
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 10, OCTOBER 1996 75 1

A Validation of Object-Oriented Design
Metrics as Quality Indicators

Victor R. Basili, Fellow, I€€€, Lionel C. Briand,
and Walcelio L. Melo, Member, IEEE Computer Society

Abstract-This paper presents the results of a study in which we empirically investigated the suite of object-oriented (00) design
metrics introduced in [13]. More specifically, our goal is to assess these metrics as predictors of fault-prone classes and, therefore,
determine whether they can be used as early quality indicators. This study is complementary to the work described in [30] where the
same suite of metrics had been used to assess frequencies of maintenance changes to classes. To perform our validation
accurately, we collected data on the development of eight medium-sized information management systems based on identical
requirements. All eight projects were developed using a sequential life cycle model, a well-known 00 analysis/design method and
the C++ programming language. Based on empirical and quantitative analysis, the advantages and drawbacks of these 00 metrics
are discussed. Several of Chidamber and Kemerer’s 00 metrics appear to be useful to predict class fault-proneness during the
early phases of the life-cycle. Also, on our data set, they are better predictors than “traditional” code metrics, which can only be
collected at a later phase of the software development processes.

Index Terms-Object-oriented design metrics, error prediction model, object-oriented software development, C++ programming
language.

1 INTRODUCTION
1 .I Motivation

HE development of a large software system is a time- T and resource-consuming activity. Even with the in-
creasing automation of software development activities,
resources are still scarce. Therefore, we need to be able to
provide accurate information and guidelines to managers
to help them make decisions, plan and schedule activities,
and allocate resources for the different software activities
that take place during software development. Software
metrics are, thus, necessary to identify where the resources
are needed; they are a crucial source of information for de-
cision-making [22].

Testing of large systems is an example of a resource- and
time-consuming activity. Applying equal testing and verifi-
cation effort to all parts of a software system has become
cost-prohibitive. Therefore, one needs to be able to identify
fault-prone modules so that testing / verification effort can
be concentrated on these modules [21]. The availability of
adequate product design metrics for characterizing error-
prone modules is, thus, vital.

V.X. Basili is with the University of Maryland, Institute for Advanced
Computer Studies and Computer Science Dept., A.V. Williams Bldg.,
College Park, M D 20742. E-mail: basili@cs.umd.edu.
L.C. Briand is with Fraunhofer-Institute for Experimental Software Engi-
neering, Technologiepark 11, Sauerwiesen 6, 0-67661, Kaiserslautern,
Germany. E-mail: briand@iese.fhg.de.

McGill College Ave., Montrkal, Que%ec, H3A 2N4, Canada.
E-mail: wmelo@crim.ca.

W.L. Melo is with the Centre de Recherche Informatique de Montrial, 1801

Manuscript received Sept. 7,1995; accepted Aug. 30, 1996.
Recommended for acceptance by H. Muller.
For information on obtaining reprints of this article, please send e-mail to:
transse@computer.org, and reference IEEECS Log Number S95819.

Many product metrics have been proposed [16], [26],
used, and, sometimes, empirically validated [3], [4], [19],
[30], e.g., number of lines of code, McCabe complexity met-
ric, etc. In fact, many companies have built their own cost,
quality, and resource prediction models based on product
metrics. TRW [7], the Software Engineering Laboratory
(SEL) [31], and Hewlett Packard [20] are examples of soft-
ware organizations that have been using product metrics to
build their cost, resource, defect, and productivity models.

1.2 Issues
In the last decade, many companies have started to intro-
duce object-oriented (00) technology into their software
development environments. 00 analysis / design methods,
00 languages, and 00 development environments are
currently popular worldwide in both small and large soft-
ware organizations. The insertion of 00 technology in the
software industry, however, has created new challenges for
companies which use product metrics as a tool for moni-
toring, controlling, and improving the way they develop
and maintain software. Therefore, metrics which reflect the
specificities of the 00 paradigm must be defined and vali-
dated in order to be used in industry. Some studies have
concluded that ”traditional” product metrics are not suffi-
cient for characterizing, assessing, and predicting the qual-
ity of 00 software systems. For example, in [12] it was re-
ported that McCabe cyclomatic complexity appeared to be
an inadequate metric for use in software development
based on 00 technology.

To address this issue, 00 metrics have recently been
proposed in the literature [l], [6], [13]. However, with a few
exceptions [lo], [30], most of them have not undergone an

0098-5589/96$05 .OO 01996 IEEE

mailto:basili@cs.umd.edu
mailto:briand@iese.fhg.de
mailto:transse@computer.org

752 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. IO, OCTOBER 1996

empirical validation (see [9] and [35] for further discussion
of the empirical validation of measures). Empirical valida-
tion aims at demonstrating the usefulness of a measure in
practice and is, therefore, a crucial activity to establish the
overall validity of a measure. A measure may be correct
from a measurement theory perspective (i.e., be consistent
with the agreed upon empirical relational system) but be of
no practical relevance to the problem at hand. On the other
hand, a measure may not be entirely satisfactory from a
theoretical perspective but can be a good enough approxi-
mation and work fine in practice.

In this paper, we present the results of a study in which
we performed an empirical validation of the 00 metric
suite defined in [13] with regard to their ability to identify
fault-prone classes. However, the theoretical validation of
these metrics is not addressed here and, as a complement to
this paper, the reader may refer to a discussion about the
mathematical properties of Chidamber and Kemerer's met-
rics in [ll], [24].

Data were collected during the development of eight
medium-sized information management systems based on
identical requirements. All eight projects were developed
using a sequential life cycle model, a well-known Object-
Oriented analysis/design method [33], and the C++ pro-
gramming language [36]. Despite the fact that these projects
were run in a university setting, we set up a framework that
was representative of currently used technology in indus-
trial settings.

1.3 Outline
This paper is organized as follows. Section 2 presents the
suite of 00 metrics proposed by Chidamber and Kemerer
[13], offers the experimental hypotheses to be tested, and
then shows a case study from which process and product
data were collected allowing a quantitative validation of
this suite of metrics. Section 3 presents the actual data col-
lected together with the statistical analysis of the data. Sec-
tion 4 compares our study with other works on the subject.
Section 5 concludes the paper by presenting lessons learned
and future work.

2 DESIGN OF THE EMPIRICAL STUDY

2.1 Dependent and independent Variables
The goal of this study was to analyze empirically the 00
design metrics proposed in [13] for the purpose of evaluat-
ing whether or not these metrics are useful for predicting
the probability of detecting faulty classes. Assuming testing
was performed properly and thoroughly, the probability of
fault detection in a class during acceptance testing should
be a good indicator of its probability of containing a fault
and, therefore, a relevant measure of fault-proneness. The
construct validity of our dependent variable can, thus, be
demonstrated.

Other measures such as class fault density could have
been used. However, the variability in terms of number of

1

1. Construct validity is discussed further in [27]. It is defined as the extent
to which the theoretical construct of interest (e.g., our dependent variable:
fault-proneness) i s measured successfully, i.e , do we really measure what
we purport to measure?

faults in our data set is small: Faults were detected only in
36 percent of the classes and 84 percent of the classes con-
tain less than three faults. Therefore, using a dependent
variable with low variability would have affected our abil-
ity to identify significant relationships between 00 design
metrics and t h s dependent variable.

In addition, it was difficult to decide what was the best
way to measure the size of classes given the large number
of alternatives (e.g., LOC, SLOC, number of methods, num-
ber of attributes, etc.). The probability of fault detection
was, therefore, the most straightforward and practical
measure of fault-proneness and, therefore, a suitable de-
pendent variable for our study. Based on [13], [14], and
[15], it is clear that the definitions of these metrics are not
language independent. As a consequence, we had to
slightly adjust some of Chidamber and Kemerer's metrics
in order to reflect the specificities of C++. These metrics are
as follows:

0 Weighted Methods per Class (WMC). WMC measures
the complexity of an individual class. Based on [13], if
we consider all methods of a class to be equally com-
plex, then WMC is simply the number of methods de-
fined in each class. In this study, we adopted this ap-
proach for the sake of simplicity and because the
choice of a complexity metric would be somewhat ar-
bitrary since it is not fully specified in the metric suite.
Thus, WMC is defined as being the number of all
member functions and operators defined in each
class. However, "friend operators (C++ specific con-
struct) are not counted. Member functions and op-
erators inherited from the ancestors of a class are also
not counted. This definition is identical to the one de-
scribed in [14].

In [E], Churcher and Shepperd have argued that
WMC can be measured in different ways depending
on how member functions and operations defined in
a C++ class are counted. We believe that the different
counting rules proposed in [15] correspond to differ-
ent metrics, similar to the WMC metric, and which
must be empirically validated as well. A validation of
Churcher and Shepperd's WMC-like metrics is, how-
ever, beyond the scope of this paper.

0 Depth of Inheritance Tree of a class (DIT)-DIT is de-
fined as the maximum depth of the inheritance graph
of each class. C++ allows multiple inheritance and,
therefore, classes can be organized into a directed
acyclic graph instead of trees. DIT, in our case, meas-
ures the number of ancestors of a class.
Number Of Children of a Class (N0C)-This is the
number of direct descendants for each class.

0 Coupling Between Object classes (CB0)-A class is
coupled to another one if it uses its member functions
and/ or instance variables. CBO provides the number
of classes to which a given class is coupled.

0 Response For a Class (RFC)-T~IS is the number of
methods that can potentially be executed in response to
a message received by an object of that class. In our
study, RFC is the number of C++ functions directly in-
voked by member functions or operators of a C++ class.

BASIL1 ET AL.: A VALIDATION OF OBJECT-ORIENTED DESIGN METRICS AS QUALITY INDICATORS 753

Lack of Cohesion on Methods (LC0M)-This is the
number of pairs of member functions without shared
instance variables, minus the number of pairs of
member functions with shared instance variables.
However, the metric is set to zero whenever the above
subtraction is negative.

Readers acquainted with C++ can see that some par-
ticularities of C++ are not taken into account by Chidamber
and Kemerer’s metrics, e.g., C++ templates, friend classes,
etc. In fact, additional work is necessary in order to extend
the proposed 00 metric set with metrics specifically tai-
lored to C++.

2.2 Hypotheses
In order to validate the above metrics as quality indicators,
their expected relationship with fault-proneness (or rather
the measure we selected for this attribute: probability of fault
detection) must be validated. The experimental hypotheses to
be statistically tested are, for each metric, as follows:

H-WMC: A class with significantly more member
functions than its peers is more complex and, by con-
sequence, tends to be more fault-prone.
H-DIT: Well-designed 00 systems are those struc-
tured as forests of classes, rather than as one very
large inheritance lattice. In other words, a class lo-
cated deeper in a class inheritance lattice is supposed
to be more fault-prone because the class inherits a
large number of definitions from its ancestors. In ad-
dition, deep hierarchies often imply problems of con-
ceptual integrity, i.e., it becomes unclear which class
to specialize from in order to include a subclass in the
inheritance hierarchy [17].
H-NOC: Classes with large number of children
(i.e., subclasses) are difficult to modify and usually
require more testing because the class potentially af-
fects all of its children. Furthermore, a class with nu-
merous children may have to provide services in a
larger number of contexts and must be more flexible.
We expect this to introduce more complexity into the
class design and, therefore, we expect classes with
large number of children to be more fault-prone.
H-CBO: Highly coupled classes are more fault-prone
than weakly coupled classes because they depend
more heavily on methods and objects defined in other
classes.
H-RFC: Classes with larger response sets implement
more complex functionalities and are, therefore, more
fault-prone.
H-LCOM: Classes with low cohesion among its meth-
ods suggests an inappropriate design (i.e., the encap-
sulation of unrelated program objects and member
functions that should not be together) which is likely
to be more fault-prone.

2.3 Study Participants
In order to validate the hypotheses stated in the previous
section, we ran an empirical study over four months (from
September to December 1994). The study participants were
the students of an upper division undergraduate / graduate

level course offered by the Department of Computer Sci-
ence at the University of Maryland. The objective of this
class was to teach 00 software analysis and design. The
students were not required to have previous experience or
training in the application domain or 00 methods. A11 stu-
dents had some experience with C or C++ programming
and relational databases and, therefore, had the basic skills
necessary for such a study.

In order to control for differences in skills and experience
among students, the students were randomly grouped into
eight teams of three students. Furthermore, in order to ensure
the groups were comparable with respect to the ability of
their members, the following procedure (i.e., known as
”blocking” [27]) was used to assign students to groups:

First, the level of experience of each student was
characterized at the beginning of the study. We used
questionnaires and performed interviews. We asked
the students information regarding their previous
working experience, their student status (part-time,
full-time student), their computer science degree (BS,
MSc, PhD), their previous experiences with analy-
sis / design methods, and their skill regarding various
programming languages.
Second, each of the eight most experienced students
was randomly assigned to a different group
(i.e., team). Students considered most experienced
were computer science PhD candidates who had al-
ready implemented large (2 10 thousands source lines
of code, KSLOC) C or C++ programs and those with
industrial experience greater than two years in C pro-
gramming. None of the students had significant expe-
rience in Object-Oriented software analysis and de-
sign methods. Similarly, each of the eight next most
experienced students were randomly assigned to dif-
ferent groups and this was repeated for the remaining
eight students.

2.4 The Development Process ~

Each team was asked to develop a medium-sized manage-
ment information system that supports the rental / return
process of a hypothetical video rental business, and main-
tains customer and video databases. Such an application
domain had the advantage of being easily comprehensible
and, therefore, we could make sure that system require-
ments could be easily interpreted by students regardless of
their educational background.

The development process was performed according to a
sequential software engineering life-cycle model derived
from the Waterfall model. This model includes the follow-
ing phases: analysis, design, implementation, testing, and
repair. At the end of each phase, a document was delivered:
Analysis document, design document, code, error report,
and finally, modified code, respectively. Requirement
specifications and design documents were checked to verify
that they matched the system requirements. Errors found in
these first two phases were reported to the students. This
maximized the chances that the implementation began with
a correct 00 analysis/ design. Acceptance testing was per-
formed by an independent group (see Section 2.5). During

754 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. IO, OCTOBER 1996

the repair phase, the students were asked to correct their
system based on the errors found by the independent test
group.

OMT, an 00 Analysis/Design method, was used during
the analysis and design phases [33]. The C++ programming
language, the GNU software development environment,
and OSF / MOTIF were used during the implementation.
Sparc Sun stations were used as the implementation plat-
form. Therefore, the development environment and tech-
nology we used are representative of what is currently used
in industry and academia. Our results are, thus, more likely
to be generalizable to other development environments
(external validity).

The following libraries were provided to the students:
1) MotvApp. This public domain library provides a set of

C++ classes on top of OSF/MOTIF for manipulation
of windows, dialogues, menus, etc. [37]. The
MotifApp library provides a way to use the
OSF/Motif widgets in an 00 programming/design
style.

2) GNU library. This public domain library is provided
in the GNU C++ programming environment. It
contains functions for manipulation of string, files,
lists, etc.

3) C++ database library. This library provides a C++ im-
plementation of multi-indexed B-Trees.

We also provided a specific domain application library
in order to make our study more representative of indus-
trial conditions. This library implemented the graphical
user interface for insertion/removal of customers and was
implemented in such a way that the main resources of the
OSF / Motif widgets and MotifApp library were used.
Therefore, this library contained a small part of the im-
plementation required for the development of the rental
system.

No special training was provided for the students to
teach them how to use these libraries. However, a tutorial
describing how to implement OSF / Motif applications was
given to the students. In addition, a C++ programmer, fa-
miliar with OSFIMotif applications, was available to an-
swer questions about the use of OSF/Motif widgets and the
libraries. A hundred small programs exemplifying how to
use OSF/Motif widgets were also provided. In addition,
the source code and the complete documentation of the
libraries were made available. Finally, it is important to
note the students were not required to use the libraries and,
depending on the particular design they adopted, different
reuse choices were expected.

2.5 Testing
The testing phase was accomplished by an independent
group composed of experienced software professionals.
This group tested all systems according to similar test plans
and using functional testing techniques, spending eight
hours testing each system.

2.6 Nature of the Study
Our empirical study is not what could be called formally a
controlled experiment since the independent variables
(i.e., 00 design metrics) are not controlled for and not as-

signed randomly to classes. Such a design would not be
implementable. Rather, our study is more observational in
nature. However, it is important to note that we have tried
to make the results of our study as generalizable as possible
(i.e./ maximizing external validity) by a careful selection of
the study participants, the study material, and the devel-
opment process. Nevertheless, there is a greater danger that
the study be exposed to confounding variables and all sig-
nificant relationships should be carefully interpreted.

2.7 Data Collection Procedures and Measurement

We collected:
Instruments

1) the source code of the C++ programs delivered at the

2) data about these programs,
3) data about errors found during the testing phase and

4) the repaired source code of the C++ programs deliv-

GEN++ [18] was used to extract Chidamber and Kemerer’s
00 design metrics directly from the source code of the pro-
grams delivered at the end of the implementation phase. To
collect items 2) and 3), we used the following forms, which
have been tailored from those used by the Software Engi-
neering Laboratory [23]:

* Fault Report Form.
* Component Origination Form.

In the following sections, we comment on the purpose of
the Component Origination and Fault Report forms used in
our study and the data they helped collect.

2.7. I Data Collection Forms

end of the implementation phase,

fixes during the repair phase, and

ered at the end of the life cycle.

A fault report form was used to gather data about
1) the faults found during the testing phase,
2) classes changed to correct such faults, and
3) the effort in correcting them.

The latter was not used in this study. Further details can be
found in [5].

A component origination form was used to record in-
formation that characterizes each class under development
in the project at the time it goes into configuration man-
agement. First, this form was used to capture whether the
class has been developed from scratch or has been devel-
oped from a reused class. In the latter case, we collected the
amount of modification needed to meet the system re-
quirements and design: none, slight (less than 25 percent of
code changed), or extensive (more than 25 percent of code
change) as well as the name of the reused class. Classes
reused without modification were labeled: verbatim reused.

In addition, the name of the sub-system to which the
class belonged was also collected. In our study, we had two
types of sub-systems: user interface (UI) and database pro-
cessing (DB).

2.7.2 Data Collected
Chidamber and Kemerer’s 00 design metrics were col-
lected for each of the 180 classes across the eight systems
under study. In addition, all faults detected during testing

BASIL1 ET AL.: A VALIDATION OF OBJECT-ORIENTED DESIGN METRICS AS QUALITY INDICATORS 755

.. 80

60

40

20

0

..... .____..-.

0 10 20 30 40 50 60 70 80 YO 100

WMC

60 I

0 11 22 33 44 55 66 77 88 99 110

RFC
200 1

0 45 YO 135 180 225 270 315 360 405 450

LCOM

Fig. 1. Distribution of the analyzed 00 metrics. The X axes represents

activities were located in the systems and, therefore, associ-
ated with one or several of their classes.

3 DATA ANALYSIS
In this section, we will assess empirically whether the 00
design metrics defined in [13] are useful predictors of
fault-prone classes. This will help us assess these metrics
as quality indicators and how they compare to common
code metrics. We intend to provide the type of empirical
validation that we think is necessary before any attempt
to use such metrics as objective and early indicators of
quality is made [9]. Section 3.1 shows the descriptive distri-
butions of the 00 metrics in the studied sample whereas
Section 3.2 provides the results of univariate and multivari-
ate analyses of the relationships between 00 metrics and
fault-proneness.

3.1 Distribution and Correlation Analyses
Fig. 1 shows the distributions of the analyzed 00 metrics
based on 180 classes present in the studied systems. Table 1
provides common descriptive statistics of the metric distri-
butions. These results indicate that inheritance hierarchies
are somewhat flat (DIT) and that classes have, in general,
few children (NOC) (this result is similar to what was
found in [13]). In addition, most classes show a lack of

120 , 1

0 1 2 3 4 5 6 7 8 9
DIT

160 I ,

60 I I

0 3 6 Y 12 15 18 21 24 27 30

CBO

the values of the metric. The Y axes represents the number of class.

cohesion (LCOM) near zero. This latter metric does not
seem to differentiate classes well and this may stem from its
definition which prevents any negative measure. This issue
will be discussed further in Section 3.2.

TABLE 1
DESCRIPTIVE STATISTICS OF THE 180 STUDIED c++ CLASSES

WMC DIT RFC NOC LCOM CBO
Maximum 99.00 9.00 105.00 13.00 426.00 30.00
Minimum 1.00 0.00 0.00 0.00 0.00 0.00
Median 9.50 0.00 19.50 0.00 0.00 5.00
Mean 13.40 1.32 33.91 0.23 9.70 6.80
Std Dev 14.90 1.99 33.37 1.54 63.77 7.56

Descriptive statistics will be useful to help us interpret the results of the
analysis in the remainder of this section. In addition, they will facilitate com-
parisons of resultsfromfuture similar studies.

TABLE 2
CORRELATION ANALYSIS

R~ Values

WMC
DIT
RFC
NOC
LCOM -

NMC DIT RFC NOC LCOM CBO
1 0.02 0.24 0 0.38 0.13

0.01 0 1 0 0

1 0 0.09 0.31

1 0 0

1 0.01

756 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 10, OCTOBER 1996

Table 2 shows very clearly that linear Pearson's correla-
tions (R': Coefficient of determination) between the studied
00 metrics are, in general, very weak. Three coefficients of
determination appear somewhat more significant (bold co-
efficients in Table 2). However, when looking at the scat-
terplots, only the relationship between CBO and RFC seems
not to be due to outliers. We conclude that these metrics are
mostly statistically independent and, therefore, do not
capture a great deal of redundant information.

3.2 The Relationships Between Fault Probability and

3.2. I Analysis Methodology
The response variable we use to validate the 00 design
metrics is binary, i.e., was a fault detected in a class during
testing phases? We used logistic regression, a standard
technique based on maximum likelihood estimation, to
analyze the relationships between metrics and the fault-
proneness of classes. Currently, logistic regression is a
standard classification technique [25] used in experimental
sciences. It has already been used in software engineering
to predict error-prone components [8] , [29], [32].

Other classification techniques such as classification
trees [34], Optimized Set Reduction [8], or neural networks
[28] could have been used. However, our goal here is not to
compare multivariate analysis techniques (see [8] for a
comparison study) but, based on a suitable and standard
technique, to validate empirically a set of metrics.

We first used univariate logistic regression, to evaluate
the relationship of each of the metrics in isolation and fault-
proneness. Then, we performed multivariate logistic re-
gression, to evaluate the predictive capability of those
metrics that had been assessed sufficiently significant in
the univariate analysis. This modeling process is further
described in [25].

A multivariate logistic regression model is based on the
following relationship equation (the univariate logistic re-
gression model is a special case of this, where only one
variable appears):

00 Metrics

where n is the probability that a fault was found in a class
during the validation phase, and the X,s are the design met-
rics included as explanatory variables in the model (called
covaviates of the logistic regression equation). The curve
between rc and any single XI-i.e., assuming that all other
X J s are constant-takes a flexible S shape which ranges
between two extreme cases:

1) when a variable is not significant, then the curve ap-
proximates a horizontal line, i.e., 7c does not depend
on X,, and

2) when a variable entirely differentiates error-prone
software parts, then the curve approximates a step
function.

Such a S shape is perfectly suitable as long as the relationshp
between X i s and rc is monotonic, an assumption consistent with
the empirical hypotheses to be tested in tlus study. Otherwise,
higher degree terms have to be introduced in equation (").

The coefficients Cis will be estimated through the maxi-
mization of a likelihood function, built in the usual fashion,
i.e., as the product of the probabilities of the single obser-
vations, which are functions of the covariates (whose values
are known in the observations) and the coefficients (which
are the unknowns). For mathematical convenience,
1 = In[L], the loglikelihood, is usually the function to be
maximized. This procedure assumes that all observations
are statistically independent. In our context, an observation
is the (non)detection of a fault in a C++ class. Each (non)
detection of a fault is assumed to be an event independent
from other fault (non)detections. Each data vector in the
data set describes an observation and has the following
components: An event category (fault, no fault) and a set of
00 design metrics (described in Section 2.1) characterizing
either the class where the fault was detected or a class
where no fault was detected.

The global measure of goodness of fit we will use for
such a model is assessed via R2-not to be confused with
the least-square regression R2-they are built upon very
different formulae, even though they both range between
zero and one and are similar from an intuitive perspective.
The higher R2, the higher the effect of the model's explana-
tory variables, the more accurate the model. However, as
opposed to the R2 of least-square regression, high R2s are
rare for logistic regression. For this reason, the reader
should not interpret logistic regression R2s using the usual
heuristics for least-square regression R2s. (The interested
reader may refer to [21] for a detailed discussion of this
issue.). Logistic regression R' is defined by the following
ratio:

LL, -LL

LLS
R =

where

4 LL is the loglikelihood obtained by Maximum Likeli-
hood Estimation of the model described in formula (")

4 LL, is the loglikelihood obtained by Maximum Likeli-
hood Estimation of a model without any variables,
i.e., with only Co. By carrying out all the calculations,
it can be shown that LL, is given by

where mo (resp., ml) represents the number of observations
for which there are no faults (resp., there is a fault). Looking
at the above formula, LLs/ (mo + ml) may be interpreted as
the uncertainty associated with the distribution of the de-
pendent variable Y, according to Information Theory con-
cepts. It is the uncertainty left when the variable-less model
is used. Likewise, LL/(mo + ml) may be interpreted as the
uncertainty left when the model with the covariates is used.
As a consequence, (LL, - LL) / (mo + ml) may be interpreted
as the part of uncertainty that is explained by the model.
Therefore, the ratio (LLs - LL)/LLs may be interpreted as
the proportion of uncertainty explained by the model.

Tables 3 and 4 contain the results we obtained through,
respectively, univariate and multivariate logistic regression
on all of the 180 classes. We report those related to the met-
rics that turned out to be the most significant across all

BASIL1 ET AL.: A VALIDATION OF OBJECT-ORIENTED DESIGN METRICS AS QUALITY INDICATORS

~

757

eight development projects. For each metric, we provide the
following statistics:

Coefzcient (appearing in Tables 3 and 4)’ the estimated
regression coefficient. The larger the coefficient in absolute
value, the stronger the impact (positive or negative, ac-
cording to the sign of the coefficient) of the explanatory
variable on the probability p of a fault to be detected in a
class.

TABLE 3
UNlVARlATE ANALYSIS-SUMMARY OF RESULTS

Metrics Coefficient AV p -value R* Classes

WMC (2) 0.086 9% 0.0003 0.024 New-Ext
WMC (1) 0.022 2% 0.0607 0.007 ALL

WMC (3) 0.027 3% 0.0656 0.015 DB
WMC(4) 0.094 10% 0.0019 0.047 UI

DIT (1) 0.485 62% 0.0000 0.065 ALL
DIT (2) 0.868 138% 0.0000 0.131 New-Ext
DIT (3) 0.475 60% 0.043 0.019 DB

RFC (2) 0.087 8% 0.0000 0.248 New-Ext

DIT (4) 0.29 34% 0.024 0.017 UI
RFC (1) 0.085 9% 0.0000 0.065 ALL

RFC (3) 0.077 8% 0.0000 0.188 DB

NOC (I) -3.3848 -96% 0.0000 0.143 ALL

NOC(3) -2.05 -77% 0.0000 0.083 DB
CBO (1) 0.142 15% 0.0000 0.068 ALL

RFC (4) 0.108 11% 0.0000 0.362 UI

NOC (2) -3.62 -97% 0.0011 0.362 New-Ext

CBO (2) 0.079 8% 0.017 0.020 New-Ext
CBO (3) 0.086 9% 0.006 0.034 DB

ALL means all the classes. New-Ext standsfor classes which have been cre-
atedfrom scratch or extensively modified. DB labels classes implementing
database manipulations. UI labels classes implementing user interface
functions.

CBO (4) 0.284 33% 0.0000 0.170 UI

TABLE 4
MULTIVARIATE ANALYSIS WITH 00 DESIGN METRICS

Coefficient p-value
Intercept 3.13 0.0000
DIT 0.50 0.0004
RFC 0.1 1 0.0000
NOC -2.01 0.01 78
CBO 0.13 0.0072
Class Origin 1.84 0.0000

A y (appearing in Table 3 only), which is based on the
notion of odd ratio [25], and provides an evaluation of
the impact of the metric on the response variable.
More specifically, the odds ratio y(X) represents the
ratio between the probability of having a fault and the
probability of not having a fault when the value of the
metric is X. As an example, if, for a given value X,
y(X) is two, then it is twice as likely that the class does
contain a fault than that it does not contain a fault.
The value of A y is computed by means of the follow-
ing formula:

Therefore, A y represents the reduction/ increase in the
odds ratio (expressed as a percentage in Table 3) when
the value X increases by one unit. This is designed to
provide an intuitive insight into the impact of ex-
planatory variables.

The statistical significance (p-value, appearing in
Tables 3 and 4) provides an insight into the accuracy
of the coefficient estimates. It tells the reader about
the probability of the coefficient being different from
zero by chance. Historically, a significance threshold
of a = 0.05 (i.e., 5 percent probability) has often been
used to determine whether an explanatory variable
was a significant predictor. However, the choice of a
particular level of significance is ultimately a subjec-
tive decision and other levels such as a = 0.01 or 0.1
are common. Also, the larger the level of significance,
the larger the standard deviation of the estimated co-
efficients, and the less believable the calculated im-
pact of the explanatory variables. The significance test
is based on a likelihood ratio test [25] commonly used
in the framework of logistic regression.

3.2.2 Univariate Analysis
In this section, we analyze the relationships between six 00
metrics introduced in 1131 (though slightly adapted to our
context) and the probability of fault detection in a class
during test phases. Thus, we intend to test the hypotheses
stated in Section 2.2.

Weighted Methods per Class (WMC) was shown to be
somewhat significant (p-value = 0.06) overall. For
new and extensively modified classes and for U1
(Graphical and Textual User Interface) classes, the re-
sults are more significant: p-value = 0.0003 and
p-value = 0.001, respectively. Therefore, the H-WMC
hypothesis is supported by these results: The larger
the WMC, the larger the probability of fault detection.
These results can be explained by the fact that the in-
ternal complexity does not have a strong impact if the
class is reused verbatim or with very slight modifica-
tions. In that case, the class interface properties will
have the most significant impact.
Depth of Inheritance Tree of a class (DIT) was shown
to be very significant (p-value = 0.0000) overall. The
H-DIT hypothesis is supported by the results: The
larger the DIT, the larger the probability of fault de-
tection. A ain, the strength of the relationship in-
crease6 (R goes from 0.06 to 0.13) when only new and
extensively modified classes are considered.

0 Response For a Class (RFC) was shown to be very
significant overall (p-value = 0.0000). The H-RFC hy-
pothesis is supported by the results: The larger the
RFC, the larger the probability of fault detection.
Again, R2 improved significantly for new and exten-
sively modified classes and U1 classes (from 0.06 to
0.24 and 0.36, respectively). Reasons are believed to be
the same as for WMC for extensively modified
classes. In addition, U1 classes show a distribution
which is significantly different from that of DB
classes: The mean and median are significantly
higher. This, as a result, may strengthen the impact of
RFC when performing the analysis.
Number Of Children of a Class (NOC) appeared to be
very significant (except in the case of U1 classes) but
the observed trend is contrary to what was stated by

B

75s IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. IO, OCTOBER 1996

the H-NOC hypothesis: The larger the NOC, the
lower the probability of fault detection. This surpris-
ing trend can be explained by the combined facts that
most classes do not have more than one child and that
verbatim reused classes are somewhat associated with
a large NOC. Since we have observed that reuse was a
significant negative factor on fault density [5], this
explains why large NOC classes are less fault-prone.
Moreover, there is some instability across class sub-
sets with respect to the impact of NOC on the prob-
ability of detecting a fault in a class (see A\vs in Table
3). This may be explained in part by the lack of vari-
ability on the NOC measurement scale (see descriptive
analysis in Table 1 and distribution in Fig. 1).
Lack of Cohesion on Methods (LCOM) was shown to
be insignificant in all cases (this is why the results are
not shown in Table 3) and this should be expected
since the distribution of LCOM shows a lack of vari-
ability and a few very large outliers. This stems in
part from the definition of LCOM where the metric is
set to zero when the number of class pairs sharing
variable instances is larger than that of the ones not
sharing any instances. This definition is definitely not
appropriate in our case since it sets cohesion to zero
for classes with very different cohesions and keeps us
from analyzing the actual impact of cohesion based
on our data sample.

0 Coupling Between Object classes (CBO) is significant
and more particularly so for U1 classes (p-value =

0.0000 and Rz = 0.17). No satisfactory explanation
could be found for differences in pattern between U1
and DB classes.

It is important to remember, when looking at the results
in Table 3, that the various metrics have different units.
Some of these units represent ”big steps” on each respective
measurement scale while others represent ”smaller steps.”
As a consequence, some coefficients show a very small im-
pact (i.e., Avs) when compared to others. This, however, is
not a valid criterion to evaluate the predictive usefulness of
such metrics.

Most importantly, aside from NOC, all metrics appear to
have a very stable impact across various categories of
classes (i.e., DB, UI, New-Ext, etc.). This is somewhat en-
couraging since it tells us that, in that respect, the various
types of components are comparable. If we were consider-
ing different types of faults separately, the results might be
different. Such a refinement is, however, part of our future
research plans.

3.2.3 Multivariate Analysis
The 00 design metrics presented in the previous section
can be used early in the life cycle (high- or low-level design)
to build a predictive model of fault-prone classes. In order
to obtain an optimal model, we included these metrics into
a multivariate logistic regression model. However, only the
metrics that significantly improve the predictive power of
the multivariate model were included through a stepwise
selection process. Another significant predictor of fault-
proneness is the level of reuse of the class (called ”Class
origin” in Table 4). This information is available at the end
of the design phase when reuse candidates have been iden-

tified in available libraries and the amount of change re-
quired can be estimated. Table 4 describes the computed
multivariate model. Using such a model for classification,
the results shown in Table 5 are obtained by using a clas-
sification threshold of n(Fau1t detection) = 0.5, i.e., when
TC > 0.5, the class is classified as faulty and, otherwise, as
nonfaulty. As expected, classes predicted as faulty contain a
large number of faults (250 faults on 48 classes) because
those classes tend to show a better classification accuracy.

TABLE 5
CLASSIFICATION RESULTS WITH 00 DESIGN METRICS

Thefigures before parentheses zn the right column are the number of classes
classlfed as faulty The figures within the parentheses are the faults contained
zn those classes.

We now assess the impact of using such a prediction
model by assuming, in order to simplify computations, that
inspections of classes are 100 percent effective in finding
faults. In that case, 80 classes (predicted as faulty) out of 180
would be inspected and 48 faulty classes out of 58 would be
identified before testing. If we now take into account indi-
vidual faults, 250 faults out of 258 would be detected during
inspection. As mentioned above, such a good result stems
from the fact that the prediction model is more accurate for
multiple-faults classes. To summarize, results show that the
studied 00 metrics are useful predictors of fault-proneness.

In order to evaluate the predictive accuracy of these 00
design metrics, it would be interesting to compare their
predictive capability and that of usual code metrics even
though they can only be obtained later in the development
life cycle. Three code metrics, from the set provided by the
Amadeus tool’ [2], were selected through a stepwise logis-
tic regression procedure. Table 6 shows the resulting pa-
rameter estimations of the multivariate logistic regression
model where: MaxStatNext is the maximum level of state-
ment nesting in a class, FunctDefis the number of function
declarations, and FuncfCall is the number of function calls.
It should be noted that other multivariate models can be
generated using different metrics provided by Amadeus
and yield results of similar accuracy. The model in Table 6
happens to be, however, the one resulting from the use of a
standard, stepwise logistic regression analysis procedure.

TABLE 6
MULTIVARIATE ANALYSIS WITH CODE METRICS

Coefficient p-value
Intercept 0.39 0.0384
MaxStatNest -0.286 0 0252
FunctDef 0.166 0.001 0
FunctCall -0.0277 0.0000

In addition to being collectable only later in the process,
code metrics appear to be somewhat poorer as predictors of
class fault-proneness (see Table 7). In this case, 112 classes

2. The Amadeus tool provides 35 code metrics, e.g., lines of code with
and without blank, executable statements, declaration statements, function
declaration, function definitions, function calls, cyclomatic complexity, loop
statements, maximum class depth and width in a file, number of method
declarations, definitions, and average number of methods.

BASIL1 ET AL.: A VALIDATION OF OBJECT-ORIENTED DESIGN METRICS AS QUALITY INDICATORS 759

Actual
No Fault
Fault

Predicted
No fault Fault

61 61
7 (37) 51 (231)

TABLE 8
CLASSIFICATION ACCURACIES BASED ON 00 AND CODE

METRICS SHOWN IN TABLE 3 AND TABLE 6

CRITERIA
Suite of
Metrics

Typeof
products

Dependent
variable

Statistical
technique

Model Accuracy 00 metrics Code metrics
Completeness 88% (93%) 83% (86Yo)
Correctness 60% (92%) 45.5% (86Yo)

3.2.4 Threats to Validity
Several threats to the external validity of our study may
limit the generalizability of our results:

Briand et al. [I 01 Li and Henry [30]
ADT Cohesion CK metrics CK metrics
and Coupling

Ada 00 dialect of Ada C++

fault occurrence number of fault occurrence in
in Ada packages changes in com-

logistic least-square logistic regression
regression regression

Our work

C++ classes
ponent’s

The programs developed lie between five KSLOC and
14 KSLOC. Those programs are small as compared to
large industry systems. The relationships between the
studied 00 design metrics and the fault introduction
probability are the results of a complex psychological
phenomenon and they may look very different in
larger programs.
The conceptual complexity of these systems was
rather limited. Again, many different problems may
arise in more complex systems.
It is likely that the study participants were not as well
trained and as experienced as average professional
programmers. However, this was partially addressed
as discussed in Section 2.4.

4 RELATED WORK
In [lo], metrics for measuring abstract data type (ADT) co-
hesion and coupling are proposed and are validated as
predictors of faulty ADTs. The main differences and simi-
larities between the work here and [lo] are as follows (see
Table 9). They did not empirically validate their metrics on
00 programs in a context of inheritance but they used a
similar validation approach. In both cases, statistical model

were built to predict component (i.e., ADTs and classes,
respectively) fault-proneness (i.e., probability of fault de-
tection) by using multiple logistic regression.

In [30], a validation of Chidamber and Kemerer’s 00
metrics studying the number of changes performed in two
commercial systems implemented with an 00 dialect of Ada
was conducted. They show that Chidamber and Kemerer’s
00 metrics appeared to be adequate in predicting the fre-
quency of changes across classes during the maintenance
phase. They provided a model to predict the number of
modifications in a class, which they assume is proportional to
change effort and is representative of class maintainability.

The work described in [30] is comparable to our work in
the following ways (see Table 9). Li and Henry [30] used
the same suite of 00 metrics we used. They also used data
from products implemented in an 00 language which pro-
vides multiple inheritance, overloading, and polymor-
phism. On the other hand, we used the probability of fault
detection as the dependent variable of our statistical model.
Thus, our goal was to assess whether Chidamber and Ke-
merer’s 00 metrics were useful predictors of fault-prone
classes. In addition, in [30] (multivariate) least-square linear
regression was used to build a predictive model whereas
we used logistic regression (i.e., a classification technique
for binary dependent variables). The nature of our depend-
ent variable (i.e., (non)occurrence of fault detection) has led
us to use logistic regression [25].

TABLE 9
SOME DIFFERENCES AND SIMILARITIES BETWEEN

[I 01, [30], AND OUR WORK

VALIDATION WORK

5 CONCLUSIONS AND FURTHER WORK

In this study, we collected data about faults found in object-
oriented classes. Based on these data, we verified how
much fault-proneness is influenced by internal (e.g., size,
cohesion) and external (e.g., coupling) design characteris-
tics of 00 classes. From the results presented above, five
out of the six Chidamber and Kemerer’s 00 metrics appear
to be useful to predict class fault-proneness during the
high- and low-level design phases of the life-cycle. In addi-
tion, Chidamber and Kemerer’s 00 metrics show to be
better predictors than the best set of ”traditional” code met-
rics, which can only be collected during later phases of the
software development processes.

This empirical validation provides the practitioner with
some empirical evidence demonstrating that most of Chi-
damber and Kemerer’s 00 metrics can be useful quality

760 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL 22, NO. 10, OCTOBER 1996

indicators. Furthermore, most of these metrics appear to be ACKNOWLEDGMENTS _ _
complementary indicators which are relatively independent
from each other. The results we obtained provide motiva-
tion for further investigation and refinement of Chidamber
and Kemerer’s 00 metrics.

Finally, results seem to show that one would likely be able
to make inspections of design or code artifacts more efficient
if they were driven by models such as the one we built in
Section 3.2.3, based on Chidamber and Kemerer’s 00 met-
rics. However, how to help focus inspections on error-prone
parts in large programs is still an important issue to be fur-
ther investigated. Our results should be interpreted as maxi-
mum possible gains and not as expected gains.

Our future work includes:
* Replicating this study in an industrial setting: A sam-

ple of large-scale projects developed in C++ and

We want to thank (1) Dr. Gianluigi Caldiera for helping us
teach the OMT method; (2) A. Belkhelladi, K. El Emam, C.
Kemerer, J. Kontio, C. Seaman, F. Shull, and R. Tesoriero for
their suggestions that helped improve both the content and
the form of this paper; and (3) the students of University of
Maryland for their participation on this study. This work
will not be possible without the help of Prem Devanbu
(AT&T Labs). Finally, we wish to thank the anonymous
reviewers and Hausi Muller, the editor of this paper, for
their valuable comments. This work was supported, in part,
by the National Aeronautics and Space Administration un-
der Grant No. NSG-5123, the National Science Foundation
under Grant No. 01-5-24845, Fraunhofer Gesellschaft,
UMIACS, and Westinghouse Corporation.

Ida95 in thve framework of the NAsA Goddard Flight
Dynamics Division (Software Engineering Labora-
tory). This work should help us better l.lnderstand the
prediction capabilities of the suite of 00 metrics de-
scribed in this paper. Replication should help us
achieve the following objectives:

and provide guidance to improve
the allocation of resources with respect to test
and verification efforts.

of the impact of
00 design strategies (e.g., single versus multi-
ple inheritance) on different types of defects and
rework. In this study, because the data collet-
tion process was not fully adequate, we were
unable to analyze the relationships of 00 de-
sign metrics with rework and different defect

REFERENCES
[l] F.B. Abreu and R. Carapuca, ”Candidate Metrics for Object-

Oriented Software within a Taxonomy Framework,”]. System and
Software, vol. 26, no. l, pp. 87-96, Jan. 1994.

[2] Amadeus Software Research, Gettzng Started With Amadeus,
Amadeus Measurement System, 1994.

[3] V Basili and D Hutchens, ”Analyzing a Syntactic Family of
Complexity Metrics,” IEEE Trans. Software Eng, vol 9, no. 6,
pp. 664-673, June 1982
V. Basili, R. Selby, and T.-Y. Phdips, ”Metric Analysis and Data
Validahon Across Fortran Projects,” IEEE Trans Sofbare Eng ,

V. Basili, L Briand, and W. Melo, ”Measuring the Impact of Reuse
on Software Quallty and Producbvivlty,” Comm ACM, vol 39, no
10, pp: 106116, Oct. 1996.
J M Bieman and B.-K. Kang, ”Cohesion and Reuse in an Object-
Oriented System,” Proc ACM SIGSOFT Symp Software Xeusabzhfy,
Seattle, Wash., pp. 259-262,1995.

*

. ~~i~ a better [4]

9, no. 6, pp. 652-663, June 1983
[5]

[6]

”
categories. With regard to rework, we believe
that this drawback could be overcome by refin-
ing our data collection process to capture the
amount of effort spent debugging each class in-
dividually. With regard to defect categories, we
would need to collect additional information
about defect origin (e.g., specification, design,
implementation, previous change), defect type
(e.g., omission/ commission), defect class (e.g.,
external interface, internal interface, etc.), etc.
Investigating the prediction usefulness of Chi-
damber and Kemerer’s 00 design metrics with
regard to different types of faults, e.g., fault se-
verity. The fault-proneness prediction capabili-
ties of any suite of 00 may be different de-
pending on the type of fault used.

Studying the variations, in terms of metric definitions
and experimental results, between different 00 pro-
gramming languages. The fault-proneness prediction
capabilities of the suite of 00 metrics discussed in
this paper can be different depending on the pro-
gramming language used. Work must be undertaken
to validate this suite of 00 design metrics across dif-
ferent 00 languages, e.g., Ada95, Smalltalk, C++, etc.

* Extending the empirical investigation to other 00
metrics proposed in the literature and develop
improved metrics, e.g., more language specific, based
on more sophisticated hypotheses.

[7]
[8]

B. Boehm, Softzkre Eng. Economics, Prentice-Hall, 1981.
L. Briand, V. Basili, and C. Hetmanski, ”Developing Interpretable
Models with Optimized Set Reduction for Identifying High Risk
Software Components,” IEEE Trans. Software Eng., vol. 19, no. 11,

L. Briand, K. El Emam, and S. Morasca, Theoretical and Empirical
Validation of Software Product Measures, ISERN Technical Report

[lo] L. Briand, S. Morasca, and V. Basili, De$ning and Vdidating High-
Level Design Metrics, Techtucal Report CS-TR-3301, Univ. of
Maryland, Dept. of Computer Science, College Park, Md., 1994.

[ll] L. Briand, S. Morasca, and V. Basili, ”Property Based Software
Engineering Measurement,” I E E E Trans. Software Eng., vol. 22,
no. 1, pp. 68-86, Jan. 1996.

1121 I. Brooks, “Object-Oriented Metrics Collection and Evaluation
with a Software Process,” Proc. OOPSLA ’93 Workshop Processes
and Metrics for Object-Oriented Software Development, Washington,
D.C., 1993.

[13] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for Object-
Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6,
pp. 476493, June 1994.

[14] S.R. Chidamber and C.F. Kemerer, ”Authors Reply,” l E E E Trans.
Software Eng., vol. 21, no. 3, p. 265, Mar. 1995.

[15] N.I. Churcher and M.J. Shepperd, ”Comments on ‘A Metrics Suite
for Object-Oriented Design,”’ IEEE Trans. Software Eng., vol. 21,
no. 3, pp. 263-265, Mar. 1995.

[16] S.D. Conte, H.E. Dunsmore, and V.Y. Shen, Software Eng. Metrics
and Models, Benjamin/Cummings, 1989.

[17] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood, ”The Effect
of Inheritance Depth on the Maintainability of Object-Oriented
Software,” Empirical Software Eng.: An Int’l]., vol. 1, no. 2,
Feb. 1996.

[18] P. Devanbu, ”GENOA/ GENII-A Customizable Language and
Front-End Independent Code Analyzer,” Proc. 14th Int’l Con$
Software Eng., Melbourne, Australia, 1992.

pp. 1,028-1,044, NOV. 1993.
[9]

95-03,1995.

BASIL1 ET AL.: A VALIDATION OF OBJECT-ORIENTED DESIGN METRICS AS QUALITY INDICATORS 76 1

[19] P. Devanbu, S. Karstu, W. Melo, and W. Thomas, ”Analytical and
Empirical Evaluation of Software Reuse Metrics,” Proc. 18th Int’l
Con$ Software Eng., pp. 189-199, Berlin, Germany, 1996.

[20] R.B. Grady, Practical Software Metrics for Project Management and
Process Improvement, Prentice Hall, 1992.

[21] W. Harrison, ”Using Software Metrics to Allocate Testing Re-
sources,” J. Management Information Systems, vol. 4, no. 4,
pp. 93-105, Apr. 1988.

[22] W. Harrison, ”Software Measurement: A Decision-Process Ap-
proach,” Advances in Computers, vol. 39, pp. 51-105,1994,

[23] G. Heller, J. Valett, and M. Wild, Data Collection Procedure for Soft-
ware Eng. Laboratory (SEL) Database, SEL Series, SEL-92402,1992.

[24] M. Hitz and B. Montazeri, ”Chidamber and Kemerer‘s Metrics
Suite: A Measurement Theory Perspective,” IEEE Trans. Software
Eng., vol. 22, no. 4, pp. 267-271, Apr. 1996.

[25] D. Hosmer and S. Lemeshow, AppIied Logistic Regression, Wiley-
Interscience, 1989.

[26] N.E. Fenton, Software Metrics: A Rigorous Approach, Chapman &
Hall, 1991.

[27] C.M. Judd, E.R. Smith, and L.H. Kidder, Research Methods in Social
Relations, Harcourt Brace Jovanovich College Publishers, 1991.

[28] T.M. Khohgoftaar, AS. Panday, and H.B. More, “A Neural Net-
work Approach for Predicting Software Development Faults,”
Proc. Third Int’l IEEE Symp. Software Reliability Eng., North Caro-
lina, 1992.

[29] F. Lanubile and G. Visaggio, ”Evaluating Predictive Quality
Models Derived from Software Measures: Lessons Learned,” to
appear in the 1. Soflware and Systems; also available as Technical
Report CS-TR-3606, Univ. of Maryland, Computer Science Dept.,
College Park, Md., 1996.

[30] W. Li and S. Henry, ”Object-Oriented Metrics that Predict Main-
tainability,” J. Systems and Software, vol. 23, no. 2, ‘pp. 111-122,
Feb. 1993.

[31] F. McGarry, R. Pajersk, G. Page, S. Waligora, V. Basili, and M.
Zelkowitz, Software Process Improvement in the N A S A Software Eng.
Laboratory. Camegie Mellon Univ., Software Eng. Inst., Technical
Report CMU/SEI-95-TR-22, Dec. 1994.

[32] J. Munson and T. Khoshgoftaar, ”The Detection of Fault-Prone
Programs,” I E E E Trans. Software Eng., vol. 18, no. 5, May 1992.

[33] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.
Lorensen, Object-Oriented Modeling and Design, Prentice Hall, 1991.

[34] R. Selby and A. Porter, ”Learning from Examples: Generation and
Evaluation of Decision Trees for Software Resource Analysis,”
I E E E Trans. Software Eng., vol. 14, no. 2, pp. 1,743-1,747, Feb. 1988.

[35] N. Schneidewind, ”Methodology for Validating Software Met-
rics,” I E E E Trans. Software Eng., vol. 18, no. 5, pp. 410-422, May
1992.

[36] B. Stroustrup, The C++ Programming Language, Addison-Wesley
Series in Computer Science, second edition, 1991.

[37] D.A. Young, Object-Oriented Programming with C++ and OSFIMO-
TIF, Prentice Hall, 1992.

Victor R. Basili is a professor in the Institute for
Advanced Computer Studies and the Computer
Science Department at the University of Mary-
land, College Park, Maryland, where he has
served as chairman for six years.

He is one of the founders and principals in the
Software Engineering Laboratory, a joint venture
between NASA Goddard Space Flight Center,
the University of Maryland, and Computer Sci-
ences Corporation, established in 1976. He is a
recipient of the first Process Improvement

Achievement Award by the IEEE and the SEI, and the NASA Group
Achievement Award.

He has served as editor-in-chief for the /€E€ Transactions on Soff-
ware Engineering; general chair of the 15th International Conference
on Software Engineering in 1993, in Baltimore, Maryland; program
chair for the Sixth International Conference on Software Engineering in
1982, in Japan; and generaVprogram chair for several other confer-
ences. He is an IEEE fellow and member of the IEEE Computer Soci-
ety and Golden Core.

Lionel C. Briand received the BS degree in
geophysics and the MS degree in computer
science from the University of Paris VI, France,
in 1985 and 1987, respectively. He received the
PhD degree, with high honors, in computer sci-
ence from the University of Paris XI, France, in
1994. Dr. Briand started his career as a software
engineer at CIS1 Ingenierie, France. Between
1989 and 1994, he was a research scientist at
the NASA Software Engineering Laboratory, a
research consortium: NASA Goddard Space

Flight Center, University of Maryland, and Computer Science Corpora-
tion. He then held the position of lead researcher of the software engi-
neering group at CRIM, the Computer Research Institute of Montreal,
Canada. He is currently the head of the Quality and Process Engi-
neering Department at the Fraunhofer Institute for Experimental Soft-
ware Engineering, an industry-oriented research center located in
Rheinland-Pfalz, Germany. His current research interests and indus-
trial activities include measurement and modeling of software devel-
opment products and processes, software quality assurance, domain-
specific architectures, reuse, and reengineering.

Walcelio L. Melo received the following degrees
in computer science: BSc in 1983 from the Uni-
versity of Brasilia, Brazil; MSc in 1988 from the
Federal University of Rio Grande do SUI, Brazil;
and a PhD in 1993 from Joseph Fourier Univer-
sity, Grenoble, France. He is now the lead re-
searcher in software engineering at the Centre
de Recherche lnformatique de Montreal (CRIM),
Canada. At CRIM, he develops research and
technology transfer projects related to software
measurement, software reuse, object-oriented

technology, software architecture, and software process modeling. He
is also an adjunct professor at the McGill University School of Com-
puter Science and a former member of the NASA Software Engineer-
ing Laboratory. From 1983 to 1989, he worked as a system analyst for
the Brazilian Federal Bureau of Data Processing, where he developed
several business-oriented software applications. From 1989 to 1993,
he developed research related to software process programming lan-
guages at the Software Engineering Laboratory of Grenoble, France.
From 1994 to 1996, he worked as a research associate at the Univer-
sity of Maryland Institute for Advanced Computer Studies, where he
developed research projects related to software maintenance, software
metrics, and object-oriented technology. He is a member of the IEEE
Computer Society.

