
722 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999

Defining and Validating Measures
for Object-Based High-Level Design

Lionel C. Briand, Sandro Morasca, Member, IEEE Computer Society, and Victor R. Basili, Fellow, IEEE

Abstract—The availability of significant measures in the early phases of the software development life-cycle allows for better
management of the later phases, and more effective quality assessment when quality can be more easily affected by preventive or
corrective actions. In this paper, we introduce and compare various high-level design measures for object-based software systems.
The measures are derived based on an experimental goal, identifying fault-prone software parts, and several experimental
hypotheses arising from the development of Ada systems for Flight Dynamics Software at the NASA Goddard Space Flight Center
(NASA/GSFC). Specifically, we define a set of measures for cohesion and coupling, which satisfy a previously published set of
mathematical properties that are necessary for any such measures to be valid. We then investigate the measures’ relationship to
fault-proneness on three large scale projects, to provide empirical support for their practical significance and usefulness.

Index Terms—Measurement, object-based design, high-level design, Ada, cohesion, coupling.

—————————— F ——————————

1 INTRODUCTION

OFTWARE measures can help address the most critical
issues in software development and provide support for

planning, predicting, monitoring, controlling, and evaluat-
ing the quality of both software products and processes
[15], [23]. Most existing software measures attempt to cap-
ture attributes of the software code [23]; however, software
code is just one of the artifacts produced during software
development, and, moreover, it is only available at a late
stage. It is widely recognized that the production of better
software requires the improvement of the early develop-
ment phases and the artifacts they produce. The production
of better specifications and designs reduces the need for
extensive review, modification, and rewriting not only of
code, but of specifications and designs. As a result, a soft-
ware organization can save time, cut production costs, and
raise the final product’s quality.

Early availability of measures is a key factor in the suc-
cessful management of software development, since it al-
lows for:

1) the early detection of problems in the artifacts pro-
duced in the initial phases of the life-cycle (specifica-
tion and design documents) and, therefore, reduc-
tion of the cost of change—late identification and
correction of problems are much more costly than
early ones;

2) better software quality monitoring from the early phases
of the life-cycle;

3) quantitative comparison of techniques and empirical
refinement of the processes to which they are applied;

4) more accurate planning of resource allocation, based
upon the predicted quality of the system and its con-
stituent parts.

In this paper, we focus on measures for the high-level de-
sign of object-based1 software systems, to study whether
information available at this development stage can be used
to support the issues raised in points 1), 2), 3), and 4). We
worked in the context of high-level designs for Flight Dy-
namics software, written in Ada83 [22], in the Software En-
gineering Laboratory at NASA Goddard Space Flight Cen-
ter (GSFC). Our goal was to

define and validate a set of high-level design measures to
evaluate the quality of the high-level design of a software
system with respect to its fault-proneness and understand
which high-level design attributes are likely to make soft-
ware fault-prone.

We set a number of experimental hypotheses that were be-
lieved to be true in the environment of our study. In our
study, we define three families of measures to set the hy-
potheses in measurable terms. These hypotheses were em-
pirically validated based on three projects conducted at the
NASA/GSFC. As with many empirical studies, some of the
hypotheses were supported by the empirical results, while
others were not. In this paper, due to space constraints, we
only report those hypotheses and measures that were sup-
ported by the empirical results.

Specifically, we introduce and theoretically validate, based
on the properties of [12], a family of measures for cohesion
and coupling of high-level object-based software designs.

1. Object-based systems differ from object-oriented systems in that inheri-

tance is not allowed.

0098-5589/99/$10.00 © 1999 IEEE

²²²²²²²²²²²²²²²²
� L.C. Briand is with the Fraunhofer-Institute for Experimental Software

Engineering, Technologiepark II, Sauerwiesen 6, D-67661 Kaiserslautern,
Germany. E-mail: briand@iese.fhg.de.

� S. Morasca is with the Dip. di Elettronica e Informazione, Politecnico di
Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy.
E-mail: morasca@elet.polimi.it.

� V.R. Basili is with the Computer Science Department, University of Mary-
land, College Park, MD 20742. E-mail: basili@cs.umd.edu.

Manuscript received 9 June 1994; revised 17 Feb. 1998.
Recommended for acceptance by not listed.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 101168.

S

BRIAND ET AL.: DEFINING AND VALIDATING MEASURES FOR OBJECT-BASED HIGH-LEVEL DESIGN 723

Our measures focus and are based on one specific facet of
cohesion and coupling, i.e., that related to declaration links
among data and subroutines appearing in high-level design
module interfaces. Therefore, our measures are not meant to
capture all aspects of cohesion and coupling. For the sake of
comparison and completeness, we also define two simpler
measures based on USES and IS_COMPONENT_OF [25]
relationships between modules. This appears necessary at
this stage of knowledge, where we can only rely on very lim-
ited theoretical and empirical grounds to help us identify
interesting concepts, relationships and objects of study. If our
measures add complexity to the analysis, they should also be
complementary to simpler design measures already pro-
posed in the literature. One of the results of this investigation
is to provide directions for focusing our research on a smaller
set of strategies and concepts.

A number of studies have been published on software
design measures in recent years. It has been shown that
system architecture has an impact on maintainability and
fault-proneness [26], [24], [38], [30], [39], [16], [40], [41], [43],
[1], [17], [2], [44]. These studies have attempted to capture
the design attributes affecting the ease of maintaining and
debugging a software system. Most of the design measures
are based on information flow between subroutines or dec-
laration counts. We think that, even though they provide
interesting insights into the program structure, these
should not be the only strategies to be investigated, since
many other types of program features and relationships
are a priori worth studying. Moreover, there is a need for
comparison among strategies in order to identify worth-
while research directions and build accurate quality pre-
diction models.

In addition, the success and widespread diffusion of ob-
ject-oriented software systems have drawn a good deal of
interest towards the study of the attributes of object-
oriented software systems. A number of studies have been
published (see for instance [19], [8], [28] and [5], [6] for an
extensive survey). These studies generally deal with the
proposal of new measures or the reuse of existing ones in
the framework of object-oriented software code. Our study
goes one step in the direction of object-orientation, at the
high-level design stage, in that it addresses object-based sys-
tems. Therefore, we take into account several important
characteristics of object-oriented software, with one impor-
tant exception—inheritance.

The paper is organized as follows. In Section 2, we con-
cisely outline the overall structure of our study and explain
the process we have carried out and its rationale. Section 3
contains the basic definitions and concepts that are used in
the paper. The cohesion and coupling measures we intro-
duce are presented in Sections 4 and 5, respectively. Based
on the USES and IS_COMPONENT_OF relationships [25],
we also define two simpler measures (Section 6), which are
commonly proposed in the literature and against which we
wish to compare our cohesion and coupling measures.
These two measures were part of a larger set but turned out
to be the only ones yielding positive results as indicators of
fault-proneness (see [10] for further details). Empirical vali-
dation of the measures is shown in Section 7. In Section 8,
we summarize the lessons we have learned, and outline
directions for future research activities.

2 OUTLINE OF THE STUDY
We now describe the measurement activities we carried out,
to provide the reader with a better interpretation frame-
work for our study. The steps we carried out follow the sci-
entific method and concern the setting of experimental
goals and hypotheses, the definition of appropriate meas-
ures, and the theoretical and experimental validation of
those measures. The steps below were basically executed in
a sequential fashion. However, some steps were, to some
extent, executed in parallel, e.g., steps 3 and 4; in addition,
the need occasionally arose in a few points of the execution
to go back to steps that had been already executed.

1) Establish measurement goals. Empirical software en-
gineering fosters the improvement of software prod-
ucts and processes. In this context, measurement
should be seen as a tool for acquiring information that
can be useful for specific improvement purposes.
Thus, precise measurement goals should be set, to en-
sure specific improvement issues of interest are ad-
dressed. It is our opinion that, at this stage, the defini-
tion of universal measures (like in physical sciences)
is a long-term goal, which, however, is only achiev-
able (if at all) after we gain better insights into specific
environments and from specific perspectives in the
short term. Therefore, the definition of a measure
should be driven by both the characteristics of the
context or family of contexts in which it is used and
one or more clearly stated goals that it helps reach.

The goal of our study was to analyze the high-level
design of three software systems in order to under-
stand which high-level design attributes are likely to
make software fault-prone in our application context,
NASA/GFSC.

2) Set experimental hypotheses. Experimental hy-
potheses, derived from the measurement goals, are
necessary to define measures that are somewhat sup-
ported by an underlying theory to be confirmed or
disconfirmed. Thus, we avoid a random search for sta-
tistical significance. Experimental hypotheses estab-
lish a link between the attribute of interest (software
code fault-proneness, in our case) and some attribute
of the object of study, e.g., size, complexity, cohesion,
coupling of software high-level design.

Each measure we introduce in our study is accom-
panied by an experimental hypothesis. However, we
do not claim that these hypotheses are universally
true in any environment: a priori, they may not even
be true in our environment, since they can be discon-
firmed by the empirical validation. Also, other hy-
potheses could be set: other people may come up with
different hypotheses in the same environment, since
our hypotheses capture our beliefs. In addition, we do
not assume that all of these experimental hypotheses
are equally important towards our experimental goal,
i.e., not all of the attributes we take into account have
an equal impact on software fault-proneness. In this
paper, we will only report on those hypotheses that
were confirmed by the empirical validation (Section 7),
and, therefore, we will only introduce those measures

724 IEEE TRANSACTIONS ON SOFTWARE ENGINEERNG, VOL. 25 NO. 5, SEPTEMBER/OCTOBER 1999

that allowed us to quantify these hypotheses. The
reader interested in the negative results of this study
may consult [10].

3) Characterize formally the attributes to be studied.
Experimental hypotheses are stated in terms of attrib-
utes, which are to be quantified by means of measures.
The introduction of appropriate measures is facilitated
by the availability of precise definitions for the attrib-
utes of interest. Unfortunately, such attributes, e.g., size,
complexity, cohesion, coupling, are hardly ever defined
in a precise and unambiguous way, if they are defined
at all. However, approaches have appeared in the re-
cent literature to provide these attributes with less
fuzzy and ambiguous definitions, using mathematical
properties to characterize them [42], [12].

In our study, we have used an instantiation of the
property-based approach of [12] for our object-based
Ada context, to provide theoretical support for the
definition of our measures of cohesion and coupling
based on data declaration dependency links. These
properties allow us to characterize—to the best of our
understanding and knowledge—the two attributes,
and provided us with guidance for measure defini-
tion. They provide supporting evidence that the
measures are theoretically valid, i.e., we measure
what we purport to measure (see step 5).

We want to point out that acceptance of our cohe-
sion and coupling properties is, to some extent, a sub-
jective matter, as with any other set of properties or
rationalization of informal concepts. Also, our proper-
ties are to be interpreted as necessary, but not suffi-
cient. This is the case even for the most consolidated
and well-known ones, such as the properties for dis-
tance. As a consequence, measures might be built that
satisfy our properties but cannot be taken as sensible
cohesion or coupling measures. However, we believe
that, by providing desirable properties for the meas-
ures of cohesion and coupling, we have better clari-
fied our ideas about cohesion and coupling. The
reader has much more solid grounds on which he or
she can either accept our ideas about cohesion and
coupling, or reject them and replace them with other
properties.

4) Identify abstractions of the object of study. Ap-
propriate representations (abstractions according to
[37]) of the object of study are used in measurement
to capture the information needed to build measures
for the software attributes mentioned in the experi-
mental hypotheses. Some examples of product ab-
stractions are data flow graphs and control flow
graphs. In our study, we use graphs based on de-
pendency links between data and subroutines in
high-level software design.

5) Define measures. A measure is defined for capturing
some intuitive concept [31], e.g., size, complexity,
cohesion, coupling, such as those used in the ex-
perimental hypotheses. In our study, we define
measures for cohesion and coupling based on de-
pendency links among data and subroutines in high-
level software design.

The definition of sound measures requires that
they be theoretically validated, to show that they ac-
tually quantify the attributes they purport to measure.
This is argued for our cohesion and coupling meas-
ures because they satisfy the properties for those
measures we established in step 3, and because they
do not satisfy any set of properties for other attributes
such as complexity or size. One of the goals of [12]
was to define sets of properties to identify similarities
and differences across software attributes.

At any rate, as explained in step 3, some caution
must be used in interpreting the results of our theo-
retical validation, as with any theoretical validation,
due to the inherent degree of subjectivity in the for-
malization of intuition and the fact that properties are
necessary but not sufficient. Therefore, the satisfaction
of our cohesion and coupling properties cannot be
strictly taken as conclusive evidence that the meas-
ures we define are cohesion and coupling measures,
but only as supporting evidence. In addition, we do
not claim nor believe that our measures are the “de-
finitive” measures for cohesion and coupling. They
address only one possible aspect of cohesion and
coupling, and, even in our context, they will need fur-
ther refinements.

6) Validate measures empirically. The empirical vali-
dation of a measure actually entails the validation of
the experimental hypotheses involving the attribute
quantified by the measure. Empirical validation ascer-
tains the practical usefulness of a measure in the stud-
ied environment, by showing if the attributes it meas-
ures, e.g., cohesion, influences an external quality at-
tribute [23] of practical interest, e.g., fault-proneness,
and the extent of this influence.

In our empirical validation, based on data collected
at the NASA/GSFC, we have applied a statistical
technique to study the influence of cohesion and cou-
pling on fault-proneness. Validation was facilitated by
the fact that we had defined experimental goals and
hypotheses at the beginning of the study. At any rate,
the external validity of the experimental hypotheses
and measures remains to be investigated in order to
determine whether they are applicable to different
environments and problem domains.

More details about the approach we have followed can be
found in [11].

3 BASIC DEFINITIONS
In this section, we first introduce the basic concepts and the
terminology that we will use in the paper (Section 3.1). We
then define interactions, the data dependency links on which
our cohesion and coupling measures are based (Section 3.2).

3.1 Modules and High-Level Design
Our object of study is the high-level design of a software
system. To define it, we will start from its elementary com-
ponents: software modules. In the literature, there are two
commonly accepted definitions of modules. The first one
sees a module as a subroutine, and has been used in most of

BRIAND ET AL.: DEFINING AND VALIDATING MEASURES FOR OBJECT-BASED HIGH-LEVEL DESIGN 725

the design measurement publications [35], [20], [26], [38],
[40]. The second definition, which takes an object-oriented
perspective, sees a module as a collection of type, data, and
subroutine definitions, i.e., a provider of computational
services [13], [25]. In this view, a module is the implementa-
tion of an Abstract Data Type (ADT), e.g., a package in Ada,
a class in C++. In this paper, unless otherwise specified, we
will use the term subroutine for the first category, and re-
serve the term module for the second category. Modules are
composed of two parts: interface and body (which may be
empty). The interface contains the computational resources
that the module makes visible for use to other modules. The
body contains the implementation details that are not to be
exported.

Modules and subroutines may be related to each other by
IS_COMPONENT_OF and USES relationships [25]. In general,
module/subroutine A is related to module/subroutine B by
an IS_COMPONENT_OF relationship if A is defined within B.
Module/subroutine A is related to module/subroutine B by a
USES relationship if A uses computational services that B
makes available.

Modules and subroutines can be seen as the components
of higher level aggregations, as defined below.

DEFINITION 1 (Library Module Hierarchy (LMH)). A library
module hierarchy is a hierarchy where nodes are modules and
subroutines, arcs between nodes are IS_COMPONENT_OF
relationships, and there is exactly one top level node, which is
a module.

In the remainder of this paper, we will define concepts and
measures that can be applied to both modules and LMHs,
which are the most significant syntactic aggregation levels
below the subsystem level. For short, we will use the term
software part (sp) to denote either a module or a LMH.

In the high-level design phase of a software system in
our context, only module and subroutine interfaces and
their relationships are defined—detailed design of module
bodies and subroutines is carried out at low-level design
time. Therefore, we define the high-level design of a soft-
ware system as follows.

DEFINITION 2 (High-level Design). The high-level design of a
software system is a collection of module and subroutine in-
terfaces related to each other by means of USES and
IS_COMPONENT_OF relationships. Precise and formal-
ized information on module or subroutine bodies is not yet
available at this stage.

3.2 Interactions
In this section, we will specifically focus on the dependen-
cies among data declarations and subroutines, which can
propagate inconsistencies when changes are made to a
software system. In this context, data declarations may be
types, variables, or constants. Those dependencies will be
called interactions and will be used to define measures cap-
turing cohesion and coupling within and between software
parts, respectively.

There are four possible kinds of interactionsfrom:

1) data declarations to data declarations,
2) data declarations to subroutines,

3) subroutines to subroutines, and
4) subroutines to data declarations.

However, not all of these dependencies can be detected at
high-level design time. Therefore, we will investigate the
interactions from data declarations to data declarations or
from data declarations to subroutines, which we may detect
from the high-level design of a software system.

DEFINITION 3 (Data Declaration-Data Declaration (DD). Inter-
action). A data declaration A DD-interacts with another
data declaration B if a change in A’s declaration or use may
cause the need for a change in B’s declaration or use.

The DD-interaction relationship is transitive. If A DD-
interacts with B, and B DD-interacts with C, then a change in
A may cause a change in C, i.e., A DD-interacts with C. Data
declarations can DD-interact with each other regardless of
their location in the designed system. Therefore, the DD-
interaction relationship can link data declarations belonging
to the same software part or different software parts.

The DD-interaction relationships can be defined in terms
of the basic relationships between data declarations al-
lowed by the language, which represent direct DD-
interactions, i.e., not obtained by virtue of the transitivity of
interaction relationships. Data declaration A directly DD-
interacts with data declaration B if A is used in B’s declara-
tion or in a statement where B is assigned a value. As a con-
sequence, as bodies are not available at high-level design
time in our application context, we will only consider inter-
actions detectable from the interfaces.

DD-interactions provide a means to represent the de-
pendency relationships between individual data declara-
tions. Yet, DD-interactions per se are not able to capture the
relationships between individual data declarations and
subroutines.

DEFINITION 4 (Data Declaration-Subroutine (DS) Interac-
tion). A data declaration DS-interacts with a subroutine if
it DD-interacts with at least one of its data declarations.

Whenever a data declaration DD-interacts with at least one
of the data declarations contained in a subroutine interface,
the DS-interaction relationship between the data declara-
tion and the subroutine can be detected by examining the
high-level design. For instance, from the Ada-like code
fragment in Fig. 1, it is apparent that both type T1 and ob-
ject OBJECT11 DS-interact with procedure SR11, since they
both DD-interact with parameter PAR11, which belongs to
procedure SR11’s interface data declaration.

For graphical convenience, both sets of interaction rela-
tionships will be represented by directed graphs, the DD-
interaction graph, and the DS-interaction graph, respectively.
In both graphs (see Fig. 2, which shows DD- and DS-
interaction graphs for the code fragment of Fig. 1), data
declarations are represented by rounded nodes, subroutines
by thick lined boxes, modules by thin lined boxes, and in-
teractions by arcs.

726 IEEE TRANSACTIONS ON SOFTWARE ENGINEERNG, VOL. 25 NO. 5, SEPTEMBER/OCTOBER 1999

package M1 is
 …
 type T1 is …;
 OBJECT11, OBJECT12: T1:= …;
 procedure SR11(PAR11: in T1:= OBJECT11, PAR12: in T1);
 …
 package M2 is
 …
 OBJECT21: T1;
 type T2 is array (1..100) of T1;
 OBJECT22: T2;
 procedure SR21(PAR21: in out T2);
 …
 end M2;
 …
 OBJECT13: M2.T2;
 …
end M1;

 with M1; use M1;
package M3 is
 …
 type T3 is array (1..100) of T1;
 OBJECT31, OBJECT32: T1;
 procedure SR31(PAR31: in T3, PAR32: in M2.T2);
 OBJECT33: T3;
 …
end M3;

Fig. 1. Ada-like code fragment.

The notion of interaction can be applied to other object-
based design methods and formalisms such as HOOD (one
of the main object-based design methods [29]) with no basic
changes. For instance, HOOD does not allow direct access
to data in module interfaces, i.e., objects’ provided inter-
face. Using HOOD’s terminology, data must be encapsu-
lated in the internal part of each object (i.e., module) and
must be accessed through public operations provided by
the object. In that case, by looking at the visible part of a
HOOD object description, we would analyze interactions
between type definitions, constants, and operations, i.e., the
same kind of information we have in our Ada context.
When working with other design techniques, one can use
all the available information on the interactions between
the elements of a design. If mechanisms for describing such
interactions exist, then one can apply our approach based
on more information than is available in our case and in the
HOOD case, and obtain more accurate models.

In this study, interactions are used to define measures for
object-based high-level software design, which we introduce
next. It is generally acknowledged that system architecture
should have low coupling and high cohesion [20]. This is
assumed to improve the capability of a system to be decom-
posed in highly independent and easy to understand pieces.
However, the reader should bear in mind that high cohesion
and low coupling may be conflicting goals, i.e., a trade-off
between the two may exist. For instance, a software system
can be made of small modules with a high degree of internal
cohesion but very closely related to each other and, therefore,
with a high level of coupling. Conversely, a software system

 (a) (b)

Fig. 2. Graphs for the code fragment in Fig. 1. (a) DD-interaction; (b) DS-interaction.

BRIAND ET AL.: DEFINING AND VALIDATING MEASURES FOR OBJECT-BASED HIGH-LEVEL DESIGN 727

can be composed of few large modules, representing its sub-
systems, loosely related to one another, i.e., with low cou-
pling, but with a low degree of internal cohesion as well.
Moreover, high cohesion and low coupling are not the only
factors to be taken into account when designing a software
system. Other issues, e.g., reuse, must be taken into account
as well.

4 INTERACTION-BASED MEASURES FOR COHESION
Consistent with the objectives stated above, cohesion is de-
fined here as the degree to which data declarations and
subroutines of a module are conceptually related, based on
information known at the end of high-level design. In order
for cohesion measurement to be usable on real-scale soft-
ware systems, these conceptual relationships are to be ap-
proximated through syntactical relationships (i.e., interac-
tions), which can be automatically detected through static
analysis. Since we place ourselves at the end of high-level
design in an object-based context, we focus on module-level
cohesion and not on subroutine-level cohesion.

We introduce an experimental hypothesis (H-CH), which
provides the motivations for defining cohesion measures in
our object-based context with respect to our experimental
goal (Section 4.1). Then, for illustration convenience only,
we depart from the order in the step sequence described in
Section 3: We first describe the abstraction used to define
interaction-based cohesion measures (Section 4.2), and then
(Section 4.3) we describe the properties for cohesion meas-
ures we proposed in [12] instantiated on this abstraction.
An interaction-based cohesion measure is introduced in
Section 4.4. In Section 4.5, we discuss how to use additional
information that may be available at high-level design time.
The relation of our work with previous works on cohesion
measurement is discussed in Section 4.6.

4.1 Experimental Hypothesis
In our application environment, cohesion measurement is
motivated by the following experimental hypothesis.

Hypothesis H-CH. A high degree of cohesion is desirable be-
cause information related to declaration and subroutine depend-
encies should not be scattered among irrelevant information. Data
declarations and subroutines which are not related to each other
should be encapsulated, to the extent possible, into different mod-
ules. As a result of such a strategy, we expect the software parts
to be less fault-prone.

This hypothesis establishes a link between two software
attributes: cohesion and fault-proneness. Its empirical vali-
dation requires that we introduce measures to capture co-
hesion and fault-proneness quantitatively. Fault-proneness
will be quantified as the likelihood of a module to be faulty.
Since we believe that this definition of a measure for fault-
proneness is much more immediate and readily acceptable
than the definition of a measure for cohesion or coupling,
we now show how we introduced cohesion measures in the
context of our study.

4.2 Abstraction Definition
Consistent with the definition of Abstract Data Type/Object,
data declarations and subroutines should show some kind of

interaction between them, if they are conceptually related.
Therefore, we are interested in evaluating the tightness of the
interactions between data declarations and data declarations
or data declarations and subroutines declared in a module
interface. We will capture this by means of cohesive interac-
tions and the graph that they give rise to, the cohesion interac-
tion graph.

DEFINITION 5 (Cohesive Interactions). The set of cohesive in-
teractions in a module m, denoted by CI(m), is the union of
the sets of DS-interactions and DD-interactions involving
exclusively data declarations and subroutines within m,
with the exception of those DD-interactions between a data
declaration and a subroutine formal parameter. M(m) will
denote the maximal set of cohesive interactions in module
m. It is obtained by linking every data declaration of mod-
ule m to every other data declaration and subroutine of m
with which it can interact.

DEFINITION 6 (Cohesive Interaction Graph). Given a module
m, the Cohesive Interaction Graph is the directed
graph whose set of nodes is composed of the data declara-
tions and the subroutines declared in module m’s inter-
face and whose set of arcs is the set CI(m) of module m’s
cohesive interactions.

We use the Cohesive Interaction Graph as the abstraction
on which we define our cohesion measures.

We do not consider the DD-interactions linking a data
declaration to a subroutine parameter as relevant to cohe-
sion, since they are already accounted for by DS-
interactions, and we are interested in evaluating the degree
of cohesion between data declarations and subroutines seen
as a whole. Also, we do not intend that cohesion should
change just because there are two parameters of the same
type in a subroutine interface, instead of one of that type.
Furthermore, cohesive interactions occur between data dec-
larations and subroutines belonging to the same module.
Interactions across different modules are not considered
cohesive, since cohesion is the extent to which a module
contains data declarations and subroutines that are concep-
tually related to each other. Interactions across different
modules contribute to coupling. Therefore, given a software
part sp, the sets of cohesive interactions of its constituent
modules (if any) are disjoint. In Fig. 3, we show the cohe-
sive interaction graph for the code fragment of Fig. 1.

Interactions across modules when one is a component of
another can also be deemed as contributing to cohesion. We
did not include these interactions in our evaluation of cohe-
sion; this could be a subject of future research.

It is worth reminding the reader that those relationships
that cannot be entirely detected by inspecting the interfaces,
i.e., global variables interacting with subroutine bodies, can
actually be quite relevant to cohesion evaluation, because
they often represent the connections between an object and
the subroutines that manipulate it. However, although we
expect these unknown interactions to introduce uncertainty
in our models, practical experience suggests that the mod-
els may still be good, early indicators.

Some care must be used in defining CI(m) and M(sp) for
languages like Ada that allow circular type definitions, such
as the ones used to define the nodes of a linked list. In this
case, the declarations of two types T1 and T2 are built in such

728 IEEE TRANSACTIONS ON SOFTWARE ENGINEERNG, VOL. 25 NO. 5, SEPTEMBER/OCTOBER 1999

a way that T1 interacts with T2 and T2 interacts with T1. We
choose to include in CI(m) and M(sp) only one interaction
between them. This is explained by the fact that a single in-
teraction between two data declarations may justify their
encapsulation in a single module/Abstract Data Type.

As a result, for a module m, we have:

|M(m)| = (|DataDeclarations| · (|DataDeclarations|-1)/2)
 + |DataDeclarations| · |Subroutines|,

where DataDeclarations and Subroutines are the sets of m’s
data declarations (outside subroutines’ interfaces) and sub-
routines, respectively. |M(sp)| is the sum of all values ob-
tained for |M(m)| for all modules, since all M(m)s are dis-
joint. For example the maximal number of cohesive interac-
tions for module M2 of Fig. 1 is M(M2) = 6.

There are two particular cases in which M(m) and, there-
fore, CI(m) are empty: 1) module m contains no data decla-
rations at all (it is either empty or contains only a set of sub-
routines) or 2) module m only contains a single data decla-
ration and no subroutines. In both cases, no cohesive inter-
actions are possible. According to our notion of cohesion,
we are interested in the tightness of relationships of data
declarations with other data declarations or subroutines,
which are supposed to be related to the data declarations.
In case 1, there are no data declarations and, therefore, there
is a complete absence of cohesion. On the other hand, a sin-
gle data declaration (case 2) is highly cohesive in itself, so a
module only containing one data declaration is highly co-
hesive. In what follows, given a software part sp,

� SSR(sp) will denote the set of subroutines belonging
to modules that do not contain any data declarations
(case 1), and

� SDD(sp) will denote the set of modules of sp that only
contain a single data declaration and no subroutines
(case 2).

4.3 Properties for Interaction-Based Cohesion
Measures

We now introduce the following three properties that we
believe characterize cohesion measures in our specific Ada
context for interaction-based measures.2 These properties
are instantiations, for our specific context, of the properties
defined in [12] for cohesion.

Property AdaCohesion.1: Normalization. Given a software
part sp, a measure cohesion_measure(sp) belongs to a specified
interval [0, Max]. cohesion_measure(sp) = 0 if and only if
CI(sp) and SDD(sp) are empty, and cohesion_measure(sp) =
Max if and only if CI(sp) = M(sp) and SSR(sp) is empty.3

Normalization can provide support for meaningful com-
parisons between the cohesions of different software parts,
since they all belong to the same interval. In addition, the
larger the size of a module, the higher the likelihood of a
large number of interactions. Normalization helps us make
sure our measures are not statistically associated with the
size of the modules since it takes into account the potential
for a larger number of interactions in large modules.

Property AdaCohesion.2: Monotonicity. Let sp1 be a
software part and CI(sp1) its set of cohesive interactions. If
sp2 is a modified version of sp1 with the same sets of data and
subroutine declarations and one more cohesive interaction so
that CI(sp2) includes CI(sp1), then cohesion_measure(sp2)
� cohesion_measure(sp1).

Adding cohesive interactions to a software part cannot de-
crease its cohesion. This is an intuitive property since, if the
module’s declarations appear to be more interdependent,
cohesion should not decrease. For instance, the following
program fragment

C : constant INTEGER := 100;
type A is array(1..C) of INTEGER;

has one more cohesive interaction than

C : constant INTEGER := 100;
type A is array(1..100) of INTEGER;

Property AdaCohesion.3: Cohesive Modules. Let sp be a
software part, and let m1 and m2 be two of its modules. Let sp’ be
the software part obtained from sp by merging the declarations
belonging to m1 and m2 into a new module m. If no cohesive
interactions exist between the declarations belonging to m1 and
m2 when they are grouped in m, then cohesion_measure(sp)
� cohesion_measure(sp’).

This property can also be interpreted as follows: Splitting
two sets of declarations which are not related to each other
via cohesive interactions into two separate modules cannot
decrease the cohesion of the software part. Such a property
is also intuitively justified since, if two independent mod-
ules can be extracted from a module, then there was no rea-
son for them to be merged together in the first place.

2. Properties and measures can be defined for module sets more general
than software parts. However, for simplicity, we will provide them only for
software parts.

3. We assume that each module contains at least one data declaration or
one subroutine, i.e., we will not consider empty modules.

Fig. 3. Cohesive interaction graph for the code fragment of Fig. 1.

BRIAND ET AL.: DEFINING AND VALIDATING MEASURES FOR OBJECT-BASED HIGH-LEVEL DESIGN 729

Properties AdaCohesion.1—AdaCohesion.3 are mean-
ingful only for measures defined at the ratio level of meas-
urement [23]. This does not imply that all measures that
satisfy them are defined at the ratio level of measurement.
Also, it is worth reminding the reader that the fact that the
above measures satisfy properties AdaCohesion.1—
AdaCohesion.3 should be interpreted as a necessary condi-
tion for them to be taken as cohesion measures in our prop-
erty-based framework, which one can subjectively accept or
reject and replace with another one.

4.4 Measure Definition
Based on the previous properties defined, we introduce a
measure to capture interaction-based cohesion for software
parts in our context.

Measure 1: Ratio of Cohesive Interactions (RCI) for a
 Software Part.

The Ratio of Cohesive Interactions for sp is

RCI(sp)
SDD(sp) CI(sp)

SDD(sp) M(sp) SSR(sp)
=

+
+ +

 (1)

As an example, with reference to Figs. 1 and 3, RCI(M2) =
2/6 = 0.333. It can be shown that RCI(sp) satisfies the above
properties AdaCohesion.1—AdaCohesion.3, but it does not
satisfy any of the sets of properties for size, length, com-
plexity, or coupling defined in [12]. Therefore, since it is
consistent with our intuitive and formally defined under-
standing of cohesion, we believe that RCI(sp) is a valid co-
hesion measure in our application context. It is also impor-
tant to note that these concepts are still very subjectively
defined in the software engineering community and that,
consequently, there is no real widely accepted reference
framework for cohesion that we can use to demonstrate the
construct validity of a cohesion measure.

As for the level of measurement of RCI(sp), although this
is ultimately a subjective matter that can rarely be formally
demonstrated [7], we will interpret RCI(sp) as a ratio scale
measure, based on the following evidence.

1) When SDD(sp) = Ø, i.e., no module in sp contains
only a single data declaration, and SSR(sp) = Ø, i.e.,
no module in sp contains no data declaration, the
value of RCI(sp) can be computed as

RCI sp
CI sp

M sp
()

()

()
= ,

and is defined on a ratio scale since this is a ratio of
two counts having the same measurement unit. In
practical cases—as the ones we show in Section 7—
this ratio is very close to that computed by formula
(1), since there are few modules that only contain a
single data declaration and nothing else, and the
number of subroutines in SSR(sp) is quite small with
respect to the maximum number of potential cohesive
interactions. Few modules only contain subroutines,
and |SSR(sp)| only grows linearly with the number
of subroutines in such modules. Instead, |M(sp)|
grows quadratically with the number of data declara-
tions and linearly with the number of subroutines in

the whole software part. Therefore, in practical situa-
tions, it can be shown that formula (1) is approxi-
mately at a ratio level of measurement.

2) The usual statistical tests and regression techniques
requiring at least interval scale measurement can be
safely applied even if a measure is defined on a scale
which is only approximately interval [7].

RCI(sp) can also be computed as a weighted sum of the
RCI(m)s of the single modules m belonging to sp. Since co-
hesive interactions only occur within modules, but not
across modules,4 the numerator of (1) is calculated as

SDD(sp) CI(sp) (SDD(m) CI(m))
m sp

+ = +
³
Ê

so

RCI(sp)

(SDD(m) CI(m))

SDD(sp) M(sp) SSR(sp

SDD(m) CI(m)

SDD(sp) M(sp) SSR(sp

m sp

m sp

=
+

+ +

=
+

+ +

³

³

S

S

By multiplying and dividing each term in the summation
by |SDD(m)| + |M(m)| + |SSR(m)|, we obtain

RCI(sp) (
SDD(m) M(m) SSR(m)

SDD(sp) M(sp) SSR(sp)

SDD(m) CI(m)
SDD(m) M(m) SSR(m)

)

(
SDD(m) Mm) SSR(m)

SDD(sp) M(sp) SSR(sp)
RCI(m))

m sp

m sp

=
+ +
+ +

¼
+

+ +

=
+ +
+ +

³

³

S

S

The weights represent the potential contribution of each
module m belonging to the software part sp to the cohesion
of the whole sp. Therefore, the potential contribution of a
module of SDD(sp) is

1

SDD(sp) M(sp) SSR(sp)+ +

and that of any other module m of sp that does not contain
only subroutines is5

M(m)

SDD(sp) M(sp) SSR(sp)+ +

Based on the above cohesion measure, we can define a
threshold that can be used as a support for deciding whether
a set of data and subroutines should be kept in one single
module or divided into two or more modules. For simplicity,
we will show here only the case in which we have to decide
whether the declarations belonging to a module m should be
split into two modules m1 and m2, where both M(m1) and
M(m2) are not empty. This should be the case if the cohesion
of the software part consisting of the two modules m1 and m2
is greater than the cohesion of module m, i.e.,

4. In the following formulae, |SDD(m)| may only take the values 1

(when module m only contains a single data declaration and nothing else)
or 0 (otherwise).

5. For a module m with subroutines and no data declarations, RCI(m) = 0.

730 IEEE TRANSACTIONS ON SOFTWARE ENGINEERNG, VOL. 25 NO. 5, SEPTEMBER/OCTOBER 1999

CI(m) CI(m)

M(m) M(m)

CI(m) CI(m) CI
M(m)

1 2

1 2

1 2 12+
+

>
+ +

where |CI12| is the number of cohesive interactions be-
tween the declarations belonging to modules m1 and m2
when they are in module m. Based on the above inequality,
we can define a threshold on |CI12|, as follows

(M(m) M(m) M(m))(CI(m) CI(m))

M(m) M(m)
CI1 2 1 2

1 2

- - +
+

> 12

We want to emphasize, however, that, since cohesion is not
the only attribute relevant to software design—for instance,
coupling and reusability are as important as cohesion,—an
increase in cohesion should not be used as the only crite-
rion on which to base such a decision.

4.5 The Role of Additional Information
Additional information to what is visible in the interfaces is
usually available at the end of high-level design. For in-
stance, given the interface of a module m and assuming that
the use of some objects is not specified in the subroutine’s
interface, the designers have at least a rough idea of which
objects declared in m will be manipulated by a subroutine
that appears in m’s interface. It will be left to the person
responsible for the measure program to decide whether it is
worth collecting this kind of information, thus making the
designer describe which objects will be accessed by which
subroutines. For instance, from the code fragment in Fig. 1,
we cannot tell whether OBJECT12 DS-interacts with sub-
routine SR11. In this case, designers can answer in three
different ways:

1) OBJECT12 DS-interacts with SR11;
2) OBJECT12 does not DS-interact with SR11;
3) the information they have is not sufficient.

It is worth saying that answers of kind case 2 provide valu-
able, though negative, information on the DS-interactions
present in a system. For instance, in the code fragment in
Fig. 1, the designer may indicate the existence of a DD-
interaction between object OBJECT12 and PAR12 and the
lack of interaction between OBJECT21 and PAR21. As a con-
sequence, the computation of cohesion is affected. If we
take into account this additional information, other alterna-
tive cohesion measures can be defined.

Given a software part sp, and a pair <A, B>, where A is a
data declaration and B is either a data declaration or a sub-
routine, we will say that the interaction between them is
known if it is detectable from the high-level design or is
signaled by the designers, i.e., they provide an answer simi-
lar to answer case 1; we will say that the interaction be-
tween them is unknown if it is not detectable from the high-
level design and is not signaled by the designers, i.e., they
provide an answer similar to answer case 3.

The set of known interactions of a software part sp will
be denoted by K(sp), and the set of unknown interactions by
U(sp). In general, |M(sp)| � |K(sp)| + |U(sp)|, since some
interactions may not be detectable from the high-level de-
sign and the designers may explicitly exclude their exis-
tence, i.e., they provide an answer similar to answer case 2.

Measure 2: Neutral Ratio of Cohesive Interactions
 (NRCI).

Unknown CIs are not taken into account.

NRCI(sp)
SDD(sp) K(sp)

SDD(sp) M)(sp) SSR(sp) U(sp)
=

+
+ + -

Measure 3: Pessimistic Ratio of Cohesive Interactions
 (PRCI).

Unknown CIs are considered as if they were known not to be
actual interactions.

PRCI(sp)
SDD(sp) K(sp)

SDD(sp) M(sp) SSR(sp)
=

+
+ +

(This is equivalent to RCI(sp).)

Measure 4: Optimistic Ratio of Cohesive Interactions
 (ORCI).

Unknown CIs are considered as if they were known to be actual
interactions.

ORCI(sp)
SDD(sp) K(sp) U(sp)

SDD(sp) M(sp) SSR(sp)
=

+ +
+ +

The above three measures satisfy properties AdaCohe-
sion.1—AdaCohesion.3, where CI(sp) is replaced by K(sp)
< U(sp).

If PRCI(sp), NRCI(sp), and ORCI(sp) are all not unde-
fined,6 it can be shown that, for all software parts sp,

0 < PRCI(sp) < NRCI(sp) < ORCI(sp) < 1

ORCI(sp) and PRCI(sp) provide the bounds of the admis-
sible range for cohesion, and NRCI(sp) takes a value in be-
tween. It can also be shown that the smaller the number of
unknown interactions, the smaller the interval [PRCI, ORCI],
i.e., the more complete the information, the narrower the
uncertainty interval. It should be noted that, once the low-
level design is completed, accurate and complete information
about cohesive interactions should be available.

In addition, NRCI(sp) is undefined if and only if all in-
teractions are unknown and both SDD(sp) and SSR(sp) are
empty, i.e., no information is available on cohesion. It is
interesting to notice that in this case, and only in this case,
PRCI(sp) = 0 and ORCI(sp) = 1, i.e., PRCI(sp) and ORCI(sp)
do not provide stricter bounds than the ones provided by
the interval for cohesion. The fact that NRCI(sp) is unde-
fined can be interpreted as the possibility that NRCI(sp) can
take any value in the interval [0, 1].

4.6 Related Work
As stated in [25], cohesion is an internal property of a mod-
ule. A module has high cohesion if its elements are strongly
related. The intuitive idea behind this is that elements should
be grouped together into modules for logical reasons in order

6. PRCI(sp) and ORCI(sp) are undefined when |SDD(sp)| + |M(sp)| +

|SSR(sp)| = 0, i.e., the software part is empty; NRCI(sp) is undefined when
|SDD(sp)| + |M(sp)| + |SSR(sp)| – |U(sp)| = 0, i.e., no known interac-
tions exist and both SDD(sp) and SSR(sp) are empty.

BRIAND ET AL.: DEFINING AND VALIDATING MEASURES FOR OBJECT-BASED HIGH-LEVEL DESIGN 731

to achieve common goals. Thus, it is assumed that modular
systems with high cohesion are easier to understand and that
the reuse of their modules is facilitated. However, the notions
of modules, elements, and relations vary according to the
context in which cohesion is to be defined.

4.6.1 Procedural Cohesion
In [20], one of the first operational definitions of cohesion
was provided. In this context, modules were subroutines
and cohesion was measured on an ordinal scale of meas-
urement: functional, sequential, communicational, proce-
dural, temporal, logical, coincidental (in decreasing order of
cohesion). The criteria used to define this scale focus on the
relationships (or the lack thereof) that exist between the
functions embedded in a subroutine [23]:

� Functional cohesion implies that the subroutine per-
forms a single well defined function.

� Sequential cohesion implies that the subroutine’s
functions are performed in a sequential order de-
scribed by the subroutine’s specifications.

� Communicational cohesion implies that the subrou-
tine’s functions are performed on the same body of
data.

� Procedural cohesion implies that the subroutine’s
functions are related to the same general procedure.

� Temporal cohesion implies that the subroutine’s func-
tions are related because they must occur within the
same time span.

� Logical cohesion implies that the subroutine’s func-
tions are only related logically.

� Coincidental cohesion means that none of the rela-
tionships mentioned above exist between the subrou-
tine’s functions.

As Fenton pointed out in [23], because the trend is now
towards languages and methods that support abstract data
types (ADTs) encapsulated into modules, e.g., Ada pack-
ages, C++ classes, the notion of cohesion should be ex-
tended to a higher level and adapted to ADTs where ele-
ments are subroutines and declarations. This may seem to
contradict the above definition of cohesion (focusing on
subroutine cohesion) since ADTs usually contain several
subroutines performing different functions which may not
be related according to the most important relations under-
lying the ordinal scale of cohesion. This is discussed below:

� Sequential cohesion: subroutines, i.e., methods accord-
ing to the object-based/object-oriented terminology,
in an ADT do not have to be executed in a predeter-
mined order according to the ADT’s specifications al-
though Create_object and Destroy_object methods are,
respectively, always the first and last operation on a
given object.

� Communicational cohesion: subroutines in an ADT usu-
ally work, from a general perspective, on the same
body of data: the abstract data type itself. However,
they may initialize/access/update the values of dif-
ferent attributes, all being elements of the abstract
data type. More concretly, an abstract data type may
be implemented as a set of distinct data structures all

encapsulated in a single module. Subroutines inside
that module may work on different subsets of those
data structures.

� Procedural cohesion: There is no reason for subroutines
in an ADT to perform functions belonging to a gen-
eral procedure. For example, geomeasureal opera-
tions, e.g., rotations, translations, may be part of dif-
ferent procedures to manipulate geomeasureal ob-
jects, e.g., drawing tools, graphical simulations, etc.

� Temporal cohesion: there is no reason for subroutines in
an ADT to be executed within the same time span.

Therefore, the basis for encapsulation into modules makes
it less likely that one can find some of the forms of cohesion
in the [20] classification. However, subroutines and declara-
tions in ADTs should be somewhat related since they
should all perform operations on the abstract data type,
e.g., push, pop are operations on the ADT Stack, and this
may be seen as another form of cohesion. Fenton calls this
kind of cohesion “abstract cohesion” and mentions that,
unfortunately, there are no obvious measurement proce-
dure and no graph-type model to capture it. In Section 4.4,
our goal was to take a step in that direction, to provide a
measure of ADT cohesion which is based on the interaction
graph model presented above and which can be captured
through automatable data collection procedures.

A proposal for functional cohesion measures can be
found in [14]. Given a procedure, function, or main pro-
gram, only data tokens, i.e., the occurrence of a definition or
use of a variable or a constant, are taken into account. The
data slice for a data token is the sequence of all those data
tokens in the program that can influence the statement in
which the data token appears, or can be influenced by that
statement. Being a sequence, a data slice is ordered: it lists
its data tokens in order of appearance in the procedure,
function or main program. If more than one data slice ex-
ists, some data tokens may belong to more than one data
slice: these are called glue tokens. A subset of the glue tokens
may belong to all data slices: these are called superglue to-
kens. Functional cohesion measures are defined based on
data tokens, glue tokens, and superglue tokens. Given a
procedure, function, or main program p, the following
measures SFC(p) (Strong Functional Cohesion), WFC(p)
(Weak Functional Cohesion), and A(p) (adhesiveness) are
introduced.

SFC(p)
SuperGlueTokens

AllTokens=

WFC(p)
GlueTokens
AllTokens=

A(p)
SlicesContainingGlueTokenGT

AllTokens .# DataSlices
GT GlueTokens= ³

S

It can be shown that these measures satisfy the properties
defined in [12] for cohesion. However, these measures refer
to the functional cohesion of procedures, functions, or main
programs based on code-level information. They are, there-
fore, out of the scope of our study.

732 IEEE TRANSACTIONS ON SOFTWARE ENGINEERNG, VOL. 25 NO. 5, SEPTEMBER/OCTOBER 1999

4.6.2 Object-Based/Object-Oriented Cohesion
Reference [19] introduced a well-known suite of object-
oriented measures and, as such, some of them are also
adaptable and applicable to abstract data types. More spe-
cifically, a measure for the lack of cohesion (LCOM) was de-
fined. For a class in an OO design, this is the number of
member functions pairs without shared instance variables
minus the number of member functions with shared in-
stance variables. However, the measure is set to 0 whenever
the above subtraction is negative. In [3], we have shown
that LCOM is not a significant predictor of fault-prone
classes. This could be easily explained since the distribution
of LCOM showed a lack of variability in the studied sample
since most classes had a null LCOM. This stems in part
from the definition of LCOM where the measure is set to 0
when the number of class pairs sharing variable instances is
larger than that of the ones not sharing any instances. Sev-
eral other measures have been proposed in the literature for
object-oriented cohesion, e.g., see [8], [28]. Due to space
constraints, no thorough comparison can be made here. The
interested reader is referred to [6], where an extensive sur-
vey and classification have been proposed. From a general
perspective, these measures differ according to their under-
lying experimental hypotheses and properties. At a higher
level, several criteria capture the main differences: the types
of connections/dependencies that increase cohesion, the
domain of the measure, e.g., subroutine, class, set of classes,
whether direct or indirect connections are taken into ac-
count, how inheritance is handled. In our case, based on
our experimental hypotheses, the notion of interaction has
been defined to capture the types of dependencies of inter-
est, we define measures for modules and set of modules,
we investigate both direct and indirect interactions, and we
do not consider inheritance since we work in the context of
object-based systems.

5 INTERACTION-BASED MEASURES FOR COUPLING
In our context, coupling is the extent to which a software
part is related to other software parts. We define coupling
as a property of an individual software part, or more spe-
cifically a relation between an individual software part and
its associated software system, rather than as a relation be-
tween two software parts as has been done in other con-
texts [20]. By viewing coupling with respect to an individ-
ual part, we are better able to assess the design quality of
that part as it relates to the part’s fault-proneness. Coupling
can be divided into two parts:

1) import coupling, i.e., the extent to which a software
part depends on the rest of the sotware system, and

2) export coupling, i.e., the extent to which the rest of the
software system depends on the software part.

Here, we will focus only on import coupling, since our hy-
potheses for export coupling were not confirmed by our
experimental validation. More information on that topic
can be found in [10].

In this section, we first give an experimental hypothesis
on import coupling, which provides the rationale for our
study (Section 5.1). Then, we introduce the abstraction we

use for defining our coupling measure (Section 5.2). The
instantiation of the coupling properties defined in [12] for
our application case is in Section 5.3. An interaction-based
measure is defined in Section 5.4. Section 5.5 discusses the
issue of genericity in the context of coupling. Related previ-
ous works will be presented in Section 5.6.

5.1 Experimental Hypothesis
The following experimental hypothesis provides the moti-
vations for the measure we define.

Hypothesis H-IC: The more dependent a software part on ex-
ternal data declarations, the more external information needs to
be known in order to make the software part consistent with the
rest of the system. In other words, the larger the amount of exter-
nal data declarations, the more incomplete the local description of
the software part interface, the more spread the information nec-
essary to integrate a software part in a system. Thus, the software
part becomes more fault-prone.

Like with Hypothesis H-CH, this hypothesis establishes a
link between two software attributes: coupling and fault-
proneness. This hypothesis is one of the experimental hy-
potheses believed to be true in our context that our empiri-
cal study has confirmed.

We recognize that, in addition to the quantity of external
data required, the diversity of other parts in the software
system from which external data must be obtained may
well contribute to coupling. In Section 6, we will discuss a
measure of coupling that tries to capture this diversity.

5.2 Abstraction Definition
Import coupling of a software part will be expressed in
terms of the actual DD-interactions involving imported
external data declarations and the internal data declarations
of the software part. Therefore, the abstraction we use is the
DD-interaction graph, of which we will consider only the
interactions across software parts.

5.3 Properties for Interaction-Based Coupling
Measures

We now provide properties that we believe should be satis-
fied by interaction-based import coupling measures. These
properties are instantiations, for our specific Ada context, of
the properties defined in [12] for coupling.

Property AdaCoupling.1: Nonnegativity. Given a software
part sp, the measure import_coupling_measure(sp) � 0. im-
port_coupling_measure(sp) = 0 if sp does not have import
interactions with other software parts.

Property AdaCoupling.2: Monotonicity. Let m1 be a
module and II(m1), its set of import interactions. If m2 is a
modified version of m1 with the same sets of data and subrou-
tine declarations and one more import interaction so that II(m2)
includes II(m1), then import_coupling_measure(m2) � im-
port_coupling_measure(m1).

Adding import interactions to a module cannot decrease its
import coupling.

Property AdaCoupling.3: Merging of Modules. The sum of
the import couplings of two modules is no less than the coupling
of the module which is composed of the data declarations of the
two modules.

BRIAND ET AL.: DEFINING AND VALIDATING MEASURES FOR OBJECT-BASED HIGH-LEVEL DESIGN 733

This stems from the fact that two modules may contain in-
teractions between each other’s declarations, which are no
longer import interactions for the module resulting from
merging the original modules.

It should be noted that, as opposed to cohesion, meas-
ures for coupling are not normalized. This comes from hy-
potheses H-CH and H-IC, where we state that cohesion is a
degree of interdependence within a software part, whereas
coupling is an amount of dependencies between a software
part and the rest of the system. As with cohesion, properties
AdaCoupling.1—AdaCoupling.3 are meaningful for ratio
scale measures.

5.4 Measure Definition
We will now introduce interaction-based coupling meas-
ures. The issue will be first addressed by ignoring generic
modules for the sake of simplification. Generic modules
and their impact on the defined measures will be treated in
Section 5.5.

Measure 5: Import Coupling

Given a software part sp, Import Coupling of sp (denoted by
IC(sp)) is the number of DD-interactions between data declara-
tions external to sp and the data declarations within sp.

It can be shown that IC(sp) satisfies the above properties
AdaCoupling.1—AdaCoupling.3, but it does not satisfy any
of the sets of properties for size, length, complexity, or co-
hesion we formally defined in [12]. Therefore, since it is
consistent with our intuitive and formally defined under-
standing of coupling, we believe that IC(sp) is a valid cou-
pling measure in our application context. As for its meas-
urement scale, IC(sp) is a count of interactions and may
therefore be used as an absolute scale measure, and, as a
consequence, as a ratio scale measure.

Each box in Fig. 4 represents a module interface. Module
interfaces m2 and m3 are located in their parent’s interface
m1. m2 is assumed to be declared before m3 and therefore
visible to m3. Tij and OBJECTij data declarations represent,
respectively, types and objects in module mi. FP3 represents
a subroutine formal parameter. The IC values for the mod-
ules in Fig. 4 are computed as follows:

IC(m1) = 0, IC(m2) = 4, IC(m3) = 5, IC(m4) = 2.

As visible in Fig. 4, coupling between independent
modules is considered in the same way as coupling be-
tween modules and submodules. The justification for this is
that, when a module B is a submodule of a module A (B
IS_COMPONENT_OF A), then it implicitly sees part of A
and explicitly uses some of the declarations of A, in the
same way as an external module C would import, e.g., with
clause in Ada, and use declarations from A.

Based on the definitions of IC(sp), we derive two related
measures, DIC(sp) (Direct Import Coupling), TIC(sp) (Tran-
sitive Import Coupling). DIC(sp) only takes into account
direct interactions, whereas TIC(sp) only takes into account
transitive interactions. By their definitions, IC(sp) = DIC(sp)
+ TIC(sp). This allows us to separately evaluate the impact
of direct and transitive interactions on fault-proneness, as
we show in the empirical validation. In practice, the num-
ber of transitive interactions turns out to be much greater
than that of direct interactions, so IC(sp) TIC(sp).

5.5 The Treatment of Generic Modules
There are two possible ways of taking into account generics
when calculating coupling. Either each instance can be seen
as a different module or a generic can be seen as any other
module whose scope/global data declarations is/are the
union of the scope/global data declarations of its instances.
The second solution does not consider instances as inde-
pendent modules and appears to be more suitable to our
specific perspective, since faults are to be found in generics
and, only as a consequence, in instances.

The import coupling of a generic module is the cardinal-
ity of the union of the sets of DD-interactions between the
data declarations in the software system and those of each
of its instances. Consistent with the definition of DD-
interaction, generic formal parameters DD-interact with
their particular generic actual parameters, i.e., type, object,
when the generic module is instantiated, since a change in
the former may imply a change in the latter.

This is what the example in Fig. 5 illustrates. Gen_m is
the interface of a generic module, with a generic formal
parameter GenFP and a generic type GenT. The export cou-
pling of module Gen_m is given by the sum of three parts

Fig. 4. Calculation of IC with nongeneric modules only.

734 IEEE TRANSACTIONS ON SOFTWARE ENGINEERNG, VOL. 25 NO. 5, SEPTEMBER/OCTOBER 1999

1) two interactions from Gen_m to m1, due to the two in-
stantiations, Gen_m(1) and Gen_m(2), of Gen_m in m1,

2) the interaction from the instantiation Gen_m(1),
3) the two interactions from the instantiation Gen_m(2).

The values of IC for the modules in Fig. 5 are as follows:

IC(m1) = 2, IC(m2) = 3, IC(m3) = 4, IC(Genm) = 0.7

5.6 Related Work
As stated in [25], coupling characterizes a module’s rela-
tionship to other modules and measures their interdepend-
ence. Again, it is assumed that low coupling will help ana-
lyze, understand, modify, test, and reuse modules sepa-
rately. Meyer [36] defines the “weak coupling” principle as:
if any two modules communicate at all, they should ex-
change as little information as possible. As with cohesion,
the notions of modules, elements, and relations vary ac-
cording to the context in which coupling is to be defined.

5.6.1 Procedural Coupling
Similarly to cohesion, an ordinal measurement scale was
defined for coupling [20] based on whether or not certain
relationships occur between subroutines:

� Content coupling
� Common coupling
� Control coupling
� Stamp coupling
� Data coupling

For example, Content coupling occurs when a subroutine
refers directly to the inside of another subroutine (e.g.,
branches into) whereas Common coupling occurs whenever
two subroutines refer to the same global data [23]. Content
coupling between ADTs is not relevant since it goes against
the fundamental definitions of what ADTs are. In addition,
based exclusively on high-level design information, it may
not always be possible to determine whether or not global

7. Gen_m may well be coupled to some other module(s), such as those

from which the type(s) of its FP come. This coupling is not shown in Fig. 5.

data are being shared, or how parameters exchanged be-
tween subroutines will be used, e.g., for controlling behav-
ior (Control coupling) or for data exchange (Data coupling).
The accuracy of this classification may depend on the high-
level design language used. For instance, the knowledge of
procedure headers in Ada might not be sufficient by itself
to determine how a parameter is used in a procedure. Con-
sistent with the stated objectives of this study, we have pro-
vided definitions for ADT coupling in Section 5.4 based on
high-level design information formalized through interac-
tions as defined in Section 3.2.

5.6.2 Object-Based/Object-Oriented Coupling
In [19], a measure called Coupling Between Object classes
(CBO) has been proposed for classes in object-oriented sys-
tems. A class is coupled to another one when it uses its
member functions and/or instance variables. CBO provides
the number of classes to which a given class is coupled.

In our case, we have chosen to look at the coupling of
modules based exclusively on information available at the
end of high-level design in our Ada context. We have cho-
sen to look at interaction-level coupling, i.e., at the fre-
quency of interactions between a software part and the oth-
ers. We think that two interdependent software parts may
show very different intensities of interaction and that that
should be taken into account.

On the other hand, CBO looks very similar to the ISP
measure we will introduce in the next section, except that
ISP is defined in our object-based Ada context instead of
OO classes.

Many other measures for coupling in object-oriented sys-
tems have been provided in the literature (for instance, see
[32], [19], [28], [33], [4]—a survey is available in [3]). Com-
ments can be made similar to the above discussion on cohe-
sion. Measures differ according to several criteria and the
most important ones are: the types of connection/ depend-
ency contributing to coupling, the locus of impact, i.e., im-
port vs. export coupling, the domain of the measure, its
level of granularity, i.e., how connections are counted, and,

Fig. 5. Generics when calculating import coupling.

BRIAND ET AL.: DEFINING AND VALIDATING MEASURES FOR OBJECT-BASED HIGH-LEVEL DESIGN 735

as for cohesion, how indirect connections and inheritance
are handled. In our case, certain choices (described above)
have been made, based on our experimental hypotheses,
regarding these criteria.

6 MEASURES BASED ON USES AND
IS_COMPONENT_OF RELATIONSHIPS

These measures are similar to existing measures in the lit-
erature [1], [23] and were defined in order to provide a ba-
sis of comparison for the measures introduced in the previ-
ous sections. Among the ones we investigated [10], two
measures appeared to be statistically significant as indica-
tors of fault-proneness and are, therefore, introduced below,
Imported Software Parts, based on the USES relation among
software parts, and Average Depth of the nodes of the hier-
archy defined by the IS_COMPONENT_OF relations within
software parts.

H-ISP is the experimental hypothesis that we believed to
be true on the influence of the imported software parts on
fault proneness.

Hypothesis H-ISP. The larger the number of imported soft-
ware parts, the larger the context to be understood, the more likely
the occurrence of a fault.

Based on this hypothesis, we defined the following measure.

Measure 6: Imported Software Parts.

ISP(sp) will denote the number of software parts imported and
used by a software part sp.

The relationship we believed to exist between depth of the
IS_COMPONENT_OF hierarchy and fault-proneness is
expressed by the experimental hypothesis H-A.

Hypothesis H-A. The larger the depth of a hierarchy, the lar-
ger the context information that is available to the lower nodes,
the more likely the occurrence of error regarding the hierarchy, the
more likely the detection of a fault in it. In other words, if a mod-
ule B is included as a submodule of a module A (and not as an
independent module, e.g., a library unit in Ada as opposed to a
secondary unit), we assume that B is not fully understandable out
of its context of definition. Otherwise, it would have been defined
independently of A.8

This experimental hypothesis allowed us to define the fol-
lowing measure.

Measure 7: Average Depth

Avg_Depth(sp) will denote the average depth of the nodes com-
posing a software part sp.

7 EMPIRICAL VALIDATION
In this section, we describe the last step of the approach we
have followed in our study, i.e., the empirical validation of
the measures we defined. More specifically, we precisely de-
scribe the goals of our empirical validation in Section 7.1. In
Section 7.2, we show how we have carried out our empirical

8. As indicated in Section 4.2, this can also be a factor in assessing the co-

hesion of A, though we did not include it as a component of our definition
of cohesion.

validation. Sections 7.3, 7.4, 7.5, and 7.6 describe the experi-
mental results we have obtained: Section 7.3 shows the de-
scriptive statistics, Section 7.4 the correlation analysis, and
Sections 7.5 and 7.6 discuss the univariate and multivariate
analysis results, respectively.

7.1 Goals of the Empirical Validation
In our study, the empirical validation has two main goals.

Goal 1. We want to find out which of the measures de-
fined above have a significant (in the two senses of statis-
tically and practically significant) impact on the fault-
proneness of software parts. As said in Section 4.1, fault-
proneness is defined in this context as the probability of a
fault to be detected in a software part by testing it. We
think that such a definition is intuitive and can be handled
at low cost in an experimental setting. It also allows us to
use a robust and standard modeling technique specifically
suitable to classification, i.e., logistic regression [27].
However, other definitions and modeling techniques
could be used, e.g., number of faults and least-square re-
gression, respectively.

In this context, we are going to

1) identify which of our high-level design measures are
significantly related to software fault-proneness;

2) determine which of our hypotheses are empirically
supported;

3) compare the interaction-based strategy to simpler
strategies for defining high-level design measures;

4) assess the stability of the observed trends across pro-
jects.

Section 7.3, 7.4, and 7.5 show the experimental results re-
lated to steps 1, 2, 3, and 4 in Goal 1.

Goal 2. We need to investigate dependencies between
measures, in order to determine which ones are comple-
mentary and can be used in combination for fault-
proneness prediction, and which ones capture similar phe-
nomena and are redundant. In other words, we need to
determine whether the defined measures are redundant or
complementary explanatory variables of fault-proneness. If
they are complementary, then they are all potentially useful
in order to build a prediction model for fault-proneness. If
most of them are redundant, then a few of those measures
are sufficient to help predict fault-proneness, assuming they
are significant predictors. We do not expect, though, that
our measures explain all of the variation in the data set. We
are very well aware that other factors have an impact on
fault-proneness, e.g., human factors, code attributes. On the
other hand, we want to determine whether they can be a
useful part of a prediction model.

Section 7.6 investigates the goodness of fit obtained
when building multivariate classification models for detect-
ing fault-prone LMHs based on the design measures that
appeared statistically significant during univariate analysis.
The model results are assessed and the model structure is
investigated.

7.2 Empirical Validation Strategy
In order to validate software measurement hypotheses em-
pirically, one can adopt two main strategies:

736 IEEE TRANSACTIONS ON SOFTWARE ENGINEERNG, VOL. 25 NO. 5, SEPTEMBER/OCTOBER 1999

1) small-scale controlled experiments,
2) real-scale industrial case studies.

In this research project, we chose the second alternative since
we thought the phenomena we are studying would be even
more visible and significant on software systems of realistic
size and complexity. Also, we thought that strategy 2 should
be a more relevant and convincing validation for the soft-
ware industry practitioners.

However, the problem in such studies is that it becomes
difficult to study the phenomena of interest in isolation,
without having to deal with other sources of variation. In
our case, we thought that, if these measures were to be in-
teresting, they should explain a significant percentage of
the variation individually or in combination, despite other
sources of variation. However, we expect some instability
across projects.

Environment. The first system studied is an attitude
ground support software for satellites (GOADA) developed
at the NASA Goddard Space Flight Center. The second one
(GOESIM) is a dynamic simulator for a geostationary envi-
ronmental satellite. These systems are composed of 525 and
676 Ada units, 90 Klocs and 170 Klocs, respectively, and
have a fairly small reuse rate (around 5 percent of the
source code lines have been reused from other systems,
verbatim or slightly modified). The third system we studied
(TONS) is an onboard navigation system for satellite, which
has been developed in the same environment and is about
180 Ada units and 50 Klocs large, with an extremely small
rate of reuse (2 percent of the source code lines have been
reused from other systems, verbatim or slightly modified).
We selected projects with lower rates of reuse in order to
make our analysis of design factors more straightforward
by removing what we think is a major source of noise in
this context.

During development, change report forms are generated
based on testing error reports. These forms contain data on
the type, cause, and source of errors. In addition, they pro-
vide the modules that are affected by the change. Each mod-
ule affected is considered to contain a fault (following the
standard IEEE terminology). Considering that this data col-
lection process has been running and institutionalized for
more than 20 years, we expect the data collection to be reli-
able and complete. No evidence of the contrary was found.

Tool. A tool has been developed to analyze the interface
parts of Ada source code, in order to capture the design
attributes of these systems. This tool is based on LEX &
YACC [34] and extracts generic high-level design informa-
tion about the visibility and interactions of the system dec-
larations. This information is consequently used to compute
the measures presented in Sections 4.4, 5.4, and 6, and oth-
ers that might be defined.

Analytical Model. The response variable we use to vali-
date the design measures is binary, i.e., Was a fault detected
in a LMH or not? In order to analyze the impact of software
measures on the fault-proneness of software parts (i.e.,
probability of a fault to be detected in a software part), we
used logistic regression, a classification technique [27] used
in many experimental sciences, based on maximum likeli-
hood estimation, and presented below. In particular, we

first used univariate logistic regression, to evaluate the im-
pact of each of the measures in isolation on fault-proneness.
In this case, a careful outlier analysis must be performed in
order to make sure that the observed trend is not the result
of few observations [21].9 Then, we performed multivariate
logistic regression, to evaluate the relative impact of those
measures that had been assessed sufficiently significant in
the univariate analysis. For instance, according to [27], p <
0.25, where p is the probability for the regression coefficient
to be different from 0 by chance, is a reasonable heuristic to
select candidate covariates for multivariate analysis. This
modeling process is further described in [27].

A multivariate logistic regression model is based on the
following relationship equation (the univariate logistic re-
gression model is a special case of this, where only one
variable appears):

p(X , X , , X)
e

e1 2 n

(C C X C X)

(C C X C X)

0 1 n n

0 1 n n
K

K

K=
+

+ � + + �

+ � + + �

1

11
 (2)

where

� p is the probability that no fault was found in a soft-
ware part during the validation phase

� the Xis are the design measures included as explana-
tory variables in the model (called covariates of the lo-
gistic regression equation).

The curve between p and any single Xi —i.e., assuming that
all other Xjs are constant—takes a flexible S shape which
ranges between two extreme cases:

1) when a variable is not significant, then the curve ap-
proximates a horizontal line, i.e., p does not depend
on Xi

2) when a variable entirely differentiates fault-prone
software parts, then the curve approximates a vertical
line.

The coefficients Cis will be estimated through the maximiza-
tion of a likelihood function, built in the usual fashion, i.e., as
the product of the probabilities of the single observations,
which are functions of the covariates (whose values are
known in the observations) and the coefficients (which are
the unknowns). For mathematical convenience, l = ln[L], the
loglikelihood, is usually the function to be maximized. This
procedure assumes that all observations are statistically in-
dependent. In our context, an observation is the detec-
tion/non detection of a fault in a LMH. Each detection/
nondetection of a fault is assumed to be an event independ-
ent from the other fault detections/non detections. This is in
part justified by the fact that faults correspond to different
change report forms and, therefore, error detection events.

The global measure of goodness of fit we will use for such
a model is assessed via R2—not to be confused with the least-
square regression R2—they are built upon very different for-
mulae, even though they both range between 0 and 1 and are
similar from an intuitive perspective. The higher R2, the
higher the effect of the model’s explanatory variables, the
more accurate the model. However, as opposed to the R2 of

9. In addition, in order to confirm the obtained results, we used non-

parametric tests for rank distributions such as the Mann-Whitney U test
[18]. Results appeared to be consistent across techniques.

BRIAND ET AL.: DEFINING AND VALIDATING MEASURES FOR OBJECT-BASED HIGH-LEVEL DESIGN 737

least-square regression, high R2s are rare for logistic regres-
sion. (The interested reader may refer to [27] for a detailed
discussion of this issue.) R2 is defined by the following ratio:

R
LL LL

LL
2 S

S
=

-

where

� LL is the loglikelihood obtained by Maximum Likeli-
hood Estimation of the model described in formula (2)

� LLS is the loglikelihood obtained by Maximum Likeli-
hood Estimation of a model without any variables,
i.e., with only C0. By carrying out all the calculations,
it can be shown that LLS is given by

LL m ln(
m

m m) m ln(
m

m m)S 0
0

0 1
1

1

0 1
= + + +

where m0 (respectively, m1) represents the number of
observations for which there are no faults (respec-
tively, there is a fault). Looking at the above formula,
LLS /(m0 + m1) may be interpreted as the uncertainty
associated with the distribution of the binary depend-
ent variable (no fault detected in a LMH, one fault de-
tected in a LMH), according to Information Theory
concepts. It is the uncertainty left when the variable-
less model is used. Likewise, LL/(m0 + m1) may be in-
terpreted as the uncertainty left when the model with
the covariates is used. As a consequence, (LLS –
LL)/(m0 + m1) may be interpreted as the part of uncer-
tainty that is explained by the model. Therefore, the
ratio (LLS – LL)/ LLS may be interpreted as the propor-
tion of uncertainty explained by the model.

Tables 1, 2, 3, 4, 5, and 6 contain the results we obtained
through, respectively, univariate and multivariate logistic
regression on the three systems. For each measure, we pro-
vide the following statistics:

� C (appearing in Tables 3 and 4), the estimated regres-
sion coefficient. The larger the absolute value of the
coefficient, the stronger the impact of the covariate on
the probability p.

� Dy (appearing in Table 3 only, i.e., in univariate analy-
sis), which is based on the notion of odds ratio [27],
and provides an evaluation of the impact of the
measure on the dependent variable. More specifically,
the odds ratio y(Xi) represents the ratio between the
probability of not having a fault and the probability of
having a fault when the value of the measure is Xi. As
an example, if, for a given value Xi, y(Xi) is 2, then it
is twice as likely that the software part does not con-
tain faults than that it does contain faults. For each
variable Xi, the value of Dyi for logistic regression is
computed by means of the following formula

Dy =
+y

y
()

()
X

X
1

Therefore, Dyi represents the reduction/increase in
the odds ratio when the value Xi of the measure in-
creases by 1 unit and has the useful property to be in-
dependent of Xi in the context of logistic regression.
This provides a more intuitive insight than regression

coefficients into the impact of explanatory variables.
(Since the whole range of RCI is [0, 1], we used 0.01 as
the quantum for RCI increase with respect to which
DyRCI is computed.)

� p (appearing in both tables), the statistical significance
of C, which provides an insight into the accuracy of
the coefficient estimates. The level of significance of
the logistic regression coefficients tells the reader
about the probability that the coefficient is different
from zero by chance. Historically, a significance
threshold (a) of a = 0.05, i.e., 5 percent probability, has
often been used in univariate analysis to determine
whether a variable is a significant predictor. However,
the choice of a particular level of significance is ulti-
mately a subjective decision and other levels such as
0.01 or 0.1 are commonly used. The larger the level of
significance, the larger the standard deviation of the
estimated coefficients, the less believable the calcu-
lated impact of the coefficient. The significance test is
based on a likelihood ratio test [27] commonly used in
the framework of logistic regression.

7.3 Descriptive Statistics
Table 1 presents the descriptive statistics for the three pro-
jects we analyze. The minimum, maximum, median, mean,
and standard deviation are provided in each table cell for
each project. These descriptive statistics will be useful later
on when we explain the differences observed in the analysis
between the projects. Also, in future replications of this
study, comparisons will be made easier if the sample statis-
tics can be compared.

From Table 1, a few strong variations between TONS and
the other two projects are visible. The standard deviation,
mean and median of TIC are smaller for TONS. This may be
due to the significant difference in size between the systems
and results in fewer transitive interactions in TONS. With
respect to ISP, differences can be observed between pro-
jects’ means and standard deviations where TONS shows
the largest mean of imported software parts and GOESIM
the smallest one.

These differences may have numerous causes. GOADA
and GOESIM are older projects and among the earlier Ada
developments in the studied environment whereas TONS is
a much more recent project. Higher module imports may be
due to an increase in complexity over time of the systems
developed in the studied environment or to the difference
in application domain. Similarly, GOADA shows a much
smaller median with respect to cohesion. Considering that
GOADA was the first Ada project using object-oriented
design in that environment, this circumstance may be ex-
plained by a lack of experience with that new technology
and its underlying concepts.

7.4 Correlation Analysis
Table 2 presents the computed Pearson’s correlation coeffi-
cients (R) between the design measures computed for each
of the three projects.

738 IEEE TRANSACTIONS ON SOFTWARE ENGINEERNG, VOL. 25 NO. 5, SEPTEMBER/OCTOBER 1999

Most of the correlations in Table 2 are weak (the signifi-
cant ones, at the 0.01 level, are in boldface). ISP appears to
be significantly correlated to DIC across the three projects.
However, the relationship is relatively weak. The correla-
tion between TIC and ISP for TONS is mainly due to an
outlier. On the other hand, the correlation between DIC and
TIC is actually stronger (R = 0.87) when removing that out-
lier. A careful analysis of Table 2 allows us to conclude that,
in most cases, the five measures presented capture different
dimensions in our environment. In other words, they are
likely not to be redundant from a predictive point of view.
The existing significant correlations will have, however, to
be considered in the following analysis.

7.5 Univariate Analysis
In this section, we present the results obtained when ana-
lyzing the individual impact of the defined design meas-
ures on fault-proneness. Table 3 presents these results by
providing the computed regression coefficient (C), the
variation in odds ratio when increasing the measure’s value

of a unit (Dy), and the actual statistical significance of C (p).
The number of LMH’s of the systems for GOADA, GOE-
SIM, and TONS are 131, 85, 83, respectively.

Results. The best univariate logistic regression R
2
s (our

measure of goodness of fit) are obtained with the measure
Avg_Depth: GOADA: R2 = 0.115, GOESIM: R2 = 0.14, and
TONS: R2 = 0.16.

Detailed Discussion. Across the three systems under
study, regression coefficients show the expected signs and
seem to support our hypotheses. For example, RCI shows a
positive sign and, therefore, suggests that the probability of
having no fault detected increases with RCI. However, TIC
and DIC do not appear to be very significant in TONS (p =
0.11 and 0.08, respectively), whereas they are very significant
in the other two systems. The analysis of the distribution of
TIC in all three systems, respectively, shows that its standard
deviation, mean, and median are much smaller in TONS (see
Table 1). As a consequence, any trend related to TIC may not
be visible in the TONS dataset. Since TONS is a significantly

TABLE 1
DESCRIPTIVE STATISTICS

Measure Project minimum maximum median mean std dev

 GOADA 0 15 1 1.41 1.65

ISP GOESIM 0 6 1 1.19 1.13

 TONS 0 18 1 1.69 2.2

 GOADA 1 2.87 1.75 1.5 0.41

Avg_Depth GOESIM 1 2.86 1.8 1.5 0.43

 TONS 1 1.96 1.67 1.52 0.38

 GOADA 0 1 0.003 0.11 0.17

RCI GOESIM 0 1 0.083 0.16 0.20

 TONS 0 1 0.034 0.16 0.24

 GOADA 0 172 15.5 30.4 32.7

TIC GOESIM 0 126 46.0 37.2 32.5

 TONS 0 125 3 8.04 16.8

 GOADA 0 67 3 5.02 9.06

DIC GOESIM 0 32 3 4.63 6.08

 TONS 0 36 3 5.34 7.22

TABLE 2
LINEAR CORRELATION COEFFICIENTS

Measure Project ISP Avg_Depth RCI TIC DIC

 GOADA 1 -0.05 -0.1 0.4 0.53
ISP GOESIM 1 0.08 -0.12 0.3 0.52
 TONS 1 0.2 -0.1 0.8 0.48

 GOADA 1 -0.4 0.05 0.18

Avg_Depth GOESIM 1 -0.4 -0.08 0.06

 TONS 1 -0.23 0.3 0.38

 GOADA 1 0.02 0.12

RCI GOESIM 1 -0.24 0.02

 TONS 1 -0.1 -0.2

 GOADA 1 0.4

TIC GOESIM 1 0.17

 TONS 1 0.71

 GOADA 1

DIC GOESIM 1

 TONS 1

BRIAND ET AL.: DEFINING AND VALIDATING MEASURES FOR OBJECT-BASED HIGH-LEVEL DESIGN 739

smaller system than the other two, we can hypothesize the
following possible explanation: the distribution of indirect
import interactions is strongly dependent on the size of the
system and indirect import interaction measures are likely to
be mediocre predictors for small systems. However, well-
founded interpretations of this experimental result require
more thorough and extensive studies, based on a larger set of
software systems. Other interpretations might turn out to be
as plausible. With respect to DIC, no explanation has been
found for its mediocre level of significance in TONS. In all
other cases, the univariate analysis results show that the five
defined measures are significantly related (at a a = 0.05 level
of significance) to fault-proneness.

Comparing Models. Variations across models. i.e., uni-
variate regression equations, should be expected, due to
differences in project characteristics and measure distribu-
tions, i.e., size, application domain. In order to evaluate the
stability of the models, the reader should look at the Dy
columns in Table 3. Model stability may be defined as the
degree of variation of the Dys across projects. Based on that
definition, it is worth noticing that, despite the fact that
these projects belong to different application domains
(within the context of satellite support systems) and have
been developed at different times, most of the models are
surprisingly stable across projects, i.e., trends are similar
and percentages are in similar ranges.

As a conclusion, Goal 1 of our empirical validation is ful-
filled by the above analysis since some high-level design
measures are significantly related to fault-proneness (see C
and p values in Table 3) (subgoal a). In addition, by analyz-
ing the trends indicated by the coefficients, we see that the
hypotheses underlying the measures identified above as
significant are empirically supported (subgoal b). Interac-
tion-based measures do not appear to be strongly associ-
ated with simpler high-level design measures (Table 2) and,
therefore, seem to be complementary (subgoal c). Last, the
observed trends appear stable across projects (Dys in Table
3) (subgoal d).

7.6 Multivariate Models
In this section, we present the results obtained by perform-
ing a stepwise multivariate logistic regression. Table 4 pro-
vides the estimated regression coefficients (C) and their
significance (p) based on a likelihood ratio test [27], which is
obtained by comparing the maximum likelihood estimate
of a parameter to its estimated standard deviation. Regres-
sion coefficients are not shown when their level of signifi-
cance is above 0.25 (substituted by a *).

It is important to note that we do not expect high-level
design measures to account for all of the variation of fault-
proneness, since other factors are likely to be important too,
e.g., human factors. However, the goal of multivariate
analysis here is to determine whether the measures appear-
ing significant in the univariate analysis are complementary
and useful for prediction, i.e., useful to build a classifier. In
order to do so, we have to show that these measures are,

TABLE 3
UNIVARIATE ANALYSIS

Measure Project C Dy (%) p

 GOADA -0.8 45 0.000

ISP GOESIM -0.717 49 0.002

 TONS -0.96 38 0.000

 GOADA -2.27 11 0.000

Avg_Depth GOESIM -2.4 9 0.000

 TONS -3.9 2 0.000

 GOADA 0.63 19 0.000

RCI GOESIM 0.215 12 0.047

 TONS 0.34 14 0.001

 GOADA -0.016 98 0.001

TIC GOESIM -0.017 98 0.002

 TONS -0.03 96 0.08

 GOADA -0.23 79 0.000

DIC GOESIM -0.19 83 0.001

 TONS -0.05 95 0.11

TABLE 4
COEFFICIENTS OF MULTIVARIATE MODELS

 Project C p

 GOADA -0.9 0.04

ISP GOESIM * *

 TONS -1.18 0.000

 GOADA -1.8 0.003

Avg_Depth GOESIM -3.12 0.000

 TONS -5.62 0.000

 GOADA 0.4 0.006

RCI GOESIM 0.3 0.07

 TONS 0.2 0.16

 GOADA -0.023 0.000

TIC GOESIM -0.02 0.005

 TONS * *

 GOADA 0.23 0.04

DIC GOESIM -0.13 0.04

 TONS -0.11 0.002

740 IEEE TRANSACTIONS ON SOFTWARE ENGINEERNG, VOL. 25 NO. 5, SEPTEMBER/OCTOBER 1999

when used together in a multivariate model, significantly
related to fault-proneness. In other words, when measures
remain significant covariates when included in the multi-
variate model, this means that they are complementary in
explaining fault-proneness. When the multivariate models
show a better fit than univariate models, then the measures
are deemed to be potentially useful for building a multivari-
ate model predicting fault-proneness.

Analyzing the behavior of our measures in a multivari-
ate context allows us to refine their validation by determin-
ing the extent to which they can be useful predictors. A de-
tailed discussion of multivariate analysis and the issues
mentioned above can be found in [21].

Results. The very low levels of significance (p-values) in
Table 4 suggest that, most of the time, these measures may
be used in combination as indicators of fault-prone LMHs.
Indeed, when used in a multivariate model, many of these
measures are still significant and produce models that are
more accurate than univariate models (Table 2).

The multivariate R2s are 0.21 for GOADA, 0.24 for GOE-
SIM, and 0.43 for TONS. These values are, respectively 183,
171, and 269 percent of the best univariate R2, i.e., the re-
sults improved significantly with the multivariate model.
(Recall that logistic regression R2 values are usually low as
compared to least-square regression R2s.)

Interaction-based measures are more complex than ISP
and Avg_Depth but they are worth collecting, since they
provide information which is complementary to that pro-
vided by ISP and Avg_Depth. We would miss substantial
information if we used only ISP and Avg_Depth, even
though ISP and Avg_Depth individually perform better than
our interaction-based measures. Interaction-level measures
allow the building of multivariate models, with better
goodness of fit than univariate models. We also want to
remark that no other declaration measures we also investi-
gated, e.g., the number of data declarations as a size meas-
ure for LMH, turned out to be statistically significant. In
addition, the average LMH depth was consistently selected
as a very good indicator. ISP, a measure similar to the no-
tion of fan-in, shows to be significant across projects (except
in the multivariate GOESIM model for reasons explained
below). From a more general perspective, measures based
on imports, regardless of the associated concepts, appear to
explain part of the fault-proneness of software parts.

Comparing Models. Some variability in the estimated re-
gression coefficients can be observed across projects in Ta-
ble 4. In multivariate models, coefficients have a tendency
to adjust, statistically, for other covariates [27], [21]. Some-
times, covariates are weak predictors of the response (or
dependent) variable when taken individually, and become
more significant when integrated in a multivariate model.
In Table 3, DIC showed, for TONS, a mediocre level of sig-
nificance, whereas it appears to be a significant covariate in
Table 4. Moreover, its trend is reversed (positive) for
GOADA. When looking more carefully at the associations
between measures, it can be determined that this may be
the results of a significant association between DIC and ISP
(see Table 1) in GOADA. These associations are a typical
source of coefficient instability, e.g., the coefficient of ISP in

GOADA varies from –0.9 to –0.39 when DIC is removed
from the equation.

TIC does not appear significant in TONS and this may
stem from its distribution in TONS (Table 1) which shows a
much smaller mean and standard deviation in the TONS
dataset. If most of TONS’s observations lie in the lower
range of the TIC scale, its impact on fault-proneness may
not be visible since we expect LMH’s with larger TIC values
to be fault-prone. Another possible cause is the linear asso-
ciation between TIC and DIC in TONS (see Table 2). Also,
RCI does not appear very significant in TONS. In that case,
despite the fact that no differences in distribution or strong
linear association can be observed (Tables 1 and 2), a strong
nonlinear association exists between RCI and DIC. When
using the natural logarithm to transform the scales of DIC
and RCI, i.e., linearize the relationship between DIC and
RCI, a correlation of R = 0.87 can be observed. This may
very well explain the low level of significance of RCI in
TONS.

ISP shows a smaller mean and standard deviation in GO-
ESIM and does not appear significant as a covariate in that
case. RCI shows a level of significance in GOESIM which is
worse than in GOADA but better than in TONS. In that case,
again, this may be explained by a weak but significant non-
linear relationship between DIC and RCI (after linearization,
R = 0.46 or R = 0.59 when removing an outlier).

It is important to note that a different set of systems
showing different distributions might show very different
trends. This points out a need for large scale investigation
across various development environments and application
domains. In addition, an investigation over a large number
of systems would allow us to better determine the ranges of
values in which the various measures are significant predic-
tors of fault-proneness.

As a conclusion, Goal 2 of our empirical validation is ful-
filled since we have shown that these measures are com-
plementary and useful explanatory variables of fault-
proneness, i.e., multivariate models show a better goodness
of fit than the univariate models.

Goodness of Fit. In order to better assess the goodness of
fit of the above multivariate models, we look now at other
measures of fit which provide a perspective complementary
to R

2
. Let us assume we wish to use the constructed logistic

regression models to classify LMH’s in two categories, i.e.,
it is/is not likely to detect a fault in the LMH. In order to do
so, we define a probability threshold of 0.5 to decide, based
on the computed probability to detect a fault in each LMH,
whether a LMH actually contains a fault. In that case, one
may decide, for instance, to inspect or test more carefully
the LMH.

Based on such classification models, we obtain the classi-
fication results presented in Table 5 across the three pro-
jects. GOADA, GOESIM, and TONS contain, respectively,
131, 85, and 83 LMHs. In addition, 270, 141, and 115 faults
have been reported, respectively. Table 5’s rows represent
the actual categories of LMHs, i.e., faulty or nonfaulty,
whereas the columns represent the classification performed
based on the logistic regression models.

BRIAND ET AL.: DEFINING AND VALIDATING MEASURES FOR OBJECT-BASED HIGH-LEVEL DESIGN 741

Table 6 compares the LMH’s which actually contain a
fault with the ones that have been predicted to contain a
fault. Based on these results, Table 6 presents two classifica-
tion evaluation criteria: completeness, correctness. The for-
mer gives the percentage of faulty LMH’s which have been
classified as faulty. The latter gives the percentage of times
a LMH has been classified correctly as faulty. For example,
in GOADA, 60 faulty LMH’s have been classified as faulty
whereas eight of them have been classified as non-faulty.
On the other hand, 41 nonfaulty LMH’s have been classi-
fied as faulty. In that case, Completeness = 60/68 = 88 per-
cent, whereas Correctness = 60/101 = 60 percent. These two
criteria are complementary in assessing classification re-
sults and cannot be analyzed independently. More balanced
completeness and correctness results could be obtained by
using a different classification threshold than 0.5.

Results put between parentheses in Tables 5 and 6 pro-
vide the number of faults detected in each LMH. This al-
lows us to determine correctness and completeness in terms
of faults, instead of faulty LMHs. If we take the same ex-
ample again, Correctness = 259/300 = 86 percent and Com-
pleteness = 259/270 = 96 percent. Overall, the results appear
to be substantially better when considering faults. This
shows that the models are more accurate for LMHs contain-
ing a larger number of faults.

As expected and discussed above, the classification re-
sults are not fully satisfactory and there is room for im-
provement. However, especially with respect to complete-
ness, the results show that the defined design measures are
useful indicators of fault-prone LMHs. Furthermore, the
design measures show to be excellent predictors of where
most of the faults will be detected. Criteria such as correct-
ness and completeness are dependent on the choice of a
subjective classification threshold. However, as a measure
of fit, they are more intuitive than R

2
.

Another important point is that there is a difference be-
tween measuring the goodness of fit of a model and assess-
ing its predictive capability. In the latter case, one should
define a separate modeling and test sets. The modeling set is
usually larger than the test set and is used to build the
model. It should be representative of the whole statistical
population under study. The test set is used to test the
predictive accuracy of the model generated. In our study, we

dictive accuracy of the model generated. In our study, we
were interested in the goodness of fit and we did not investi-
gate the predictive capability of the model per se. However, a
satisfactory goodness of fit is required in order to realistically
expect a satisfactory predictive capability in future studies.
Our goal was to validate our measures according to the goals
stated above, not to build and assess predictive models. Such
a task is however a part of our future work and would re-
quire larger data sets which are representative of the project
population in our environment.

8 CONCLUSION
This paper has presented a methodology and an empirical
study on the definition and validation of measures for high-
level object-based designs. Our experimental goal was to
evaluate the influence of some attributes of the high-level
object-based design on the fault-proneness of the produced
software in the context of Ada development at NASA/ FSC.
Based on the experimental goal, we have set experimental
hypotheses from which we derived measures, which were
theoretically validated by means of a property-based ap-
proach and empirically validated on three real-life software
projects.

The study has shown that statistical models of good sta-
tistical significance can be built based on high-level design
information for systems designed based on abstract data
types. In particular, we have identified some early indica-
tors for fault-prone software that may be interpreted as co-
hesion and coupling measures. The stability of the impact
of these measures across projects allows us to draw opti-
mistic conclusions about the use of such quality indicators.
In a given application domain, the impact of the defined
high-level design measures seems to be relatively stable
across projects. When differences appear across projects
(especially in the multivariate models), they can be ex-
plained either by associations between covariates or by dif-
ferences in distributions across projects. Using early quality
indicators based on objective empirical evidence is there-
fore a realistic objective. Quality indicators can be weighted
according to their impact on fault-proneness in order to
build quality models and these weights will be representa-
tive, to some extent, across projects in the given application
domain. However, there is no guarantee that these kinds of
indicators will behave similarly across various application
domains and development environments. Therefore, it is
generally prudent to precede the use of such indicators by a
careful empirical analysis of local fault patterns in the stud-
ied environment and a thorough comparison across pro-
jects. As discussed in the Introduction, we do not believe
that universally valid quality measures and models can be

TABLE 5
CLASSIFICATION RESULTS FOR THE MULTIVARIATE ANALYSIS

 Predicted

 GOADA GOESIM GOESIM
Actual No Fault Fault No Fault Fault No Fault Fault

No Fault 22 41 12 33 30 20

Fault 8 (11) 60 (259) 2(11) 38(130) 4(7) 29(108)

TABLE 6
CLASSIFICATION ACCURACY FOR FAULTY LMHS

FOR THE MULTIVARIATEANALYSIS

 GOADA

(%)
GOESIM

(%)
GOESIM

(%)

Completeness 88 (96) 95 (92) 89 (94)

Correctness 60 (86) 54 (80) 59 (84)

742 IEEE TRANSACTIONS ON SOFTWARE ENGINEERNG, VOL. 25 NO. 5, SEPTEMBER/OCTOBER 1999

devised at this stage. Therefore, our approach to measure
definition and validation can be reused, but the measures
and models themselves should be investigated and vali-
dated locally in each studied environment.

Our future work will be four-fold to:

1) analyze more systems.
2) assess, as objectively as possible, the predictive capa-

bility of models based on high-level design measures.
3) further validate and refine the measures we defined

in this paper. The variations across environments and
the study/comparison of different architectures is
likely to give us interesting insights.

4) be consistent with our current objectives, we will ad-
dress the issues related to building measure-based
empirical models earlier in the life cycle. In particular,
the next stage of this research will focus on defining
and validating measures for formal specifications [9].

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers and Stu-
art H. Zweben for their thorough review of this paper. Also,
we thank Giuseppe Calavaro, Khaled El-Emam, and Chris
Lott for their helpful comments on earlier drafts of this pa-
per. This work was supported, in part, by NASA grant
NSG-5123 and UMIACS; and the National Science Founda-
tion under grant 01-5-24845. Sandro Morasca’s work was
carried out under the financial support of CNR and of the
Ministero dell’ Universitá e della Ricerca Scientifica e Tec-
nologica (MURST) in the framework of the Project “Design
Methodologies and Tools of High Performance Systems for
Distributed Applications.”

REFERENCES
[1] W. Agresti and W. Evanco, “Projecting Software Defects from

Analyzing Ada Designs,” IEEE Trans. Software Eng., vol. 18, no. 11,
Nov. 1992.

[2] L.C. Briand, V.R. Basili, and C. Hetmanski, “Developing Inter-
pretable Models with Optimized Set Reduction for Identifying
High Risk Software Components,” IEEE Trans. Software Eng.,
vol. 19, no. 11, Nov. 1993.

[3] V.R. Basili, L.C. Briand, and W. Melo, “A Validation of Object-
Oriented Measures,” IEEE Trans. Software Eng., vol. 22, no. 10,
Oct. 1996.

[4] L.C. Briand, P. Devanbu, and W. Melo, “Defining and Validating
Design Coupling Measures in Object-Oriented Systems,” Proc.
ICSE’97, Boston.

[5] L.C. Briand, J. Daly, and J. Wuest, “A Unified Framework for
Coupling Measurement in Object-Oriented Systems,” IEEE Trans.
Software Eng., vol. 25, no. 1, pp. 91–121, 1999. Also available at
http://www. iese.fhg.de/ISERN/pub/isern.biblio.html

[6] L.C. Briand, J. Daly, and J. Wuest, “A Unified Framework for Co-
hesion Measurement in Object-Oriented Systems,” Empirical Soft-
ware Eng.: An Int’l J., vol. 3, no. 1, pp. 65–117, 1998. Also available
at http://www. iese.fhg.de/ISERN/pub/isern.biblio.html.

[7] L.C. Briand, K. El Emam, and S. Morasca, “On the Application of
Measurement Theory to Software Engineering,” Empirical Software
Eng.: An Int’l J., vol. 1, no. 1, 1996.

[8] J.M. Bieman and B.-K. Kang, “Cohesion and Reuse in an Object-
Oriented System,” Proc. ACM Symp. Software Reusability (SSR’94),
pp. 259-262, 1995.

[9] L.C. Briand and S. Morasca, “Software Measurement and Formal
Methods: A Case Study Centered on TRIO + Specifications,”
ICFEM’97, Hiroshima, Japan, Nov. 1997.

[10] L.C. Briand, S. Morasca, and V.R. Basili, “Defining and Validating
High-Level Design Measures,” CS-TR-3301, Version 1, Univ. of
Maryland, College Park, 1994.

[11] L.C. Briand, S. Morasca, and V.R. Basili, “Goal-Driven Definition
of Product Metrics Based on Properties,” CS-TR-3346, Version 1,
Univ. of Maryland, College Park, 1994.

[12] L.C. Briand, S. Morasca, and V.R. Basili, “Property-Based Software
Engineering Measurement,” IEEE Trans. Software Eng., vol. 22, no. 1,
pp. 68-86, Jan. 1996.

[13] G. Booch, Software Engineering with Ada. Menlo, Calif.: Benja-
min/Cumming, 1987.

[14] J. Bieman and L.M. Ott, “Measuring Functional Cohesion,” IEEE
Trans. Software Eng., vol. 20, no. 8, pp. 644-657, Aug. 1994.

[15] V.R. Basili and H. Rombach,”The TAME Project: Towards Im-
provement-Oriented Software Environments,” IEEE Trans. Soft-
ware Eng., vol. 14, no. 6, June, 1988.

[16] V.R Basili, D. Rombach, J. Bailey, and A. Delis, “Ada Reusability
and Measurement,” CS-TR-2478, Univ. of Maryland, College Park,
May 1990.

[17] L.C. Briand, W. Thomas, and C. Hetmanski, “Modeling and Man-
aging Risk Early in Software Development,” Int’l Conf. Software
Eng., Maryland, May 1993.

[18] J. Capon, Statistics for the Social Sciences. Wadworth Publishing, 1988.
[19] S.R. Chidamber and C.F. Kemerer, “A Measures Suite for Object-

Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476–
493, June, 1994.

[20] L. Constantine and E. Yourdon, Structured Design. Prentice Hall,
1979.

[21] W. Dillon and M. Goldstein, Multivariate Analysis: Methods and
Applications, John Wiley & Sons, 1984.

[22] ANSI/MIL-STD-1815A-1983, Reference Manual of the Ada Pro-
gramming Languages. U.S. Department of Defense, 1983.

[23] N.E. Fenton, Software Measures, A Rigorous Approach. Chapman &
Hall, 1991.

[24] J. Gannon, E. Katz, and V.R. Basili, “Measures for Ada Packages:
An Initial Study,” Comm. ACM, vol. 29, no. 7, July 1986.

[25] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software
Engineering. Englewood Cliffs, N.J.: Prentice Hall, 1992.

[26] S. Henry and D. Kafura, “The Evaluation of Systems’ Structure
Using Quantitative Measures,” Software Practice and Experience,
vol. 14, no. 6, June, 1984.

[27] D. Hosmer and S. Lemeshow, Applied Logistic Regression. Wiley-
Interscience, 1989.

[28] M. Hitz and B. Montazeri, “Measuring Coupling and Cohesion in
Object-Oriented Systems,” Proc. Int’l Symp. Applied Corporate Com-
puting, Oct. 1995.

[29] HOOD Technical Group, B. Delatte, M. Heitz, and J. Muller eds.,
HOOD Reference Manual. Prentice Hall, 1993.

[30] D. Ince and M. Shepperd, “System Design Measures: A Review
and Perspective,” Proc. Software Eng. ‘88, pp. 23-27, 1988.

[31] C.M. Judd, E.R. Smith, and L.H. Kidder, “Research,, Methods in
Social Relations. Harcourt Brace Jovanovich College Publishers, 1991.

[32] W. Li and S. Henry, “Object-Oriented Metrics That Predict Main-
tainability,” J. Systems and Software, vol. 23, n. 2, pp. 111-122, Nov.
1993.

[33] Y. Lee, B. Liang, S. Wu, and F. Wang, “Measuring the Coupling
and Cohesion of an Object-Oriented Program Based on Informa-
tion Flow,” Proc. Int’l Conf. Software Quality, pp. 81-90, 1995.

[34] J. Levine, T. Mason, and D. Brown, LEX & YACC. O’Reilly & Assoc.
Inc., 1992.

[35] J. Myers, “An Extension to the Cyclomatic Measure of Program
Complexity,” SIGPLAN Notices, vol. 12, no. 10, pp. 61-64, 1977.

[36] B. Meyer, Object-Oriented Software Construction. Prentice Hall,
1988.

[37] A. Melton, D. Gustafson, J. Bieman, and A. Baker, “A Mathemati-
cal Perspective for Software Measures Research,” Software Eng. J.,
Sept. 1990.

[38] H.D. Rombach, “A Controlled Experiment on the Impact of Soft-
ware Structure and Maintainability,” IEEE Trans. Software Eng.,
vol. 13, no. 5, May, 1987.

[39] H.D. Rombach, “Design Measurement: Some Lessons Learned,”
IEEE Software, Mar. 1990.

[40] M. Shepperd, “Design Measures: An Empirical Analysis,” Soft-
ware Eng. J., Jan. 1990.

[41] R. Selby and V.R. Basili, “Analyzing Error-Prone System Struc-
ture,” IEEE Trans. Software Eng., vol. 17, no. 2, Feb., 1991.

BRIAND ET AL.: DEFINING AND VALIDATING MEASURES FOR OBJECT-BASED HIGH-LEVEL DESIGN 743

[42] E.J. Weyuker: “Evaluating Software Complexity Measures,” IEEE
Trans. on Software Eng., vol. 14, no. 9, pp. 1,357-1,365, Sept. 1988.

[43] W. Zage, D. Zage, P. McDaniel, and I. Khan, “Evaluating Design
Measures on Large-Scale Software,” SERC-TR-106-P, Sept. 1991.

[44] S.H. Zweben, S. Edwards, B. Weide, and J. Hollingsworth, “The
Effects of Layering and Encapsulation on Software Development
Cost and Quality,” IEEE Trans. Software Eng., vol. 21, no. 3, Mar.
1995.

Lionel C. Briand received the BS degree in
geophysics and the MS degree in computer
science from the University of Paris VI, France.
He received the PhD degree (with high honors)
in computer science from the University of Paris
XI, France. Dr. Briand is currently head of the
Quality and Process Engineering Department at
the Fraunhofer Institute for Experimental Soft-
ware Engineering (FhG IESE), an industry-
oriented research center located in Rheinland-
Pfalz, Germany. His current research interests

and industrial activities include measurement and modeling of software
development products and processes, software quality assurance,
domain specific architectures, reuse, and reengineering. He has pub-
lished numerous articles in international conferences and journals and
has been a Program Committee member or chair at several confer-
ences such as ICSE, ICSM, ISSRE, METRICS, and SEKE. Before that,
he started his career as a software engineer at CISI Ingénerie, France.
He then joined, as a research scientist, the NASA Software Engineer-
ing Laboratory, a research consortium: NASA Goddard Space Flight
Center, University of Maryland, and Computer Science Corporation.
Before going to FhG IESE, he held the position of lead researcher in
the software engineering group at the Computer Research Institute of
Montreal (CRIM), Canada.

Sandro Morasca received his DrEng degree
(Italian Laurea) cum laude and his PhD degree
in computer science, both from the Politecnico
di Milano in 1985 and 1991, respectively. He is
currently an associate professor of computer
science in the Dipartimento di Elettronica e
Informazione at the Politecnico di Milano, where
he held the position of assistant professor from
1993–1998. From 1991–1993, Dr. Morasca was
a faculty research assistant in the Institute for

Advanced Computer Studies at the University of Maryland (UMIACS).
He has authored several papers that have appeared at international
conferences and in journals, including IEEE and ACM Transactions. He
has also served on the Program Committee of a number of interna-
tional conferences, and he is the guest co-editor of a special issue of
IJSEKE on Knowledge Discovery from Empirical Software Engineering
Data. Dr. Morasca’s current research interests include: specification,
verification, and validation of concurrent and real-time systems; formal
methods; empirical studies in software engineering; and data mining.
Dr. Morasca is a member of the IEEE Computer Society.

Victor R. Basili holds a BS degree from Ford-
ham College; an MS degree from Syracuse
University; and a PhD degree from the Univer-
sity of Texas at Austin. Dr. Basili is currently a
professor of computer science at the University
of Maryland. He is founder and a director in the
Software Engineering Laboratory at NASA
Goddard Space Flight, (established in 1976),
and a recipient of the first Process Improvement
Achievement Award by the IEEE, the SEI, and
the NASA Group Achievement Award. Dr. Basili

has authored over 130 journals and refereed conference papers;
served as editor-in-chief of the IEEE Transactions on Software Engi-
neering; been program chair and general chair of CSE’6 and ICSE’15;
he is co-editor-in-chief of the International Journal of Empirical Soft-
ware Engineering. He is a fellow of the IEEE, the ACM, and a member
of the IEEE Computer Society.

