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In planning software process improvement activities, 
it is essential to determine the factors that most influ- 
ence the success of a software project. In this article, 
we present an investigative and analytical framework 
for evaluating software process factors based on the 
Goal/Question/Metric (GQM) paradigm. We built de- 
scriptive models of the software process, defects, and 
cost. These models were used as a common basis of 
quantitative analysis in the study. We also developed 
evaluative models that clarify the relationship be- 
tween the basic metrics, the analysis method, and the 
goals of the analysis. We confirmed the usefulness of 
our analytical framework, by applying it in an actual 
development environment at Matsushita Communica- 
tion Industrial Company in Japan, where we studied 
four communications-software projects. This article 
reports the patterns we noted in the data and sug- 
gests process improvement activities based on those 
findings. 

1. INTRODUCTION 

When planning improvements to the software pro- 
cess, it is essential to understand what process fac- 
tors and customer needs influence product quality. 
Process improvement activities should be based on 
an understanding of the relationship between pro- 
cess characteristics, product characteristics, and cus- 
tomer requirements. By building models of the rela- 
tionships between these factors, we can improve our 
understanding of the software process. Measure- 
ment is central in recognizing these relationships 
and in refining and validating them. 

Address correspondence to Dr. Y Mashiko, Communication In- 
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To improve a software process we must first spec- 
ify our improvement goals and the criteria by which 
we will evaluate success. The goal may be, for exam- 
ple, an increase in customer satisfaction or a reduc- 
tion in development cost. Specific goals depend on 
the needs of the organization. After organizational 
goals have been set and the corresponding criteria 
for evaluation have been defined, we can examine 
what factors influence those criteria. Based on the 
importance of each evaluation criterion, we can set 
priorities among the various possible improvement 
actions aimed at altering specific influential factors. 

In this article, we report on a study of four soft- 
ware development projects at the Matsushita Com- 
munication Industrial Company in Japan. We stud- 
ied the factors that influence product characteristics 
and business needs, and analyzed them, using the 
Goal/Question/Metric (GQMI paradigm and sev- 
eral other models (Basili and Weiss, 1981; Basili and 
Weiss, 1984; Basili and Selby, 1984; Basili and 
Rombach, 1988; Basili, 1992). 

1.1. Purpose 

In this study we analyzed the relationship between 
process and product characteristics. Our goal was to 
identity factors that influence customer satisfaction. 
We looked at three aspects of the projects, the type 
of defects, and relationship between defects and 
cost, and the product architecture, to answer the 
following questions. 

Type of defect 

l What types of defects are most observable to the 
customer? 
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During which phase are most of them injected? 

What kind of human error causes most of them? 

In what product part can most of them be found? 

Relationship between defect and cost 

Which defects are the most costly to repair? 

Product architecture 

What product architecture provides good cus- 
tomer satisfaction through initial product quality 
and ease/economy of defect correction and main- 
tenance? 

. .2. Approach 

We used a four-step measurement, modeling, and 
analysis method, as outlined below. 

1. 

2. 

3. 

4. 

Set a basis of quantitative analysis by building 
models. 

First, we built several descriptive and evalua- 
tive models.’ Descriptive models explain various 
aspects of the software product and development 
environment, e.g., development process, defect, 
cost, and product architecture. Evaluative models 
define the criteria by which the product will be 
evaluated. These models lay the foundation for 
our analysis, and all evaluations, comparisons, 
and conclusions in this study are based on these 
models. We show these models in 2.1 and 2.2. 
Define GQM models. 

Second, we specified, the structure of the anal- 
ysis by defining the goals, questions, and metrics 
using the GQM paradigm. In this step we identi- 
fied the metrics to be collected and how we would 
interpret them. We show these models in 2.3. 
Look for patterns in the data. 

Third, we looked for patterns in the data, iden- 
tifying patterns common to all projects and pat- 
terns specific to individual projects. In this step 
we determined which factors most influenced the 
process and product, based on the evaluative 
models defined in Step 1. We show the results of 
the evaluation and the patterns found in the data 
in 3.1 and 3.2, respectively. 
Analyze how and where to improve the process 
and product design (based on the patterns found 
during Step 3). 

‘Note that we use the word “model” in a rather broad sense. In 
this text, it represents an abstraction of the relationship among a 
set of variables; it does not necessarily imply predictive capability 
or include causal relationships between elements, as is sometimes 
the case. 

Finally, by quantitatively analyzing the patterns 
of product and process characteristics and the 
factors influencing them, we were able to predict, 
with varying levels of confidence, the effective- 
ness of possible improvement actions suggested 
by the patterns. We show them in 3.3. 

1.3. Projects Studied 

We studied four projects, referred to throughout the 
article as projects, A, B, C, and D. All are develop- 
ment projects for communications software having 
functionality in data communication, data entry by 
interactive human interface, and data output to pe- 
ripheral devices. These products were developed as 
deliverables for customer contracts. 

Three different product architectures were ap- 
plied on the four projects: projects A and D used a 
control matrix model; project B used a transactions 
switch model; and project C used a message-driven 
model. Only project D had severe memory con- 
straints. 

In the control matrix architecture, the operation is 
described as a finite state machine in the form of a 
matrix. A product consists of a matrix control sub- 
system and a resource management subsystem. The 
matrix control subsystem manages the entire prod- 
uct operation by referencing the matrix. The re- 
source management subsystem provides the matrix 
control subsystem with primitive functions to control 
resources like the display, keyboard, file, and com- 
munication device. In the transaction switch archi- 
tecture, the operation is described as a set of trans- 
actions. A product consists of transaction control 
units and a resource management subsystem, similar 
to the one used in the control matrix architecture. 
Each transaction control unit provides its services by 
means of primitive functions in the resource man- 
agement subsystem. In the message driven architec- 
ture, operation is described as message flow between 
resource control units. A product consists of these 
resource control units. No part of the product pro- 
vides central operational control. Any of these three 
different product architectures could have been cho- 
sen for the four projects studied here. The product 
model for each project was selected by the projects 
themselves, based upon the decision of the engi- 
neers involved in the projects. 

There is a common, standard development pro- 
cess model applied to all four projects. It consists of 
seven phases: requirement analysis, specification 
definition, software design, implementation, includ- 
ing unit testing, integration testing, system testing, 
and acceptance testing. For requirement analysis, 
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specification definition, and the design phase, the ’ the sections that follow and the set of goals, ques- 
development method is not formally specified. How- tions, and metrics (GQMs) outlined in Section 2.3. 
ever, the development teams were familiar with the 
structured analysis and structured design technique 
and applied it to analyze and design the software 

2.1. Descriptive Models 

products. The abstract process cycle model is shown We built descriptive models of process, defect, and 

in 2.1.1. cost. 

Each development team of the four projects had 
more than three years experience of the application 2.1.1. Process model. Figure 1 shows the process 

domain, the development process, and the develop- model we applied to all of the projects analyzed in 

ment method. this study. In the model, project life-cycle activities 
are divided into chronological phases categorized as 

2. ANALYTICAL FRAMEWORK 
either construction or testing phases. Construction 
phases are those in which the product (including all 

The analytical framework for the study is composed documents except test specification) is created or 
of the descriptive and evaluative models described in changed. Testing phases are those in which the 

Phase 1 

Phase 1: Requirement (abbreviated as ‘RQ’) 
-Analysis of the customer needsr 
-Definition of the product with respect to function and 
performance in a form familiar to the customer 
Phase 2 : Specification (abbreviated as ‘SP) 
-Specification of the p&uct with respect to function and performance 
iu a form familiar to the developer but understandable by the customer 
Phase 3 : Design (abbreviated as DS’) 
-De&ions about the global structure of the product with respect to function, 
data and control. usually the decomposition of the product into subsystems 
-Decisions about the details of each subsystem, usually the decomposition of 
each subsystem into program modules 
Phase 4 : Implementation (abbreviated as ‘IP’) 
-Coding of each module 
-Unit testing of each module 
Phase 5 : Integration Testing (abbreviated as ‘IT’) 
-Integration of modules into subsystems 
-Testing of each integrated subsystem 
-Integration of subsystems into the product 
Phase 6 : System Testing (abbreviated as ‘ST) 
-Verification of the correctness of the product against its specification 
Phase 7 : Acceptance Testing /Operation (abbreviated as ‘AT) 
-Validation of the acceptability of the product against its requirement 
XDperation of the customer organization with the developed product 

Figure 1. Process model. 
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product is verified or validated. In the process model, 
phases l-4 (requirement, specification, design, im- 
plementation) are construction phases, while phases 
5-7 (integration testing, system testing, acceptance 
testing/operation) are testing phases. 

In Figure 1, thin arrows indicate defects found; 
the origin of the arrow indicates the phase during 
which a defect is detected, and its end indicates the 
phase during which a defect was injected. 

2.1.2. Defect Model 

(1) Definition and Description of Defect 

We define defect as a factor that requires changes to 
be made to the software product, including docu- 
ments as well as program code. We consider any 
change to the product a defect until the product 
becomes acceptable to the customer. According to 
this definition, any change of requirement or speci- 
fication by the customer is considered a defect. Our 
definitions of defect, error, and fault conform to the 
IEEE/ANSI standard (IEEE982.2). 

In this study, we intended to analyze the devel- 
oper’s capability to communicate with the customer 
during requirement and specification phases. We 
needed this kind of analysis because our goal was to 
clarify those factors that most influence customer 
satisfaction. From the viewpoint of customer satis- 
faction, it is essential to take all changes into ac- 
count and analyze how well the product meets the 
real needs of the customer. For this purpose, we 
classified all changes as shown in (2) in this section. 

Here, we use the work “communication” in the 
broad sense. In the requirement and specification 
phases, the developer defines what the product 
should do through a communication process with 
the customer. If the communication capability of the 
developer were perfect, the product would need no 
change in its requirement and specification after 
delivery unless the operational environment of the 
product changes or the customer was mistaken with 
respect to understanding of the original organiza- 
tional needs. Various factors such as experience in 
the application domain improve communication ca- 
pability. 

We use the following notation for defects 

where D is defect; dl, d2, d3, and d4 are defect 
parameters (defined below); Cd, Sd, and Md are 
defect attributes (defined below); and n is a unique 
identifying number. 

Defect parameters. 

dl Injection phase 

This parameter denotes the phase during which the 
defect was injected. The value of dl is either RQ 
(Requirement), SP (Specification), DS (Design), or 
IP (Implementation). 

d2 Detection phase 

This parameter denotes the phase during which the 
defect was detected. The value of d2 is either RQ, 
SP, DS, IP, IT (Integration Testing), ST (System 
Testing), or AT (Acceptance Testing). 

d3 Error type 

This parameter denotes the type of human error 
that caused the defect. We categorized errors into 
those of omission and those of commission based on 
basic properties of human misunderstandings. More- 
over, we further categorized errors that caused de- 
fects during the requirement and specification phases 
into logic and communication errors. 

l A logic error causes an apparent logical contradic- 
tion or deficiency that can be detected by exami- 
nation of documents without any knowledge of the 
application domain or special features of the envi- 
ronment in which the product is operated. 

l A communication error is caused by poor commu- 
nication between the customer and the developer; 
it has no logical contradiction or deficiency that 
can be detected by examination of documents but 
causes some trouble in the actual operation of the 
product by the customer. Defects caused by a 
communication error can be detected only by 
knowledge of the application domain and the envi- 
ronment in which the product is operated. 

This distinction between logic and communication 
errors is applicable only in the requirement and 
specification phases. All defects injected during de- 
sign or implementation phases are considered logic 
errors. The possible values for d3 are, for RQ and 
SP phases: 

LO logic omission 
LC logic commission 
CO communication omission 
CC communication commission 

For DS and IP phases: 

Om omission 
Cm commission 
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Table 1. Fault Type 

Fault type 

Global structure 
Data structure 
Algorithm 
Human interface 
External interface 
Internal interface 
Initialization 
Constant value 

Abbreviation 

Gstr 
Dstr 
Mgr 
Hitr 
Eitr 
Iitr 
Init 
Cnst 

Definition 

Fault of relationships among subsystems 
Fault of structure of tiles, tables or other data, including fault of data sire 
Fault of algorithm inside program module 
Fault of human interface 
Fault of interface between the product and its external system 
Fault of interface between modules 
Omission or commission of initialization of data entry 
Fault of definition of constant value 

d4 Fault type Md Number of modules affected 

According to the IEEE/ANSI standard, a fault is a 
concrete manifestation of an error. Table 1 shows 
the fault categories we used. 

This parameter denotes the number of modules that 
need to be corrected to fix a defect. Because a 
defect detected during a construction phase does not 
require correction of the source code, we define the 
value of Md for a construction-phase defect as 0 
(e.g., the value of Md is 0 for a defect injected 
during specification and detected during design). 

Defect attributes. 

Cd Cost of defect 

We define cost of defect as the direct expense to fix a 
given defect completely. It includes the costs listed 
below but does not include indirect costs such as 
management, facilities, and installation of the cor- 
rected program. 

l Cost to correct documents and source code 

l Cost to recreate new executable program from 
corrected source code 

l Cost to confirm the corrected function and to 
regression test other portions of the product that 
may have been affected by the correction 

When a defect is not corrected properly in the first 
attempt, subsequent iterations of the correct must 
be done until the defect is eliminated. In this study, 
we did not count iterations on the same defect as 
new defects. Therefore, the cost of the original 
defect includes all iterative attempts to fix it. 

Sd Severity of defect 

We categorized severity of defect into four levels and 
assigned a value to each level, as shown in Table 2. 

2) Classification of Defect 

We classified defects as follows: 

Developer-findable defect 

Logic-based defects are detectable by any developer 
without special capability, while communication- 
based defects are detectable only with knowledge of 
the application domain and the customer’s specific 
needs (i.e., product’s operational environment). 
Hence, we consider those two types separately when 
we analyze software process and product. A devef- 
oper-jindable defect satisfies the following conditions: 

D,(dl, = RQ/SP, d2, = *, d3, = LO/LC, 

d4, = *; Cd,,Sd,,Md,) or 

D,,(dl, = DS/IP, d2, = *, d3, = * , 

d4, = *; Cd,,, Sd,, Md,). 

An asterisk here means that any value is acceptable 
for the attribute, i.e., it is not used for classification. 

Table 2. Severity of Defect 

Level Name Definition 

4 Critical 
3 Essential 

Without tixing a defect at this level, delivery of the product to the client is impossible. 
Without fixing a defect at this level, operation is possible by altering normal operational procedures 

for the system. It must be fixed as soon as possible. 
2 Important Without king a defect at this level, normal operation is impossible. However, the efficiency of system 

operation is improved by fixing it. 
1 Desired A defect at this level does not cause trouble in the efficiency of operation. However, it is desirable to 

fix it from the point of view of the product’s impression on the user. 
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This is a defect detected before or after delivery that 
may or may not be observed by the customer. 

Customer-observable defect 

A customer-observable defect satisfies the following 
conditions 

D,(dl, = *, d2, = AT, d3, = *, d4,, = *; 

Cd,, Sd,, Md,) 

Customer-observable defects are further divided into 
developer-findable defect observed by customer or ad- 
dition or change depending on whether the error is 
logic- or communication-based. 

Developer-jindable defect observed by customer 

This class of defect satisfies the following conditions 

D,(dl, = RQ/SP, d2, = AT, d3, = LO/LC, 

d4, = *; Cd,,Sd,,Md,) or 

D,(dl, = DS/IP, d2, = AT, d3, = *, 

d4, = *; Cd,,, Sd,, Md,). 

Addition or change 

Sometimes during the acceptance testing phase, the 
customer may require additions or changes to the 
original requirement or specification. Although ide- 
ally all such defects would have been detected and 
corrected through effective communication between 
the customer and the developer during the require- 
ment and specification phases, this type of defect 
does occur. An addition or change class defect satis- 
fies the following conditions 

D,(dl, = RQ/SP, d2, = AT, d3, = CO/CC, 

d4, = *; Cd,, Sd,,Md,) 

2.13. Cost model. We built a defect cost-to-fix 
model based on the process model and defect defi- 
nitions outlined in the previous sections. We use the 
following notation to document cost 

CD” Cost spent to fix defect D, 
RE,(D,) Cost spent for reworking in phase i to fix 

defect D,. 

The value is 0 when the injection of D, is after 
phase i or when the detection of D,, is before 
phase i. 

Using this notation, we generated the following 
model. The cost of rework for defect D,, is the sum 
of the costs for reworking individual phases neces- 
sary to hx the defect. 

Cost of rework for defect = CD” = ‘? RI&( 0,). 
i=dl, 

We applied this cost model to measure the cost of 
each defect. 

2.2. Evaluative Models 

We assessed customer satisfaction using the four 
criteria defined below. The evaluative models are 
based on product properties after delivery and 
therefore are observable to the customer. We found 
that intermediate product properties (before deliv- 
ery) generally have little bearing on customer satis- 
faction, and therefore, we did not include those 
factors in our model. 

2.2.1. Reliability. Reliability was evaluated on the 
number of customer-observable defects in the deliv- 
ered product and on the severity class of those 
defects. Figure 2 illustrates our evaluative model of 
reliability. 

2.2.2. Reparability. Availability of the product is 
an important factor in evaluating customer satisfac- 
tion. Product availability depends on both mean 
time between failure (MTBF) and mean time to 
repair (MTTR). MTBF depends mainly on the num- 
ber of customer-observable defects, while the MTTR 
depends on the ease of repairing those defects. 
Although we should consider availability alone, here 
we considered only reparability because it is difficult 
to predict the MTBF of a newly developed product. 

Reparability of product was evaluated on the av- 
erage cost of rework per defect. Figure 3 illustrates 
our evaluative model of reparability. Cost of rework 
was calculated using the cost model shown in Sec- 
tion 2.1.3. 

2.23. User-Friendliness. In our defect classifica- 
tion, we divided customer-observable defects into 
two categories: developer-findable defect observed 
by customer and addition or change. In evaluating 
user-friendliness, we considered addition or change 
class defects separately to evaluate how well the 

Figure 2. Evaluative models of reliability. 
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Figure 3. Evaluative model of reparability. 

product conforms to the real needs of the customer. 
The number of defects of this class is closely linked 
with the degree to which the development organiza- 
tion understands the application domain and the 
customer’s needs. We built an evaluative model for 
user-friendliness which considers both the number 
and severity level of defects of this class in the 
product. Figure 4 illustrates our evaluative model of 
user-friendliness. 

2.2.4. Maintainability. Once a product goes oper- 
ational, it must be updated and changed in accor- 
dance with changes in its operational environment. 
On many projects, maintenance costs represent a 
large part of the total cost spent throughout the 
product’s lifetime. Hence, ease of maintenance is 
one of the central concerns of the customer. 

The long-term maintainability of the product can 
be estimated by the average cost of rework for 
addition or change class defects detected during 
acceptance testing. This is because the number of 
logic defects detected declines sharply shortly after 
the beginning of operation for regularly managed 
projects. We evaluated the product maintainability 
by the average cost of rework for addition or change 
class defects. Figure 5 illustrates our evaluative 
model of product maintainability. 

2.3. GQMs 

We set the goals, questions, and metrics for this 
analysis based on the GQM paradigm. Although we 
set many questions and metrics, we show here only 
those that relate to our discussion of our goals 
stated in Section 1.1. 

(1) Goal of Analysis 

The goal of this analysis was to determine influential 
factors on the software process and to identify pro- 

Fii 4. Evaluative models of user-friendliness. 
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Figure 5. Evaluative model of maintainability. 

cess improvement activities likely to affect those 
factors. From this overall goal, we derived two sub- 
goals, evaluation and characterization, as illustrated 
in Figure 6. 

(2) Questions of Interest 

We devised questions relevant to our analysis goals 
and grouped them into three categories: product- 
related questions, process-related questions, and im- 
provement-related questions. Figure 7 shows the 
questions of interest for each category. 

Product-related questions are for describing vari- 
ous aspects of the product, e.g., logical/physical 
attributes, context of operation, product model, 
cost, defects, and validity of the data collected. 

Process-related questions are for describing vari- 
ous aspects of the process, e.g., process model, 
method, technique, process conformance, domain 
understanding, and validity of the data collected. 

Improvement-related questions are for identifying 
and analyzing the influential factors on process 
improvement. 

(3) Metrics of Interest 

We selected metrics to answer our questions. Figure 
8 shows the metrics of interest. 

III. DATA AND RESULTS 

Using the analytical framework and the models de- 
scribed in Section 2, we examined the four projects 
and obtained the following data and results. 
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Figure 7. Questions of interest. 

3.1. Results of Evaluation 

First we rated the projects using the evaluative mod- 
els of reliability, reparability, user-friend- 
liness, and maintainability. The number of each class 
of defect was normalized by the project size-mea- 
sured as the number of lines of source code in the 
delivered product, not including comments. 

In addition to examining the raw values of nor- 
malized number of defects and average cost of re- 
work, we rated each project on a five-grade scale 
(where 1 is the minimum and 5 is the maximum) to 
visualize general tendencies. The rating was done by 
calculating the z score of each project using the 
following formula 

X-X 
z=- 

s 

where s is the estimate of standard deviation and f 
is the estimate of mean. Table 3 shows the rating 
rule. When the distribution is the standard normal 
distribution, each rating interval includes 20% of all 
projects. Because these estimates were done for only 
the four projects, and not for a large number of past 
projects, we consider this evaluation only a compari- 
son among the sample projects. 

Table 3. Division of Interval of Z, and assignment of 
rating value 

range of 2 rating 

- 0.84 2 2 5 
-0.25 2 2 > -0.84 4 
0.2srz> -0.25 3 
0.84 r 2 > 0.25 2 

z > 0.84 1 

Table 4 summarizes the evaluation results. The 
projects have diverse ratings across the evaluation 
criteria. Except for project B, which rates very high 
overall, no one project is simply good or bad in every 
category. 

ForprojectA from the point of view of the customer, 
its reliability and user-friendliness are very poor, 
while its reparability and maintainability are very 
good. This implies that the product is likely to 
keep up with various changes in the operational 
environment although its initial quality seems 
poor. Hence, it is reasonable to expect that the 
product will satisfy the customer in the long run 
despite its poor initial quality evaluation. 

For project B, the results of evaluation are good on 
the whole. Its reliability and user-friendliness 
are evaluated best among the four projects. We 
can expect that its good initial quality satisfies 
the customer. Its reparability and maintainability 
are also good, but not as good as project A. We 
can expect that the product will satisfy the cus- 
tomer both in the short term and in the long run 
as well. 

For project C, its reliability is poor and user-friendli- 
ness is fair. Therefore, its initial quality may not 
satisfy the customer. On the other hand, because 
its reparability is good and maintainability is fair, 
we can expect that the product will keep up 
fairly well with changes required in the opera- 
tional environment and may prove more satisfac- 
tory in the long run. 

For project D, its reliability is good, and user-frien- 
dliness is not necessarily bad. The number of 
additions or changes due to severe defects (N4) 
is small. This indicates that perhaps most of the 
additions and changes were made to enhance 
the product, not to eliminate significant defects. 
Hence, it is reasonable to conclude that project 
D’s initial quality is good. Its reparability and 
maintainability, however, are the worst among 
the four projects, indicating that it will be dif- 
ficult for the project to keep up with the changes 
required in the operational environment. There- 
fore, it is unlikely that the product will satisfy 
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Table 4. Summary of Evaluation 

Evaluation criteria A 

Reliability Nl/KLOC 1.40 
(without regard Value of z 1.21 

to severity) Rating 1 
Reliability N2/KLOC 0.90 

(severe defect) Value of 2 1.06 
Rating 1 

Reparability Cl 8.58 
Value of 2 - 0.65 

Rating 4 

User friendliness N3/KLOC 0.48 
(without regard Value of 2 0.31 

to severity) Rating 2 
User friendliness N4/KLOC 0.42 
(severe defect) Value of z 1.26 

Rating 1 

Maintainability c2 10.65 
Value of 2 -0.98 

Rating 5 

Project Estimate 

B C D % SD 

0.25 0.95 0.67 0.82 0.48 
- 1.17 0.27 - 0.30 

2 4 0.:5 
0.74 0.17 0.49 0.39 

- 0.88 0.96 -0.83 
5 2 4 - 

9.80 10.46 22.63 12.87 5.55 
- 0.47 - 0.37 1.49 - - 

4 4 1 - - 

0.05 0.39 0.67 0.40 0.26 
- 1.34 - 0.02 1.05 

5 3 1 
0.05 0.25 0.17 0.22 0.16 

-1.11 0.20 - 0.36 - - 
5 3 4 - - 

14.00 15.06 22.63 15.59 5.06 
-0.31 -0.10 1.39 - - 

4 3 1 - - 

the customer in the long run in spite of its initial 
good quality. This is just the opposite of proj- 
ect A. 

We drew the following lessons from these find- 
ings: 

1) Importance of evaluating projects from various 
viewpoints 

We evaluated projects from various viewpoints based 
on the GQM paradigm, with a wide range of results, 
as illustrated in Table 4. This diversity indicates that 
it is not only insufficient, but dangerous, to analyze a 
project by a single criterion, such as number of 
defects. For example, project D has good quality in 
the context of the number of defects but poor main- 
tainability, while project A has poor quality but good 
maintainability. 

To improve software processes efficiently and rapidly, 
it is critical to accumulate experiences effectively 
and to integrate them as a whole. Hence, we tried to 
draw the maximum number of lessons, even from 
projects that seem to be failures. In this study, by 
closely analyzing the projects that seem to have poor 
quality (projects A and C), we can see that these 
projects may rate differently when evaluated on dif- 
ferent criteria (e.g., quality and maintainability). 

2) Relationship between product quality and prod- 
uct maintainability 

From Table 4, we cannot observe any pattern be- 
tween quality (measured as the number of defects) 
and maintainability (measured as least cost to fix). 
At the beginning of operation of a newly developed 

system, customers are apt to evaluate the product by 
the number of initial customer-observable defects. 
However, in the long run, another property, such as 
maintainability, may become more important to the 
customer. 

3) Associated factors 

Overall, product reliability and user-friendliness 
seem to be affected mainly by human factors, such 
as process conformance and domain understanding. 
Product reparability and maintainability seem to be 
affected more by other factors, such as methods, 
techniques, memory constraints, and product archi- 
tecture. 

3.2. Influential Factors 

After the initial evaluation of reliability, reparability, 
user-friendliness, and maintainability, we sought to 
identify factors that appeared to have influenced 
each of these evaluation criteria. We classified in- 
fluential factors in two groups: those common to all 
projects and those specific to individual projects. In 
the sections that follow, we discuss the common 
factors and the project-specific factors as they affect 
each of the evaluation criteria. 

3.2.1. Common Factors. Influential factors com- 
mon to many projects usually stem from general 
properties of the development organization and the 
application domain, e.g., level of personnel, manage- 
ment strategy, process model characteristics, pecu- 
liarities of the application domain. Hence, these 
factors can be especially useful when identifying 
activities to improve the overall project organization. 
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A Reliability. We set the number of customer- 
observable defects as the measure of reliability. 
Questions 3.1 and 3.2 in Figure 7 identify the factors 
that influence this number. Figures 9 and 10 summa- 
rize the data for those questionss Figures 9.1-9.3 
show, respectively, the distribution of defects by 
injection phase, error type, and fault type. Figures 
10.1-10.3 show, respectively, the percentage of se- 
vere defects by injection phase, error type, and fault 

type. 
These patterns of interest were noted: 

Injection phase 

n ” 06 q C q D 

Figure 9.1. Distribution of customer-observable defect by 
injection phase. 
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Figure 9.2. Distribution of customer-observable defect by 
error type. 
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Figure 9.3. Distribution of customer-observable defect by 
fault type. 
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Figure 10.1. Distribution of proportion of severe cus- 
tomer-observable defect by injection phase. 
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Figure 10.2. Distribution of proportion of severe cus- 
tomer-observable defect by error type. 
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Figure 10.3. Distribution of proportion of severe cus- 
tomer-observable defect by fault type. 

. Al: The fault type for more than 80% of the 
defects is either algorithm, human interface, or 
external interface (Figure 9.3). For project D, the 
proportion of algorithm type faults is smaller than 
the others. This is probably because review pro- 
cesses during design and implementation were ef- 
fective performed (Figure 9.11, and defects of 
algorithm fault type in these two phases were 
removed before the customer used the product. 
For the other three projects, on the other hand, 
more than half of customer observable defects 
were injected during design and implementation. 
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Figure 11.1. Distribution of average cost of rework for 
customer-observable defect by injection phase. 

Error type 

Figure 11.2. Distribution of average cost of rework for 
customer-observable defect by error type. 

. 
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For all projects, most defects of fault type other 
than algorithm, human interface and external in- 
terface, are removed before the customer began to 
use the project in this development environment. 

A2r The highest proportion of severe defects is 
among those caused by an external interface fault. 
More than 90% of the external interface fault 
defects for projects A, B, and C, are severe. For 
project D, the proportion is 50%, but all of pro- 
ject D’s severe defects were due to external inter- 
face faults (Figure 10.3). 

l A3: Errors of omission represent at least 40% of 
the defects (Figure 9.2). Except for project D, they 
are mostly categorized as severe (Figure 10.2). 
Project D has a lower severe defect rate than the 
others (Table 4). 

B Reparability We set the average cost of rework 
for a customer-observable defect as the measure of 
reparability. Question 3.3 in Figure 7 identifies the 
factors that influence this number. Figure 11 sum- 
marizes the data for this question. Figure 11.1-11.3 
show, respectively, the distribution of the average 
cost of rework for this class of defect by injection 
phase, error type, and fault type. Figure 11.4 shows 

t-1 
.,. .,. : 

Figure 11.3. Distribution of average cost of rework for 
customer-observable defect by fault type. 

SP 

Figure 11.4. Distribution of average cost of rework for 
customer-observable defect by rework phase. 
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the distribution of average cost of rework for this 
class of defect among rework phases. Based on the 
cost model definition, the sum of average costs for 
each rework phase is not necessarily equal to the 
average cost of rework for a class of defect. 

These patterns of interest were noted: 

Bl: A defect injected during the requirement 
phase costs at least 44% more to fix than an error 
injected during any other phase (Figure 11.1). 

B2: A defect caused by an omission error is more 
costly to fix than a defect caused by a commission 
error. The difference is from 5% to 13% for 
projects A, B, and C, while it is more than 400% 
for project D (Figure 11.2). 

C User-Friendliness. We set the number of addi- 
tion or change class defects as the measure of user- 
friendliness. (It is possible in actual business envi- 
ronments that requests for addition or change are 
desirable but not practical because of their very high 
costs. We should take this factor into account when 
examining user-friendliness. For example, we may 
consider a software product not user-friendly if it 
has a small number of addition or change defects 
throughout its lifetime because it requires too much 
effort to make even small additions or changes.) In 
our study, however, very few requests for addition or 
change by the customer were impossible because of 
high cost. Therefore, we consider the evaluative 
model of Figure 4 as valid in this study. Questions 
3.4 and 3.5 identify the factors that influence this 
number. Figures 12.1-3 and 13.1-3 summarize the 
data for these questions. Figures 12.1-12.3 show, 
respectively, the distribution of additions or changes 
by injection phase, error type, and fault type. Figures 
13.1-13.3 show, respectively, the percentage of se- 
vere defects for each division of addition or change 
by injection phase, error type, and fault type. 

These patterns of interest were noted: 

Cl: More than 60% of addition or change class 
defects are caused by omission errors (Figure 12.2). 

C2: More than 80% of addition or change class 
defects are due to human interface or external 
inteflace faults (Figure 12.3). 

D Maintainability. We set the average cost of re- 
work for addition or change class defects as the 
measure of maintainability. Question 3.6 in Figure 7 
identifies the factors that influence this number. 
Figures 14.1-4 summarize the data for this question. 
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Fire 12.1. Distribution of addition or change by injec- 
tion phase. 

Figure 12.2. Distribution of addition or change by error 
type. 

Figure 12.3. Distribution of addition or change by fault 
type. 

Figures 14.1-14.3 show, respectively, the distribution 
of the average cost of rework for this class of defect 
by injection phase, error type, and fault type. Figure 
14.4 shows the distribution of average cost of rework 
for this class of defect among rework phases. Again, 
note that the sum of the average costs for each 
rework phase is not necessarily equal to the average 
cost of rework for a class of defect. 

This pattern of interest was noted: 

l Dl: An addition or change injected during the 
requirement phase costs roughly twice as much (or 
more) to fix than one injected during specification 
(Figure 14.1). 
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Project A 

PAl: The cost of rework on phases after the design 
phase is at least 20% less for project A then for any 
other project (Figures 11.4 and 14.4). We discuss the 
reason in 3.3, (3). 

Project B 

PBl: There are no addition or change class defects 
due to an external interface fault for project B 
(Figure 12.3) b ecause the external interface was 
same as an old system. Therefore, special design 
consideration of external interface was not neces- 
sary. 

Project C 

PCl: Cost of rework for addition or change class 
defects caused by a commission error for project C 
is at least double the average for any other project 
(Figure 14.2). We surmise the reason is product 
architecture. We discuss the reason in 3.3, (3). 

Project D 

PDl: Cost of rework for a defect caused by an 
omission error for project D is approximately double 
the average for any other project (Figures 11.2 and 
14.2). 

Figure 13.1. Distribution of proportion of severe addition 
or change by injection phase. 
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Figure 13.2. Distribution of proportion of severe addition 
or change by error type. 
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Figure 13.3. Distribution of proportion of severe addition 
or change by fault type. 

3.2.2. Project-Specific Factors. By analyzing the 
patterns particular to a given project, we can assess 
the strength or weakness of various aspects of its 
development environment, e.g., method, technique, 
personnel, and management approach. This knowl- 
edge can influence the processes that may be used 
on future projects with similar characteristics. We 
observed the following project-specif& patterns in 
the four projects. the reasons for the resulting pat- 
terns will be discussed in Section 3.3. 

~. . . 

w EIB EC anD 

Figure 14.1. Distribution of average cost of rework for 
addition or change by injection phase. 

Figure 14.2. Distribution of average cost of rework for 
addition or change by error type. 
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Figure 14.3. Distribution of average cost of rework for 
addition or change by fault type. 

Rawork phase 
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Figure 14.4. Distribution of average cost of rework for 
addition or change by rework phase. 

PD2: Cost of rework after the implementation phase 
is much higher for project D than the average for 
other projects. For customer-observable defects, the 
cost is approximately double the average for other 
projects: for addition or change class defects, the 
cost is at least 60% more than the average for other 
projects (Figures 11.4 and 14.4). 

We surmise the reason is memory constraint. We 
discuss the reason is 3.3 (4). 

3.3. Discussion and Recommendations 

In this section, we suggest process and product de- 
sign improvements based on our analysis of the 
pattern observed. We recommend improvement ac- 
tivities in the context of the three main study areas: 
type of defect, relationship between defect and cost, 
and the effect of product architecture. 

1) Type of defect 

The main cause of customer-observable defects is 
algorithm, human interface, and external interface 
faults (from Al). The main cause of addition or 
change class defects is human interface and external 
interface faults (from C2). Therefore, preventing 

q C IllID 

algorithm faults would improve reliability, and pre- 
venting human interface and external interface faults 
would improve both reliability and user-friendliness. 
The prevention of external interface faults would be 
especially effective in reducing severe defects (from 
A2 

These findings support the introduction of tech- 
niques such as prototyping of human-machine inter- 
face, code inspection, and the thorough review of 
external interfaces. In the current development pro- 
cess standard, engineers are not forced to apply 
those techniques in the appropriate development 
phases. This result shows adoption of those popular 
techniques would be useful for improving the devel- 
opment environment of this study. Without quanti- 
tative analysis, however, we might choose popular 
but not effective improvement actions in a given 
environment. This study illustrates the efficiency of 
analyzing type of defects when we try to plan im- 
provement actions most suitable to individual envi- 
ronments. 

2) Relationship between defect and cost 

The injection phase is an important factor influenc- 
ing the cost of rework (from Bl and Dl). Defects 
injected during the requirement phase are extremely 
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expensive. Therefore, it is critical to prevent defect 
injection during this phase. It is expected that the 
introduction of such requirement analysis tech- 
niques are prototyping would be effective in prevent- 
ing requirement-phase errors. 

This study also shows that customer-observable 
defects caused by omission are more expensive than 
those caused by commission. At first glance, our 
results appear to contradict the results of Selby and 
Basili (1991) with regard to the relative cost of 
defects caused by omission errors versus those 
caused by commission errors. In their study, errors 
of omission were less expensive than errors of com- 
mission when found during the review process. How- 
ever, in this study, if we considered all logic defects 
found during all phases, not just those that were 
customer observable, we have supportive results; i.e., 
we find the cost of rework for commission defects to 
be at least 10% higher than the cost for omission 
errors across all four projects. 

This combination of results may have an impor- 
tant implication; defects of omission may be much 
chapter when caught earlier in the life cycle. 

3) Effect of product architecture 

At the beginning of the study, we surmised that 
product architecture influences the cost of rework. 
Although we could not find definitive quantitative 
evidence of this relationship, we suspect that pat- 
terns PA1 and PC1 stem from characteristics of the 
product architecture. 

Project A has the lowest overall cost of rework of 
the four projects (Table 4). The cost of rework after 
the design phase is very low, while that cost during 
the requirement and specification phase is the high- 
est of the four (from PAl) (Figure 14.4). These low 
rework costs after the design phase are the most 
remarkable feature of project A. We suggest that 
the product architecture used in project A influ- 
enced this factor. In project A, specification was 
described in the form of finite-state machines, and 
the specification was transformed into code by previ- 
ously determined procedures. Tests were planned 
and performed based on the specification document. 
Therefore, most product changes were made sing 
semiautomated procedures. 

Project C, on the other hand, has the highest cost 
of rework of the three, excluding project D (Table 
4). PC1 suggests the reason for this high rework cost 
may be the fact that project C had several addition 
or change class defects caused by commission errors, 
which we determined are more costly than those 
caused by omission errors. The five addition or 
change class defects caused by commission errors in 

project C required fixes to 1, 2, 3, 4, and 4 modules, 
respectively. In project C, a modification to a re- 
quirement and specification spread across several 
modules, which perhaps indicates a weakness in the 
product architecture. 

4) Effect of memory constraint 

We found that memory constraint causes high cost 
of rework. In project D, which had a severe memory 
constraint, we saw two patterns that support this. 
We found that the addition of some functionality to 
the product was extremely expensive (from PDl). 
We found that the cost of rework on phases after 
implementation was much higher than it was during 
the phases prior to implementation (from PD2). We 
attribute these two features of project D to its 
severe memory constraint. 

IV. CONCLUSION 

We introduce a framework to measure and analyze 
software processes. The framework consists of de- 
scriptive models that abstract various aspects of pro- 
cess and product, evaluative models that formalize 
the analysis criteria, and a set of GQMs that clarify 
the relationship between the metrics, the analysis, 
and the goals. 

In our evaluation, we discovered the importance 
of analysis from different viewpoints, because pro- 
jects may rate completely differently depending on 
the criteria applied. In particular, we found that the 
number of defects (representing reliability) does not 
correlate to the cost of rework (representing main- 
tainability). 

In characterizing the projects, we found some 
patterns among types of defect, relationship between 
defect and cost, and effect of product architecture. 
They provide a quantitative basis for recommending 
certain process improvement activities with confi- 
dence in their effectiveness. Some results suggest 
that product architecture influences the software 
process, especially in the area of maintainability, 
although our analysis did not cover a large enough 
sample to prove that relationship quantitatively. 

We may have gained some new insight about the 
cost of defects caused by omission versus commis- 
sion depending upon the time when they are found 
in the life cycle. When we considered all logic de- 
fects, our results agreed with those of Selby and 
Basili (1991). On the other hand, when we consid- 
ered only customer-observable defects (which was 
our initial measure), our results disagreed. This dif- 
ference of approach/findings points out the impor- 
tance of clarifying the definition and range of the 
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criteria used in any study or discussion of software 
issues. 

In looking for influential factors, we studied the 
basic data using an intuitive pattern-searching tech- 
nique. This method was fairly effective but does 
allow the possibility of overlooking some important 
patterns in the data. An automated pattem-recogui- 
tion technique is needed, which would allow us to 
find every statistically meaningful pattern in the 
data. 
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