have on 
the size of the knowledge base. 

The program chosen for the case study is in the 
domain of scheduling university courses (Jalote, 
1991). It has 1,400 executable lines of code and 77 
loops. This program deals with scheduling a set of 
courses. During this case study, we had to analyze 
and specify loops that use data types such as point- 
ers and that have a variety of PASCAL statements. 

We gradually populated the knowledge base with 
plans. First, we decomposed every loop under con- 
sideration into the BEs and AEs. Then, we analyzed 
every event in order to design a plan suitable for it. 
If no plan was available in the knowledge base to 
match the event under consideration, or a similar 
event, then we designed a new plan with initial 
specifications. We then modified the plan and tai- 
lored it to give correct specifications by trying to 
prove the loop invariant using Hoare techniques 
(Hoare, 1969). If a plan that matched a similar 
event, but not the exact one under consideration, 
existed in the knowledge base, then we considered 
further improvements on the structure and/or 
knowledge represented in the existing plan. 

Out of the 77 loops, we completely analyzed 65 
(84.4%) and partially analyzed 12. We only designed 
48 plans to analyze the 213 events of the completely 
analyzed loops and 22 events from the partially 
analyzed ones. We decided not to specifically design 
plans for the analysis of 12 loops in the case study. 
The unique and complex nature of these loops sug- 
gested that the effort needed to design plans for 
their analysis highly outweighs the advantages that 
could be gained by using the plans in this specific 
application domain. These 12 loops were analyzed 
using the available set of plans to determine whether 
useful partial specifications could be obtained. If 
these loops were common in another domain, it 
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Table 2. Numbers and Percentages of Completely Analyzed Loops Along the Three Dimensions 

Dimension 

1 2 3 

Analysis statistics Simple Loop General Loop Noncomposite Condition Composite Condition Flat Body Nested Body 

Available number 52.0 25 46.0 31.0 53.0 24.0 
Number analyzed 48.0 17 42.0 23.0 52.0 13.0 
Percentage analyzed 92.3 68 91.3 74.2 98.1 54.2 

would have been worthwhile to invest some effort in 
designing their plans. 

Table 2 gives the number of completely analyzed 
loops in each class defined by our taxonomy. Along 
each dimension, the variation between the percent- 
ages of completely analyzed loops in the two com- 
plementary classes is somewhat large. A possible 
interpretation for these variations is that they indi- 
cate what classes are more appropriately (or easily) 
analyzed by our analysis techniques. The variations 
along the three dimensions indicate that simple (flat) 
loops are considerably easier to analyze than general 
(nested) loops. They also indicate that composite 
loop conditions make the analysis harder than non- 
composite conditions. 

Table 3 shows the number of plans designed and 
the number of events they analyze. Table 4 shows 
the same information for the abstracted/tree-struc- 
tured plans. The average and standard deviation of 
the number of utilizations of the 48 plans are 4.9 
and 7.97, respectively. The average and standard 
deviation of the number of utilizations of the 10 
abstracted/tree-structured plans are 14.9 and 11.8, 
respectively. More specifically, the 10 abstracted/ 
tree-structured plans (20.8%) analyzed 149 events 
(63.4%) out of the 235 events analyzed in this study. 
These plans have a total of 24 consequents and 
underwent 8 abstractions. This means that the expe- 

Table 3. Utilization of the Designed Plans 

Plan Category 

Analysis Statistics BP AP 

Number of plans 11 37 
Number of utilizations 95 140 

Table 4. Utilization of the Abstracted and/or 
Tree-Structured Plans 

Analysis Statistics 

Number of plans 
Number of utilizations 

Plan Category 

BP AP 

4 6 
75 74 

rience gained during this case study enabled us to 
encapsulate the knowledge of at least 32 (24 + 8) 
simple plans into 10 deep and well-developed ones. 
This encapsulation, in turn, led to a considerable 
reduction in the size of the knowledge base. Coming 
up with such a set of abstracted/tree-structured 
plans should be the objective of any analysis per- 
formed in a specific application domain. Gaining 
experience in the domain should lead to the evolu- 
tion of more concise and useful plans. 

To examine the limits of our loop analysis ap- 
proach, we investigated the characteristics of the 12 
partially analyzed loops. Almost all of them (11 out 
of 12) are nested and contain procedure and func- 
tion calls (10 out of 12). The average number of 
procedure and function calls per loop is 4.6 (stan- 
dard deviation, 2.6). In Table 5, variations between 
the characteristics of the partially analyzed loops 
and the completely analyzed ones are highlighted. 
For more details on the differences between the 12 
partially analyzed loops and the 65 completely ana- 
lyzed ones, see the source code listings in Abd-El- 
Hafiz (1994) and Jalote (1991). 

The 12 partially analyzed loops contain relatively 
high numbers of events, lines of code, modified 
variables, and procedure and function calls. These 
factors increase the difficulty of designing the invari- 
ants and, consequently, the plans. For instance, to 
design plans for the analysis and specification of a 
loop containing procedure and function calls, all the 
procedures and functions called must first be for- 
mally analyzed using Hoare techniques (Hoare, 

Table 5. Comparison Between the Completely and 
Partially Analyzed Loops 

Characteristics* 
Completely Partially 

Analyzed Loops Analyzed Loops 

Events 

Executable SLOC 

Modified variables 

3.28 11.92 
(SD = 2.05) (SD = 4.77) 

10.45 43.2 
(SD = 8.29) (SD = 15.7) 

3.42 12.4 
(SD = 2.45) (SD = 4.9) 

* In terms of average numbers 
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1971). The theoretical limit discussed in the previous 
section, which is related to the adaptation of inner 
loop specifications in nested loops for the purpose of 
proving their correctness, occurred in only one loop. 
That is, the partial analysis of the remaining 11 
loops in this case study is attributed to practical 
limits. These practical limits stem from the plan 

designer’s inability to formally analyze complicated 
loops and find their invariants despite the fact that 
these invariants exist theoretically. 

4. CONCLUSION 

We have discussed the documentation language 
characteristics that are required to facilitate the 
understanding of a code component. To mechani- 
cally generate program documentation that has these 
characteristics, we have presented a hybrid analysis 
approach that combines the use of knowledge-based 
and algorithmic analysis approaches. The knowl- 
edge-based analysis approach produces formal loop 
specifications that can be used by the algorithmic 
approach to produce formal specifications of com- 
plete program modules. Our hybrid analysis ap- 
proach generates formal specifications that have the 
required semantic soundness and expressive power. 
This is because they have a sound mathematical 
basis and can abstract a wide variety of problems. 
The readability of the resulting specifications is im- 
proved by abstracting them using high-level and/or 
domain-specific terms. Furthermore, the systematic 
techniques that we developed for producing these 
specifications improve their automatability (Abd-El- 
Hafiz, 1990, 1994). 

To assist in the algorithmic analysis of complete 
programs, we focused on explaining how to analyze 
loops to produce documentations that are more for- 
mal and accurate than those produced by other 
approaches (Harandi and Ning, 1990; Hartman, 1991; 
Rich and Wills, 1990). Our approach analyzes stere- 
otyped loop fragments that have nonadjacent parts 
and, consequently, avoids the large size of the 
knowledge base needed to compensate for this draw- 
back (Letovsky, 1987). It presents well-defined meth- 
ods for selecting the fragments to be analyzed and 
for choosing the rules that analyze them. Hence, it 
relieves the user from the difficulty of having to 
perform this task on a code that is not well under- 
stood (Ward et al., 1989). 

Our analysis approach supports software develop- 
ment by providing code abstractions that can help in 
both reviewing and debugging code. In many cases, 
it can also help in proving the correctness of loop 
implementations. By assisting in the rigorous under- 

standing of loops, our approach facilitates code 
maintenance. Although our approach is useful for 
analyzing and understanding most loops, our case 
study showed that the analysis of some loops may be 
beyond the endurance of the analyzer. However, a 
maintainer who needs to understand a particular 
code segment may be more willing to pursue the 
analysis further or settle for less formal understand- 
ing. With respect to software reuse, our approach 
facilitates the population of a software repository 
with well-documented code components. 

By performing a case study, we were able to study 
the effect of the analysis techniques on the size of 
the knowledge base and to package our experience 
in the design and use of plans for a specific domain. 
We have developed a prototype tool that imple- 
ments the knowledge-based loop analysis approach 
(Abd-El-Hafiz and Basili, 1994). We had earlier re- 
ported a prototype tool that uses user-supplied loop 
annotations for analyzing complete programs (Abd- 
El-Hafiz et al., 1991). The integration of these two 
tools to develop a larger system that performs intel- 
ligent analysis of complete program modules needs 
to be investigated. The practicality of our approach 
should be further investigated by testing them in 
various domains and developing domain-specific ab- 
stractions. 
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