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Abstract—The availability of significant measures in the early phases of the software development life-cycle allows for better 
management of the later phases, and more effective quality assessment when quality can be more easily affected by preventive or 
corrective actions. In this paper, we introduce and compare various high-level design measures for object-based software systems. 
The measures are derived based on an experimental goal, identifying fault-prone software parts, and several experimental 
hypotheses arising from the development of Ada systems for Flight Dynamics Software at the NASA Goddard Space Flight Center 
(NASA/GSFC). Specifically, we define a set of measures for cohesion and coupling, which satisfy a previously published set of 
mathematical properties that are necessary for any such measures to be valid. We then investigate the measures’ relationship to 
fault-proneness on three large scale projects, to provide empirical support for their practical significance and usefulness. 
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1 INTRODUCTION

OFTWARE measures can help address the most critical 
issues in software development and provide support for 

planning, predicting, monitoring, controlling, and evaluat-
ing the quality of both software products and processes 
[15], [23]. Most existing software measures attempt to cap-
ture attributes of the software code [23]; however, software 
code is just one of the artifacts produced during software 
development, and, moreover, it is only available at a late 
stage. It is widely recognized that the production of better 
software requires the improvement of the early develop-
ment phases and the artifacts they produce. The production 
of better specifications and designs reduces the need for 
extensive review, modification, and rewriting not only of 
code, but of specifications and designs. As a result, a soft-
ware organization can save time, cut production costs, and 
raise the final product’s quality. 

Early availability of measures is a key factor in the suc-
cessful management of software development, since it al-
lows for: 

1) the early detection of problems in the artifacts pro-
duced in the initial phases of the life-cycle (specifica-
tion and design documents) and, therefore, reduc-
tion of the cost of change—late identification and 
correction of problems are much more costly than 
early ones; 

2) better software quality monitoring from the early phases 
of the life-cycle; 

3) quantitative comparison of techniques and empirical 
refinement of the processes to which they are applied; 

4) more accurate planning of resource allocation, based 
upon the predicted quality of the system and its con-
stituent parts. 

In this paper, we focus on measures for the high-level de-
sign of object-based1 software systems, to study whether 
information available at this development stage can be used 
to support the issues raised in points 1), 2), 3), and 4). We 
worked in the context of high-level designs for Flight Dy-
namics software, written in Ada83 [22], in the Software En-
gineering Laboratory at NASA Goddard Space Flight Cen-
ter (GSFC). Our goal was to  

define and validate a set of high-level design measures to 
evaluate the quality of the high-level design of a software 
system with respect to its fault-proneness and understand 
which high-level design attributes are likely to make soft-
ware fault-prone. 

We set a number of experimental hypotheses that were be-
lieved to be true in the environment of our study. In our 
study, we define three families of measures to set the hy-
potheses in measurable terms. These hypotheses were em-
pirically validated based on three projects conducted at the 
NASA/GSFC. As with many empirical studies, some of the 
hypotheses were supported by the empirical results, while 
others were not. In this paper, due to space constraints, we 
only report those hypotheses and measures that were sup-
ported by the empirical results. 

Specifically, we introduce and theoretically validate, based 
on the properties of [12], a family of measures for cohesion 
and coupling of high-level object-based software designs. 

 
1. Object-based systems differ from object-oriented systems in that inheri-

tance is not allowed. 
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Our measures focus and are based on one specific facet of 
cohesion and coupling, i.e., that related to declaration links 
among data and subroutines appearing in high-level design 
module interfaces. Therefore, our measures are not meant to 
capture all aspects of cohesion and coupling. For the sake of 
comparison and completeness, we also define two simpler 
measures based on USES and IS_COMPONENT_OF [25] 
relationships between modules. This appears necessary at 
this stage of knowledge, where we can only rely on very lim-
ited theoretical and empirical grounds to help us identify 
interesting concepts, relationships and objects of study. If our 
measures add complexity to the analysis, they should also be 
complementary to simpler design measures already pro-
posed in the literature. One of the results of this investigation 
is to provide directions for focusing our research on a smaller 
set of strategies and concepts. 

A number of studies have been published on software 
design measures in recent years. It has been shown that 
system architecture has an impact on maintainability and 
fault-proneness [26], [24], [38], [30], [39], [16], [40], [41], [43], 
[1], [17], [2], [44]. These studies have attempted to capture 
the design attributes affecting the ease of maintaining and 
debugging a software system. Most of the design measures 
are based on information flow between subroutines or dec-
laration counts. We think that, even though they provide 
interesting insights into the program structure, these 
should not be the only strategies to be investigated, since 
many other types of program features and relationships 
are a priori worth studying. Moreover, there is a need for 
comparison among strategies in order to identify worth-
while research directions and build accurate quality pre-
diction models. 

In addition, the success and widespread diffusion of ob-
ject-oriented software systems have drawn a good deal of 
interest towards the study of the attributes of object-
oriented software systems. A number of studies have been 
published (see for instance [19], [8], [28] and [5], [6] for an 
extensive survey). These studies generally deal with the 
proposal of new measures or the reuse of existing ones in 
the framework of object-oriented software code. Our study 
goes one step in the direction of object-orientation, at the 
high-level design stage, in that it addresses object-based sys-
tems. Therefore, we take into account several important 
characteristics of object-oriented software, with one impor-
tant exception—inheritance. 

The paper is organized as follows. In Section 2, we con-
cisely outline the overall structure of our study and explain 
the process we have carried out and its rationale. Section 3 
contains the basic definitions and concepts that are used in 
the paper. The cohesion and coupling measures we intro-
duce are presented in Sections 4 and 5, respectively. Based 
on the USES and IS_COMPONENT_OF relationships [25], 
we also define two simpler measures (Section 6), which are 
commonly proposed in the literature and against which we 
wish to compare our cohesion and coupling measures. 
These two measures were part of a larger set but turned out 
to be the only ones yielding positive results as indicators of 
fault-proneness (see [10] for further details). Empirical vali-
dation of the measures is shown in Section 7. In Section 8, 
we summarize the lessons we have learned, and outline 
directions for future research activities. 

2 OUTLINE OF THE STUDY 
We now describe the measurement activities we carried out, 
to provide the reader with a better interpretation frame-
work for our study. The steps we carried out follow the sci-
entific method and concern the setting of experimental 
goals and hypotheses, the definition of appropriate meas-
ures, and the theoretical and experimental validation of 
those measures. The steps below were basically executed in 
a sequential fashion. However, some steps were, to some 
extent, executed in parallel, e.g., steps 3 and 4; in addition, 
the need occasionally arose in a few points of the execution 
to go back to steps that had been already executed. 

1) Establish measurement goals. Empirical software en-
gineering fosters the improvement of software prod-
ucts and processes. In this context, measurement 
should be seen as a tool for acquiring information that 
can be useful for specific improvement purposes. 
Thus, precise measurement goals should be set, to en-
sure specific improvement issues of interest are ad-
dressed. It is our opinion that, at this stage, the defini-
tion of universal measures (like in physical sciences) 
is a long-term goal, which, however, is only achiev-
able (if at all) after we gain better insights into specific 
environments and from specific perspectives in the 
short term. Therefore, the definition of a measure 
should be driven by both the characteristics of the 
context or family of contexts in which it is used and 
one or more clearly stated goals that it helps reach. 

The goal of our study was to analyze the high-level 
design of three software systems in order to under-
stand which high-level design attributes are likely to 
make software fault-prone in our application context, 
NASA/GFSC. 

2) Set experimental hypotheses. Experimental hy-
potheses, derived from the measurement goals, are 
necessary to define measures that are somewhat sup-
ported by an underlying theory to be confirmed or 
disconfirmed. Thus, we avoid a random search for sta-
tistical significance. Experimental hypotheses estab-
lish a link between the attribute of interest (software 
code fault-proneness, in our case) and some attribute 
of the object of study, e.g., size, complexity, cohesion, 
coupling of software high-level design. 

Each measure we introduce in our study is accom-
panied by an experimental hypothesis. However, we 
do not claim that these hypotheses are universally 
true in any environment: a priori, they may not even 
be true in our environment, since they can be discon-
firmed by the empirical validation. Also, other hy-
potheses could be set: other people may come up with 
different hypotheses in the same environment, since 
our hypotheses capture our beliefs. In addition, we do 
not assume that all of these experimental hypotheses 
are equally important towards our experimental goal, 
i.e., not all of the attributes we take into account have 
an equal impact on software fault-proneness. In this 
paper, we will only report on those hypotheses that 
were confirmed by the empirical validation (Section 7), 
and, therefore, we will only introduce those measures 
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that allowed us to quantify these hypotheses. The 
reader interested in the negative results of this study 
may consult [10]. 

3) Characterize formally the attributes to be studied. 
Experimental hypotheses are stated in terms of attrib-
utes, which are to be quantified by means of measures. 
The introduction of appropriate measures is facilitated 
by the availability of precise definitions for the attrib-
utes of interest. Unfortunately, such attributes, e.g., size, 
complexity, cohesion, coupling, are hardly ever defined 
in a precise and unambiguous way, if they are defined 
at all. However, approaches have appeared in the re-
cent literature to provide these attributes with less 
fuzzy and ambiguous definitions, using mathematical 
properties to characterize them [42], [12]. 

In our study, we have used an instantiation of the 
property-based approach of [12] for our object-based 
Ada context, to provide theoretical support for the 
definition of our measures of cohesion and coupling 
based on data declaration dependency links. These 
properties allow us to characterize—to the best of our 
understanding and knowledge—the two attributes, 
and provided us with guidance for measure defini-
tion. They provide supporting evidence that the 
measures are theoretically valid, i.e., we measure 
what we purport to measure (see step 5). 

We want to point out that acceptance of our cohe-
sion and coupling properties is, to some extent, a sub-
jective matter, as with any other set of properties or 
rationalization of informal concepts. Also, our proper-
ties are to be interpreted as necessary, but not suffi-
cient. This is the case even for the most consolidated 
and well-known ones, such as the properties for dis-
tance. As a consequence, measures might be built that 
satisfy our properties but cannot be taken as sensible 
cohesion or coupling measures. However, we believe 
that, by providing desirable properties for the meas-
ures of cohesion and coupling, we have better clari-
fied our ideas about cohesion and coupling. The 
reader has much more solid grounds on which he or 
she can either accept our ideas about cohesion and 
coupling, or reject them and replace them with other 
properties. 

4) Identify abstractions of the object of study. Ap-
propriate representations (abstractions according to 
[37]) of the object of study are used in measurement 
to capture the information needed to build measures 
for the software attributes mentioned in the experi-
mental hypotheses. Some examples of product ab-
stractions are data flow graphs and control flow 
graphs. In our study, we use graphs based on de-
pendency links between data and subroutines in 
high-level software design. 

5) Define measures. A measure is defined for capturing 
some intuitive concept [31], e.g., size, complexity, 
cohesion, coupling, such as those used in the ex-
perimental hypotheses. In our study, we define 
measures for cohesion and coupling based on de-
pendency links among data and subroutines in high-
level software design. 

The definition of sound measures requires that 
they be theoretically validated, to show that they ac-
tually quantify the attributes they purport to measure. 
This is argued for our cohesion and coupling meas-
ures because they satisfy the properties for those 
measures we established in step 3, and because they 
do not satisfy any set of properties for other attributes 
such as complexity or size. One of the goals of [12] 
was to define sets of properties to identify similarities 
and differences across software attributes. 

At any rate, as explained in step 3, some caution 
must be used in interpreting the results of our theo-
retical validation, as with any theoretical validation, 
due to the inherent degree of subjectivity in the for-
malization of intuition and the fact that properties are 
necessary but not sufficient. Therefore, the satisfaction 
of our cohesion and coupling properties cannot be 
strictly taken as conclusive evidence that the meas-
ures we define are cohesion and coupling measures, 
but only as supporting evidence. In addition, we do 
not claim nor believe that our measures are the “de-
finitive” measures for cohesion and coupling. They 
address only one possible aspect of cohesion and 
coupling, and, even in our context, they will need fur-
ther refinements. 

6) Validate measures empirically. The empirical vali-
dation of a measure actually entails the validation of 
the experimental hypotheses involving the attribute 
quantified by the measure. Empirical validation ascer-
tains the practical usefulness of a measure in the stud-
ied environment, by showing if the attributes it meas-
ures, e.g., cohesion, influences an external quality at-
tribute [23] of practical interest, e.g., fault-proneness, 
and the extent of this influence. 

In our empirical validation, based on data collected 
at the NASA/GSFC, we have applied a statistical 
technique to study the influence of cohesion and cou-
pling on fault-proneness. Validation was facilitated by 
the fact that we had defined experimental goals and 
hypotheses at the beginning of the study. At any rate, 
the external validity of the experimental hypotheses 
and measures remains to be investigated in order to 
determine whether they are applicable to different 
environments and problem domains. 

More details about the approach we have followed can be 
found in [11]. 

3 BASIC DEFINITIONS 
In this section, we first introduce the basic concepts and the 
terminology that we will use in the paper (Section 3.1). We 
then define interactions, the data dependency links on which 
our cohesion and coupling measures are based (Section 3.2). 

3.1 Modules and High-Level Design 
Our object of study is the high-level design of a software 
system. To define it, we will start from its elementary com-
ponents: software modules. In the literature, there are two 
commonly accepted definitions of modules. The first one 
sees a module as a subroutine, and has been used in most of 



BRIAND ET AL.:  DEFINING AND VALIDATING MEASURES FOR OBJECT-BASED HIGH-LEVEL DESIGN 725 

 

the design measurement publications [35], [20], [26], [38], 
[40]. The second definition, which takes an object-oriented 
perspective, sees a module as a collection of type, data, and 
subroutine definitions, i.e., a provider of computational 
services [13], [25]. In this view, a module is the implementa-
tion of an Abstract Data Type (ADT), e.g., a package in Ada, 
a class in C++. In this paper, unless otherwise specified, we 
will use the term subroutine for the first category, and re-
serve the term module for the second category. Modules are 
composed of two parts: interface and body (which may be 
empty). The interface contains the computational resources 
that the module makes visible for use to other modules. The 
body contains the implementation details that are not to be 
exported. 

Modules and subroutines may be related to each other by 
IS_COMPONENT_OF and USES relationships [25]. In general, 
module/subroutine A is related to module/subroutine B by 
an IS_COMPONENT_OF relationship if A is defined within B. 
Module/subroutine A is related to module/subroutine B by a 
USES relationship if A uses computational services that B 
makes available. 

Modules and subroutines can be seen as the components 
of higher level aggregations, as defined below. 

DEFINITION 1 (Library Module Hierarchy (LMH)). A library 
module hierarchy is a hierarchy where nodes are modules and 
subroutines, arcs between nodes are IS_COMPONENT_OF 
relationships, and there is exactly one top level node, which is 
a module. 

In the remainder of this paper, we will define concepts and 
measures that can be applied to both modules and LMHs, 
which are the most significant syntactic aggregation levels 
below the subsystem level. For short, we will use the term 
software part (sp) to denote either a module or a LMH. 

In the high-level design phase of a software system in 
our context, only module and subroutine interfaces and 
their relationships are defined—detailed design of module 
bodies and subroutines is carried out at low-level design 
time. Therefore, we define the high-level design of a soft-
ware system as follows. 

DEFINITION 2 (High-level Design). The high-level design of a 
software system is a collection of module and subroutine in-
terfaces related to each other by means of USES and 
IS_COMPONENT_OF relationships. Precise and formal-
ized information on module or subroutine bodies is not yet 
available at this stage. 

3.2 Interactions 
In this section, we will specifically focus on the dependen-
cies among data declarations and subroutines, which can 
propagate inconsistencies when changes are made to a 
software system. In this context, data declarations may be 
types, variables, or constants. Those dependencies will be 
called interactions and will be used to define measures cap-
turing cohesion and coupling within and between software 
parts, respectively. 

There are four possible kinds of interactionsfrom:  

1) data declarations to data declarations,  
2) data declarations to subroutines,  

3) subroutines to subroutines, and  
4) subroutines to data declarations.  

However, not all of these dependencies can be detected at 
high-level design time. Therefore, we will investigate the 
interactions from data declarations to data declarations or 
from data declarations to subroutines, which we may detect 
from the high-level design of a software system. 

DEFINITION 3 (Data Declaration-Data Declaration (DD). Inter-
action). A data declaration A DD-interacts with another 
data declaration B if a change in A’s declaration or use may 
cause the need for a change in B’s declaration or use. 

The DD-interaction relationship is transitive. If A DD-
interacts with B, and B DD-interacts with C, then a change in 
A may cause a change in C, i.e., A DD-interacts with C. Data 
declarations can DD-interact with each other regardless of 
their location in the designed system. Therefore, the DD-
interaction relationship can link data declarations belonging 
to the same software part or different software parts. 

The DD-interaction relationships can be defined in terms 
of the basic relationships between data declarations al-
lowed by the language, which represent direct DD-
interactions, i.e., not obtained by virtue of the transitivity of 
interaction relationships. Data declaration A directly DD-
interacts with data declaration B if A is used in B’s declara-
tion or in a statement where B is assigned a value. As a con-
sequence, as bodies are not available at high-level design 
time in our application context, we will only consider inter-
actions detectable from the interfaces. 

DD-interactions provide a means to represent the de-
pendency relationships between individual data declara-
tions. Yet, DD-interactions per se are not able to capture the 
relationships between individual data declarations and 
subroutines. 

DEFINITION 4 (Data Declaration-Subroutine (DS) Interac-
tion). A data declaration DS-interacts with a subroutine if 
it DD-interacts with at least one of its data declarations. 

Whenever a data declaration DD-interacts with at least one 
of the data declarations contained in a subroutine interface, 
the DS-interaction relationship between the data declara-
tion and the subroutine can be detected by examining the 
high-level design. For instance, from the Ada-like code 
fragment in Fig. 1, it is apparent that both type T1 and ob-
ject OBJECT11 DS-interact with procedure SR11, since they 
both DD-interact with parameter PAR11, which belongs to 
procedure SR11’s interface data declaration. 

For graphical convenience, both sets of interaction rela-
tionships will be represented by directed graphs, the DD-
interaction graph, and the DS-interaction graph, respectively. 
In both graphs (see Fig. 2, which shows DD- and DS-
interaction graphs for the code fragment of Fig. 1), data 
declarations are represented by rounded nodes, subroutines 
by thick lined boxes, modules by thin lined boxes, and in-
teractions by arcs. 
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package M1 is 
    … 
    type T1 is …; 
    OBJECT11, OBJECT12: T1:= …; 
    procedure SR11(PAR11: in T1:= OBJECT11, PAR12: in T1); 
    … 
    package M2 is 
            … 
            OBJECT21: T1; 
            type T2 is array (1..100) of T1; 
            OBJECT22: T2; 
           procedure SR21(PAR21: in out T2); 
            … 
    end M2; 
    … 
    OBJECT13: M2.T2; 
    …  
end M1; 

    with M1; use M1;  
package M3 is 
    … 
    type T3 is array (1..100) of T1; 
    OBJECT31, OBJECT32: T1; 
    procedure SR31(PAR31: in T3, PAR32: in M2.T2); 
    OBJECT33: T3; 
    …  
end M3; 

Fig. 1. Ada-like code fragment. 

The notion of interaction can be applied to other object-
based design methods and formalisms such as HOOD (one 
of the main object-based design methods [29]) with no basic 
changes. For instance, HOOD does not allow direct access 
to data in module interfaces, i.e., objects’ provided inter-
face. Using HOOD’s terminology, data must be encapsu-
lated in the internal part of each object (i.e., module) and 
must be accessed through public operations provided by 
the object. In that case, by looking at the visible part of a 
HOOD object description, we would analyze interactions 
between type definitions, constants, and operations, i.e., the 
same kind of information we have in our Ada context. 
When working with other design techniques, one can use 
all the available information on the interactions between 
the elements of a design. If mechanisms for describing such 
interactions exist, then one can apply our approach based 
on more information than is available in our case and in the 
HOOD case, and obtain more accurate models. 

In this study, interactions are used to define measures for 
object-based high-level software design, which we introduce 
next. It is generally acknowledged that system architecture 
should have low coupling and high cohesion [20]. This is 
assumed to improve the capability of a system to be decom-
posed in highly independent and easy to understand pieces. 
However, the reader should bear in mind that high cohesion 
and low coupling may be conflicting goals, i.e., a trade-off 
between the two may exist. For instance, a software system 
can be made of small modules with a high degree of internal 
cohesion but very closely related to each other and, therefore, 
with a high level of coupling. Conversely, a software system 

                       
                                                                (a)                                                                                                                 (b) 

Fig. 2. Graphs for the code fragment in Fig. 1. (a) DD-interaction; (b) DS-interaction. 
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can be composed of few large modules, representing its sub-
systems, loosely related to one another, i.e., with low cou-
pling, but with a low degree of internal cohesion as well. 
Moreover, high cohesion and low coupling are not the only 
factors to be taken into account when designing a software 
system. Other issues, e.g., reuse, must be taken into account 
as well. 

4 INTERACTION-BASED MEASURES FOR COHESION 
Consistent with the objectives stated above, cohesion is de-
fined here as the degree to which data declarations and 
subroutines of a module are conceptually related, based on 
information known at the end of high-level design. In order 
for cohesion measurement to be usable on real-scale soft-
ware systems, these conceptual relationships are to be ap-
proximated through syntactical relationships (i.e., interac-
tions), which can be automatically detected through static 
analysis. Since we place ourselves at the end of high-level 
design in an object-based context, we focus on module-level 
cohesion and not on subroutine-level cohesion. 

We introduce an experimental hypothesis (H-CH), which 
provides the motivations for defining cohesion measures in 
our object-based context with respect to our experimental 
goal (Section 4.1). Then, for illustration convenience only, 
we depart from the order in the step sequence described in 
Section 3: We first describe the abstraction used to define 
interaction-based cohesion measures (Section 4.2), and then 
(Section 4.3) we describe the properties for cohesion meas-
ures we proposed in [12] instantiated on this abstraction. 
An interaction-based cohesion measure is introduced in 
Section 4.4. In Section 4.5, we discuss how to use additional 
information that may be available at high-level design time. 
The relation of our work with previous works on cohesion 
measurement is discussed in Section 4.6. 

4.1 Experimental Hypothesis 
In our application environment, cohesion measurement is 
motivated by the following experimental hypothesis. 

Hypothesis H-CH. A high degree of cohesion is desirable be-
cause information related to declaration and subroutine depend-
encies should not be scattered among irrelevant information. Data 
declarations and subroutines which are not related to each other 
should be encapsulated, to the extent possible, into different mod-
ules. As a result of such a strategy, we expect the software parts 
to be less fault-prone. 

This hypothesis establishes a link between two software 
attributes: cohesion and fault-proneness. Its empirical vali-
dation requires that we introduce measures to capture co-
hesion and fault-proneness quantitatively. Fault-proneness 
will be quantified as the likelihood of a module to be faulty. 
Since we believe that this definition of a measure for fault-
proneness is much more immediate and readily acceptable 
than the definition of a measure for cohesion or coupling, 
we now show how we introduced cohesion measures in the 
context of our study. 

4.2 Abstraction Definition 
Consistent with the definition of Abstract Data Type/Object, 
data declarations and subroutines should show some kind of 

interaction between them, if they are conceptually related. 
Therefore, we are interested in evaluating the tightness of the 
interactions between data declarations and data declarations 
or data declarations and subroutines declared in a module 
interface. We will capture this by means of cohesive interac-
tions and the graph that they give rise to, the cohesion interac-
tion graph. 

DEFINITION 5 (Cohesive Interactions). The set of cohesive in-
teractions in a module m, denoted by CI(m), is the union of 
the sets of DS-interactions and DD-interactions involving 
exclusively data declarations and subroutines within m, 
with the exception of those DD-interactions between a data 
declaration and a subroutine formal parameter. M(m) will 
denote the maximal set of cohesive interactions in module 
m. It is obtained by linking every data declaration of mod-
ule m to every other data declaration and subroutine of m 
with which it can interact. 

DEFINITION 6 (Cohesive Interaction Graph). Given a module 
m, the Cohesive Interaction Graph is the directed 
graph whose set of nodes is composed of the data declara-
tions and the subroutines declared in module m’s inter-
face and whose set of arcs is the set CI(m) of module m’s 
cohesive interactions. 

We use the Cohesive Interaction Graph as the abstraction 
on which we define our cohesion measures. 

We do not consider the DD-interactions linking a data 
declaration to a subroutine parameter as relevant to cohe-
sion, since they are already accounted for by DS-
interactions, and we are interested in evaluating the degree 
of cohesion between data declarations and subroutines seen 
as a whole. Also, we do not intend that cohesion should 
change just because there are two parameters of the same 
type in a subroutine interface, instead of one of that type. 
Furthermore, cohesive interactions occur between data dec-
larations and subroutines belonging to the same module. 
Interactions across different modules are not considered 
cohesive, since cohesion is the extent to which a module 
contains data declarations and subroutines that are concep-
tually related to each other. Interactions across different 
modules contribute to coupling. Therefore, given a software 
part sp, the sets of cohesive interactions of its constituent 
modules (if any) are disjoint. In Fig. 3, we show the cohe-
sive interaction graph for the code fragment of Fig. 1. 

Interactions across modules when one is a component of 
another can also be deemed as contributing to cohesion. We 
did not include these interactions in our evaluation of cohe-
sion; this could be a subject of future research. 

It is worth reminding the reader that those relationships 
that cannot be entirely detected by inspecting the interfaces, 
i.e., global variables interacting with subroutine bodies, can 
actually be quite relevant to cohesion evaluation, because 
they often represent the connections between an object and 
the subroutines that manipulate it. However, although we 
expect these unknown interactions to introduce uncertainty 
in our models, practical experience suggests that the mod-
els may still be good, early indicators. 

Some care must be used in defining CI(m) and M(sp) for 
languages like Ada that allow circular type definitions, such 
as the ones used to define the nodes of a linked list. In this 
case, the declarations of two types T1 and T2 are built in such 
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a way that T1 interacts with T2 and T2 interacts with T1. We 
choose to include in CI(m) and M(sp) only one interaction 
between them. This is explained by the fact that a single in-
teraction between two data declarations may justify their 
encapsulation in a single module/Abstract Data Type. 

As a result, for a module m, we have: 

|M(m)| = (|DataDeclarations| · (|DataDeclarations|-1)/2) 
   + |DataDeclarations| · |Subroutines|, 

where DataDeclarations and Subroutines are the sets of m’s 
data declarations (outside subroutines’ interfaces) and sub-
routines, respectively. |M(sp)| is the sum of all values ob-
tained for |M(m)| for all modules, since all M(m)s are dis-
joint. For example the maximal number of cohesive interac-
tions for module M2 of Fig. 1 is M(M2) = 6. 

There are two particular cases in which M(m) and, there-
fore, CI(m) are empty: 1) module m contains no data decla-
rations at all (it is either empty or contains only a set of sub-
routines) or 2) module m only contains a single data decla-
ration and no subroutines. In both cases, no cohesive inter-
actions are possible. According to our notion of cohesion, 
we are interested in the tightness of relationships of data 
declarations with other data declarations or subroutines, 
which are supposed to be related to the data declarations. 
In case 1, there are no data declarations and, therefore, there 
is a complete absence of cohesion. On the other hand, a sin-
gle data declaration (case 2) is highly cohesive in itself, so a 
module only containing one data declaration is highly co-
hesive. In what follows, given a software part sp,  

� SSR(sp) will denote the set of subroutines belonging 
to modules that do not contain any data declarations 
(case 1), and 

� SDD(sp) will denote the set of modules of sp that only 
contain a single data declaration and no subroutines 
(case 2). 

4.3 Properties for Interaction-Based Cohesion 
Measures 

We now introduce the following three properties that we 
believe characterize cohesion measures in our specific Ada 
context for interaction-based measures.2 These properties 
are instantiations, for our specific context, of the properties 
defined in [12] for cohesion. 

Property AdaCohesion.1: Normalization. Given a software 
part sp, a measure cohesion_measure(sp) belongs to a specified 
interval [0, Max]. cohesion_measure(sp) = 0 if and only if 
CI(sp) and SDD(sp) are empty, and cohesion_measure(sp) = 
Max if and only if CI(sp) = M(sp) and SSR(sp) is empty.3 

Normalization can provide support for meaningful com-
parisons between the cohesions of different software parts, 
since they all belong to the same interval. In addition, the 
larger the size of a module, the higher the likelihood of a 
large number of interactions. Normalization helps us make 
sure our measures are not statistically associated with the 
size of the modules since it takes into account the potential 
for a larger number of interactions in large modules. 

Property AdaCohesion.2: Monotonicity. Let sp1 be a 
software part and CI(sp1) its set of cohesive interactions. If 
sp2 is a modified version of sp1 with the same sets of data and 
subroutine declarations and one more cohesive interaction so 
that CI(sp2) includes CI(sp1), then cohesion_measure(sp2) 
� cohesion_measure(sp1). 

Adding cohesive interactions to a software part cannot de-
crease its cohesion. This is an intuitive property since, if the 
module’s declarations appear to be more interdependent, 
cohesion should not decrease. For instance, the following 
program fragment 

C : constant INTEGER := 100; 
type A is array(1..C) of INTEGER; 

has one more cohesive interaction than 

C : constant INTEGER := 100;  
type A is array(1..100) of INTEGER; 

Property AdaCohesion.3: Cohesive Modules. Let sp be a 
software part, and let m1 and m2 be two of its modules. Let sp’ be 
the software part obtained from sp by merging the declarations 
belonging to m1 and m2 into a new module m. If no cohesive 
interactions exist between the declarations belonging to m1 and 
m2 when they are grouped in m, then cohesion_measure(sp) 
� cohesion_measure(sp’). 

This property can also be interpreted as follows: Splitting 
two sets of declarations which are not related to each other 
via cohesive interactions into two separate modules cannot 
decrease the cohesion of the software part. Such a property 
is also intuitively justified since, if two independent mod-
ules can be extracted from a module, then there was no rea-
son for them to be merged together in the first place. 
 

2. Properties and measures can be defined for module sets more general 
than software parts. However, for simplicity, we will provide them only for 
software parts. 

3. We assume that each module contains at least one data declaration or 
one subroutine, i.e., we will not consider empty modules. 

 

Fig. 3. Cohesive interaction graph for the code fragment of Fig. 1. 
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Properties AdaCohesion.1—AdaCohesion.3 are mean-
ingful only for measures defined at the ratio level of meas-
urement [23]. This does not imply that all measures that 
satisfy them are defined at the ratio level of measurement. 
Also, it is worth reminding the reader that the fact that the 
above measures satisfy properties AdaCohesion.1—
AdaCohesion.3 should be interpreted as a necessary condi-
tion for them to be taken as cohesion measures in our prop-
erty-based framework, which one can subjectively accept or 
reject and replace with another one. 

4.4 Measure Definition 
Based on the previous properties defined, we introduce a 
measure to capture interaction-based cohesion for software 
parts in our context. 

Measure 1: Ratio of Cohesive Interactions (RCI) for a  
                     Software Part. 

The Ratio of Cohesive Interactions for sp is 

RCI(sp)
SDD(sp) CI(sp)

SDD(sp) M(sp) SSR(sp)
=

+
+ +

              (1) 

As an example, with reference to Figs. 1 and 3, RCI(M2) = 
2/6 = 0.333. It can be shown that RCI(sp) satisfies the above 
properties AdaCohesion.1—AdaCohesion.3, but it does not 
satisfy any of the sets of properties for size, length, com-
plexity, or coupling defined in [12]. Therefore, since it is 
consistent with our intuitive and formally defined under-
standing of cohesion, we believe that RCI(sp) is a valid co-
hesion measure in our application context. It is also impor-
tant to note that these concepts are still very subjectively 
defined in the software engineering community and that, 
consequently, there is no real widely accepted reference 
framework for cohesion that we can use to demonstrate the 
construct validity of a cohesion measure. 

As for the level of measurement of RCI(sp), although this 
is ultimately a subjective matter that can rarely be formally 
demonstrated [7], we will interpret RCI(sp) as a ratio scale 
measure, based on the following evidence. 

1) When SDD(sp) = Ø, i.e., no module in sp contains 
only a single data declaration, and SSR(sp) = Ø, i.e., 
no module in sp contains no data declaration, the 
value of RCI(sp) can be computed as 

RCI sp
CI sp

M sp
( )

( )

( )
=  , 

and is defined on a ratio scale since this is a ratio of 
two counts having the same measurement unit. In 
practical cases—as the ones we show in Section 7—
this ratio is very close to that computed by formula 
(1), since there are few modules that only contain a 
single data declaration and nothing else, and the 
number of subroutines in SSR(sp) is quite small with 
respect to the maximum number of potential cohesive 
interactions. Few modules only contain subroutines, 
and |SSR(sp)| only grows linearly with the number 
of subroutines in such modules. Instead, |M(sp)| 
grows quadratically with the number of data declara-
tions and linearly with the number of subroutines in 

the whole software part. Therefore, in practical situa-
tions, it can be shown that formula (1) is approxi-
mately at a ratio level of measurement. 

2) The usual statistical tests and regression techniques 
requiring at least interval scale measurement can be 
safely applied even if a measure is defined on a scale 
which is only approximately interval [7]. 

RCI(sp) can also be computed as a weighted sum of the 
RCI(m)s of the single modules m belonging to sp. Since co-
hesive interactions only occur within modules, but not 
across modules,4 the numerator of (1) is calculated as 

SDD(sp) CI(sp) ( SDD(m) CI(m) )
m sp

+ = +
³
Ê  

so 

RCI(sp)

( SDD(m) CI(m) )

SDD(sp) M(sp) SSR(sp

SDD(m) CI(m)

SDD(sp) M(sp) SSR(sp

m sp

m sp

=
+

+ +

=
+

+ +

³

³

S

S
 

By multiplying and dividing each term in the summation 
by |SDD(m)| + |M(m)| + |SSR(m)|, we obtain 

RCI(sp) (
SDD(m) M(m) SSR(m)

SDD(sp) M(sp) SSR(sp)

SDD(m) CI(m)
SDD(m) M(m) SSR(m)

)

(
SDD(m) Mm) SSR(m)

SDD(sp) M(sp) SSR(sp)
RCI(m))

m sp

m sp

=
+ +
+ +

¼
+

+ +

=
+ +
+ +

³

³

S

S

 

The weights represent the potential contribution of each 
module m belonging to the software part sp to the cohesion 
of the whole sp. Therefore, the potential contribution of a 
module of SDD(sp) is 

1

SDD(sp) M(sp) SSR(sp)+ +
 

and that of any other module m of sp that does not contain 
only subroutines is5 

M(m)

SDD(sp) M(sp) SSR(sp)+ +
 

Based on the above cohesion measure, we can define a 
threshold that can be used as a support for deciding whether 
a set of data and subroutines should be kept in one single 
module or divided into two or more modules. For simplicity, 
we will show here only the case in which we have to decide 
whether the declarations belonging to a module m should be 
split into two modules m1 and m2, where both M(m1) and 
M(m2) are not empty. This should be the case if the cohesion 
of the software part consisting of the two modules m1 and m2 
is greater than the cohesion of module m, i.e., 

 
4. In the following formulae, |SDD(m)| may only take the values 1 

(when module m only contains a single data declaration and nothing else) 
or 0 (otherwise).  

5. For a module m with subroutines and no data declarations, RCI(m) = 0. 
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CI(m ) CI(m )

M(m ) M(m )

CI(m ) CI(m ) CI
M(m)

1 2

1 2

1 2 12+
+

>
+ +

 

where |CI12| is the number of cohesive interactions be-
tween the declarations belonging to modules m1 and m2 
when they are in module m. Based on the above inequality, 
we can define a threshold on |CI12|, as follows 

( M(m) M(m ) M(m ) )( CI(m ) CI(m ) )

M(m ) M(m )
CI1 2 1 2

1 2

- - +
+

> 12  

We want to emphasize, however, that, since cohesion is not 
the only attribute relevant to software design—for instance, 
coupling and reusability are as important as cohesion,—an 
increase in cohesion should not be used as the only crite-
rion on which to base such a decision. 

4.5 The Role of Additional Information 
Additional information to what is visible in the interfaces is 
usually available at the end of high-level design. For in-
stance, given the interface of a module m and assuming that 
the use of some objects is not specified in the subroutine’s 
interface, the designers have at least a rough idea of which 
objects declared in m will be manipulated by a subroutine 
that appears in m’s interface. It will be left to the person 
responsible for the measure program to decide whether it is 
worth collecting this kind of information, thus making the 
designer describe which objects will be accessed by which 
subroutines. For instance, from the code fragment in Fig. 1, 
we cannot tell whether OBJECT12 DS-interacts with sub-
routine SR11. In this case, designers can answer in three 
different ways: 

1) OBJECT12 DS-interacts with SR11;  
2) OBJECT12 does not DS-interact with SR11; 
3) the information they have is not sufficient. 

It is worth saying that answers of kind case 2 provide valu-
able, though negative, information on the DS-interactions 
present in a system. For instance, in the code fragment in 
Fig. 1, the designer may indicate the existence of a DD-
interaction between object OBJECT12 and PAR12 and the 
lack of interaction between OBJECT21 and PAR21. As a con-
sequence, the computation of cohesion is affected. If we 
take into account this additional information, other alterna-
tive cohesion measures can be defined. 

Given a software part sp, and a pair <A, B>, where A is a 
data declaration and B is either a data declaration or a sub-
routine, we will say that the interaction between them is 
known if it is detectable from the high-level design or is 
signaled by the designers, i.e., they provide an answer simi-
lar to answer case 1; we will say that the interaction be-
tween them is unknown if it is not detectable from the high-
level design and is not signaled by the designers, i.e., they 
provide an answer similar to answer case 3. 

The set of known interactions of a software part sp will 
be denoted by K(sp), and the set of unknown interactions by 
U(sp). In general, |M(sp)| � |K(sp)| + |U(sp)|, since some 
interactions may not be detectable from the high-level de-
sign and the designers may explicitly exclude their exis-
tence, i.e., they provide an answer similar to answer case 2. 

 

Measure 2: Neutral Ratio of Cohesive Interactions  
                     (NRCI). 

Unknown CIs are not taken into account. 

NRCI(sp)
SDD(sp) K(sp)

SDD(sp) M)(sp) SSR(sp) U(sp)
=

+
+ + -

 

 

Measure 3: Pessimistic Ratio of Cohesive Interactions  
                    (PRCI). 

Unknown CIs are considered as if they were known not to be  
actual interactions. 

PRCI(sp)
SDD(sp) K(sp)

SDD(sp) M(sp) SSR(sp)
=

+
+ +

 

(This is equivalent to RCI(sp).) 
 

Measure 4: Optimistic Ratio of Cohesive Interactions  
                    (ORCI). 

Unknown CIs are considered as if they were known to be actual 
interactions. 

ORCI(sp)
SDD(sp) K(sp) U(sp)

SDD(sp) M(sp) SSR(sp)
=

+ +
+ +

 

The above three measures satisfy properties AdaCohe-
sion.1—AdaCohesion.3, where CI(sp) is replaced by K(sp) 
<  U(sp). 

If PRCI(sp), NRCI(sp), and ORCI(sp) are all not unde-
fined,6 it can be shown that, for all software parts sp, 

0 < PRCI(sp) < NRCI(sp) < ORCI(sp) < 1 

ORCI(sp) and PRCI(sp) provide the bounds of the admis-
sible range for cohesion, and NRCI(sp) takes a value in be-
tween. It can also be shown that the smaller the number of 
unknown interactions, the smaller the interval [PRCI, ORCI], 
i.e., the more complete the information, the narrower the 
uncertainty interval. It should be noted that, once the low-
level design is completed, accurate and complete information 
about cohesive interactions should be available. 

In addition, NRCI(sp) is undefined if and only if all in-
teractions are unknown and both SDD(sp) and SSR(sp) are 
empty, i.e., no information is available on cohesion. It is 
interesting to notice that in this case, and only in this case, 
PRCI(sp) = 0 and ORCI(sp) = 1, i.e., PRCI(sp) and ORCI(sp) 
do not provide stricter bounds than the ones provided by 
the interval for cohesion. The fact that NRCI(sp) is unde-
fined can be interpreted as the possibility that NRCI(sp) can 
take any value in the interval [0, 1]. 

4.6 Related Work 
As stated in [25], cohesion is an internal property of a mod-
ule. A module has high cohesion if its elements are strongly 
related. The intuitive idea behind this is that elements should 
be grouped together into modules for logical reasons in order 

 
6. PRCI(sp) and ORCI(sp) are undefined when |SDD(sp)| + |M(sp)| + 

|SSR(sp)| = 0, i.e., the software part is empty; NRCI(sp) is undefined when 
|SDD(sp)| + |M(sp)| + |SSR(sp)| – |U(sp)| = 0, i.e., no known interac-
tions exist and both SDD(sp) and SSR(sp) are empty. 
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to achieve common goals. Thus, it is assumed that modular 
systems with high cohesion are easier to understand and that 
the reuse of their modules is facilitated. However, the notions 
of modules, elements, and relations vary according to the 
context in which cohesion is to be defined. 

4.6.1 Procedural Cohesion 
In [20], one of the first operational definitions of cohesion 
was provided. In this context, modules were subroutines 
and cohesion was measured on an ordinal scale of meas-
urement: functional, sequential, communicational, proce-
dural, temporal, logical, coincidental (in decreasing order of 
cohesion). The criteria used to define this scale focus on the 
relationships (or the lack thereof) that exist between the 
functions embedded in a subroutine [23]: 

� Functional cohesion implies that the subroutine per-
forms a single well defined function. 

� Sequential cohesion implies that the subroutine’s 
functions are performed in a sequential order de-
scribed by the subroutine’s specifications. 

� Communicational cohesion implies that the subrou-
tine’s functions are performed on the same body of 
data. 

� Procedural cohesion implies that the subroutine’s 
functions are related to the same general procedure. 

� Temporal cohesion implies that the subroutine’s func-
tions are related because they must occur within the 
same time span. 

� Logical cohesion implies that the subroutine’s func-
tions are only related logically. 

� Coincidental cohesion means that none of the rela-
tionships mentioned above exist between the subrou-
tine’s functions. 

As Fenton pointed out in [23], because the trend is now 
towards languages and methods that support abstract data 
types (ADTs) encapsulated into modules, e.g., Ada pack-
ages, C++ classes, the notion of cohesion should be ex-
tended to a higher level and adapted to ADTs where ele-
ments are subroutines and declarations. This may seem to 
contradict the above definition of cohesion (focusing on 
subroutine cohesion) since ADTs usually contain several 
subroutines performing different functions which may not 
be related according to the most important relations under-
lying the ordinal scale of cohesion. This is discussed below: 

� Sequential cohesion: subroutines, i.e., methods accord-
ing to the object-based/object-oriented terminology, 
in an ADT do not have to be executed in a predeter-
mined order according to the ADT’s specifications al-
though Create_object and Destroy_object methods are, 
respectively, always the first and last operation on a 
given object. 

� Communicational cohesion: subroutines in an ADT usu-
ally work, from a general perspective, on the same 
body of data: the abstract data type itself. However, 
they may initialize/access/update the values of dif-
ferent attributes, all being elements of the abstract 
data type. More concretly, an abstract data type may 
be implemented as a set of distinct data structures all 

encapsulated in a single module. Subroutines inside 
that module may work on different subsets of those 
data structures. 

� Procedural cohesion: There is no reason for subroutines 
in an ADT to perform functions belonging to a gen-
eral procedure. For example, geomeasureal opera-
tions, e.g., rotations, translations, may be part of dif-
ferent procedures to manipulate geomeasureal ob-
jects, e.g., drawing tools, graphical simulations, etc. 

� Temporal cohesion: there is no reason for subroutines in 
an ADT to be executed within the same time span. 

Therefore, the basis for encapsulation into modules makes 
it less likely that one can find some of the forms of cohesion 
in the [20] classification. However, subroutines and declara-
tions in ADTs should be somewhat related since they 
should all perform operations on the abstract data type, 
e.g., push, pop are operations on the ADT Stack, and this 
may be seen as another form of cohesion. Fenton calls this 
kind of cohesion “abstract cohesion” and mentions that, 
unfortunately, there are no obvious measurement proce-
dure and no graph-type model to capture it. In Section 4.4, 
our goal was to take a step in that direction, to provide a 
measure of ADT cohesion which is based on the interaction 
graph model presented above and which can be captured 
through automatable data collection procedures. 

A proposal for functional cohesion measures can be 
found in [14]. Given a procedure, function, or main pro-
gram, only data tokens, i.e., the occurrence of a definition or 
use of a variable or a constant, are taken into account. The 
data slice for a data token is the sequence of all those data 
tokens in the program that can influence the statement in 
which the data token appears, or can be influenced by that 
statement. Being a sequence, a data slice is ordered: it lists 
its data tokens in order of appearance in the procedure, 
function or main program. If more than one data slice ex-
ists, some data tokens may belong to more than one data 
slice: these are called glue tokens. A subset of the glue tokens 
may belong to all data slices: these are called superglue to-
kens. Functional cohesion measures are defined based on 
data tokens, glue tokens, and superglue tokens. Given a 
procedure, function, or main program p, the following 
measures SFC(p) (Strong Functional Cohesion), WFC(p) 
(Weak Functional Cohesion), and A(p) (adhesiveness) are 
introduced. 

SFC(p)
# SuperGlueTokens

# AllTokens=  

WFC(p)
# GlueTokens
# AllTokens=  

A(p)
# SlicesContainingGlueTokenGT

# AllTokens .# DataSlices
GT GlueTokens= ³

S
 

It can be shown that these measures satisfy the properties 
defined in [12] for cohesion. However, these measures refer 
to the functional cohesion of procedures, functions, or main 
programs based on code-level information. They are, there-
fore, out of the scope of our study. 
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4.6.2 Object-Based/Object-Oriented Cohesion 
Reference [19] introduced a well-known suite of object-
oriented measures and, as such, some of them are also 
adaptable and applicable to abstract data types. More spe-
cifically, a measure for the lack of cohesion (LCOM) was de-
fined. For a class in an OO design, this is the number of 
member functions pairs without shared instance variables 
minus the number of member functions with shared in-
stance variables. However, the measure is set to 0 whenever 
the above subtraction is negative. In [3], we have shown 
that LCOM is not a significant predictor of fault-prone 
classes. This could be easily explained since the distribution 
of LCOM showed a lack of variability in the studied sample 
since most classes had a null LCOM. This stems in part 
from the definition of LCOM where the measure is set to 0 
when the number of class pairs sharing variable instances is 
larger than that of the ones not sharing any instances. Sev-
eral other measures have been proposed in the literature for 
object-oriented cohesion, e.g., see [8], [28]. Due to space 
constraints, no thorough comparison can be made here. The 
interested reader is referred to [6], where an extensive sur-
vey and classification have been proposed. From a general 
perspective, these measures differ according to their under-
lying experimental hypotheses and properties. At a higher 
level, several criteria capture the main differences: the types 
of connections/dependencies that increase cohesion, the 
domain of the measure, e.g., subroutine, class, set of classes, 
whether direct or indirect connections are taken into ac-
count, how inheritance is handled. In our case, based on 
our experimental hypotheses, the notion of interaction has 
been defined to capture the types of dependencies of inter-
est, we define measures for modules and set of modules, 
we investigate both direct and indirect interactions, and we 
do not consider inheritance since we work in the context of 
object-based systems. 

5 INTERACTION-BASED MEASURES FOR COUPLING 
In our context, coupling is the extent to which a software 
part is related to other software parts. We define coupling 
as a property of an individual software part, or more spe-
cifically a relation between an individual software part and 
its associated software system, rather than as a relation be-
tween two software parts as has been done in other con-
texts [20]. By viewing coupling with respect to an individ-
ual part, we are better able to assess the design quality of 
that part as it relates to the part’s fault-proneness. Coupling 
can be divided into two parts: 

1) import coupling, i.e., the extent to which a software 
part depends on the rest of the sotware system, and  

2) export coupling, i.e., the extent to which the rest of the 
software system depends on the software part.  

Here, we will focus only on import coupling, since our hy-
potheses for export coupling were not confirmed by our 
experimental validation. More information on that topic 
can be found in [10]. 

In this section, we first give an experimental hypothesis 
on import coupling, which provides the rationale for our 
study (Section 5.1). Then, we introduce the abstraction we 

use for defining our coupling measure (Section 5.2). The 
instantiation of the coupling properties defined in [12] for 
our application case is in Section 5.3. An interaction-based 
measure is defined in Section 5.4. Section 5.5 discusses the 
issue of genericity in the context of coupling. Related previ-
ous works will be presented in Section 5.6. 

5.1 Experimental Hypothesis 
The following experimental hypothesis provides the moti-
vations for the measure we define. 

Hypothesis H-IC: The more dependent a software part on ex-
ternal data declarations, the more external information needs to 
be known in order to make the software part consistent with the 
rest of the system. In other words, the larger the amount of exter-
nal data declarations, the more incomplete the local description of 
the software part interface, the more spread the information nec-
essary to integrate a software part in a system. Thus, the software 
part becomes more fault-prone. 

Like with Hypothesis H-CH, this hypothesis establishes a 
link between two software attributes: coupling and fault-
proneness. This hypothesis is one of the experimental hy-
potheses believed to be true in our context that our empiri-
cal study has confirmed. 

We recognize that, in addition to the quantity of external 
data required, the diversity of other parts in the software 
system from which external data must be obtained may 
well contribute to coupling. In Section 6, we will discuss a 
measure of coupling that tries to capture this diversity. 

5.2 Abstraction Definition 
Import coupling of a software part will be expressed in 
terms of the actual DD-interactions involving imported 
external data declarations and the internal data declarations 
of the software part. Therefore, the abstraction we use is the 
DD-interaction graph, of which we will consider only the 
interactions across software parts. 

5.3 Properties for Interaction-Based Coupling 
Measures 

We now provide properties that we believe should be satis-
fied by interaction-based import coupling measures. These 
properties are instantiations, for our specific Ada context, of 
the properties defined in [12] for coupling.  

Property AdaCoupling.1: Nonnegativity. Given a software 
part sp, the measure import_coupling_measure(sp) � 0. im-
port_coupling_measure(sp) = 0 if sp does not have import 
interactions with other software parts. 

Property AdaCoupling.2: Monotonicity. Let m1 be a 
module and II(m1), its set of import interactions. If m2 is a 
modified version of m1 with the same sets of data and subrou-
tine declarations and one more import interaction so that II(m2) 
includes II(m1), then import_coupling_measure(m2) � im-
port_coupling_measure(m1). 

Adding import interactions to a module cannot decrease its 
import coupling.  

Property AdaCoupling.3: Merging of Modules. The sum of 
the import couplings of two modules is no less than the coupling 
of the module which is composed of the data declarations of the 
two modules.  
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This stems from the fact that two modules may contain in-
teractions between each other’s declarations, which are no 
longer import interactions for the module resulting from 
merging the original modules. 

It should be noted that, as opposed to cohesion, meas-
ures for coupling are not normalized. This comes from hy-
potheses H-CH and H-IC, where we state that cohesion is a 
degree of interdependence within a software part, whereas 
coupling is an amount of dependencies between a software 
part and the rest of the system. As with cohesion, properties 
AdaCoupling.1—AdaCoupling.3 are meaningful for ratio 
scale measures. 

5.4 Measure Definition 
We will now introduce interaction-based coupling meas-
ures. The issue will be first addressed by ignoring generic 
modules for the sake of simplification. Generic modules 
and their impact on the defined measures will be treated in 
Section 5.5.  

Measure 5: Import Coupling 

Given a software part sp, Import Coupling of sp (denoted by 
IC(sp)) is the number of DD-interactions between data declara-
tions external to sp and the data declarations within sp. 

It can be shown that IC(sp) satisfies the above properties 
AdaCoupling.1—AdaCoupling.3, but it does not satisfy any 
of the sets of properties for size, length, complexity, or co-
hesion we formally defined in [12]. Therefore, since it is 
consistent with our intuitive and formally defined under-
standing of coupling, we believe that IC(sp) is a valid cou-
pling measure in our application context. As for its meas-
urement scale, IC(sp) is a count of interactions and may 
therefore be used as an absolute scale measure, and, as a 
consequence, as a ratio scale measure. 

Each box in Fig. 4 represents a module interface. Module 
interfaces m2 and m3 are located in their parent’s interface 
m1. m2 is assumed to be declared before m3 and therefore 
visible to m3. Tij and OBJECTij data declarations represent, 
respectively, types and objects in module mi. FP3 represents 
a subroutine formal parameter. The IC values for the mod-
ules in Fig. 4 are computed as follows: 

IC(m1) = 0, IC(m2) = 4, IC(m3) = 5, IC(m4) = 2. 

As visible in Fig. 4, coupling between independent 
modules is considered in the same way as coupling be-
tween modules and submodules. The justification for this is 
that, when a module B is a submodule of a module A (B 
IS_COMPONENT_OF A), then it implicitly sees part of A 
and explicitly uses some of the declarations of A, in the 
same way as an external module C would import, e.g., with 
clause in Ada, and use declarations from A. 

Based on the definitions of IC(sp), we derive two related 
measures, DIC(sp) (Direct Import Coupling), TIC(sp) (Tran-
sitive Import Coupling). DIC(sp) only takes into account 
direct interactions, whereas TIC(sp) only takes into account 
transitive interactions. By their definitions, IC(sp) = DIC(sp) 
+ TIC(sp). This allows us to separately evaluate the impact 
of direct and transitive interactions on fault-proneness, as 
we show in the empirical validation. In practice, the num-
ber of transitive interactions turns out to be much greater 
than that of direct interactions, so IC(sp)   TIC(sp). 

5.5 The Treatment of Generic Modules 
There are two possible ways of taking into account generics 
when calculating coupling. Either each instance can be seen 
as a different module or a generic can be seen as any other 
module whose scope/global data declarations is/are the 
union of the scope/global data declarations of its instances. 
The second solution does not consider instances as inde-
pendent modules and appears to be more suitable to our 
specific perspective, since faults are to be found in generics 
and, only as a consequence, in instances. 

The import coupling of a generic module is the cardinal-
ity of the union of the sets of DD-interactions between the 
data declarations in the software system and those of each 
of its instances. Consistent with the definition of DD-
interaction, generic formal parameters DD-interact with 
their particular generic actual parameters, i.e., type, object, 
when the generic module is instantiated, since a change in 
the former may imply a change in the latter. 

This is what the example in Fig. 5 illustrates. Gen_m is 
the interface of a generic module, with a generic formal 
parameter GenFP and a generic type GenT. The export cou-
pling of module Gen_m is given by the sum of three parts 

 

Fig. 4. Calculation of IC with nongeneric modules only. 
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1) two interactions from Gen_m to m1, due to the two in-
stantiations, Gen_m(1) and Gen_m(2), of Gen_m in m1,  

2) the interaction from the instantiation Gen_m(1), 
3) the two interactions from the instantiation Gen_m(2). 

The values of IC for the modules in Fig. 5 are as follows: 

IC(m1) = 2, IC(m2) = 3, IC(m3) = 4, IC(Genm) = 0.7 

5.6 Related Work 
As stated in [25], coupling characterizes a module’s rela-
tionship to other modules and measures their interdepend-
ence. Again, it is assumed that low coupling will help ana-
lyze, understand, modify, test, and reuse modules sepa-
rately. Meyer [36] defines the “weak coupling” principle as: 
if any two modules communicate at all, they should ex-
change as little information as possible. As with cohesion, 
the notions of modules, elements, and relations vary ac-
cording to the context in which coupling is to be defined. 

5.6.1 Procedural Coupling 
Similarly to cohesion, an ordinal measurement scale was 
defined for coupling [20] based on whether or not certain 
relationships occur between subroutines: 

� Content coupling 
� Common coupling 
� Control coupling 
� Stamp coupling 
� Data coupling 

For example, Content coupling occurs when a subroutine 
refers directly to the inside of another subroutine (e.g., 
branches into) whereas Common coupling occurs whenever 
two subroutines refer to the same global data [23]. Content 
coupling between ADTs is not relevant since it goes against 
the fundamental definitions of what ADTs are. In addition, 
based exclusively on high-level design information, it may 
not always be possible to determine whether or not global 

 
7. Gen_m may well be coupled to some other module(s), such as those 

from which the type(s) of its FP come. This coupling is not shown in Fig. 5. 

data are being shared, or how parameters exchanged be-
tween subroutines will be used, e.g., for controlling behav-
ior (Control coupling) or for data exchange (Data coupling). 
The accuracy of this classification may depend on the high-
level design language used. For instance, the knowledge of 
procedure headers in Ada might not be sufficient by itself 
to determine how a parameter is used in a procedure. Con-
sistent with the stated objectives of this study, we have pro-
vided definitions for ADT coupling in Section 5.4 based on 
high-level design information formalized through interac-
tions as defined in Section 3.2. 

5.6.2 Object-Based/Object-Oriented Coupling 
In [19], a measure called Coupling Between Object classes 
(CBO) has been proposed for classes in object-oriented sys-
tems. A class is coupled to another one when it uses its 
member functions and/or instance variables. CBO provides 
the number of classes to which a given class is coupled. 

In our case, we have chosen to look at the coupling of 
modules based exclusively on information available at the 
end of high-level design in our Ada context. We have cho-
sen to look at interaction-level coupling, i.e., at the fre-
quency of interactions between a software part and the oth-
ers. We think that two interdependent software parts may 
show very different intensities of interaction and that that 
should be taken into account. 

On the other hand, CBO looks very similar to the ISP 
measure we will introduce in the next section, except that 
ISP is defined in our object-based Ada context instead of 
OO classes. 

Many other measures for coupling in object-oriented sys-
tems have been provided in the literature (for instance, see 
[32], [19], [28], [33], [4]—a survey is available in [3]). Com-
ments can be made similar to the above discussion on cohe-
sion. Measures differ according to several criteria and the 
most important ones are: the types of connection/ depend-
ency contributing to coupling, the locus of impact, i.e., im-
port vs. export coupling, the domain of the measure, its 
level of granularity, i.e., how connections are counted, and, 

 

Fig. 5. Generics when calculating import coupling. 



BRIAND ET AL.:  DEFINING AND VALIDATING MEASURES FOR OBJECT-BASED HIGH-LEVEL DESIGN 735 

 

as for cohesion, how indirect connections and inheritance 
are handled. In our case, certain choices (described above) 
have been made, based on our experimental hypotheses, 
regarding these criteria. 

6 MEASURES BASED ON USES AND 
IS_COMPONENT_OF RELATIONSHIPS 

These measures are similar to existing measures in the lit-
erature [1], [23] and were defined in order to provide a ba-
sis of comparison for the measures introduced in the previ-
ous sections. Among the ones we investigated [10], two 
measures appeared to be statistically significant as indica-
tors of fault-proneness and are, therefore, introduced below, 
Imported Software Parts, based on the USES relation among 
software parts, and Average Depth of the nodes of the hier-
archy defined by the IS_COMPONENT_OF relations within 
software parts. 

H-ISP is the experimental hypothesis that we believed to 
be true on the influence of the imported software parts on 
fault proneness. 

Hypothesis H-ISP. The larger the number of imported soft-
ware parts, the larger the context to be understood, the more likely 
the occurrence of a fault.  

Based on this hypothesis, we defined the following measure.  

Measure 6: Imported Software Parts. 

ISP(sp) will denote the number of software parts imported and 
used by a software part sp. 

The relationship we believed to exist between depth of the 
IS_COMPONENT_OF hierarchy and fault-proneness is 
expressed by the experimental hypothesis H-A.  

Hypothesis H-A. The larger the depth of a hierarchy, the lar-
ger the context information that is available to the lower nodes, 
the more likely the occurrence of error regarding the hierarchy, the 
more likely the detection of a fault in it. In other words, if a mod-
ule B is included as a submodule of a module A (and not as an 
independent module, e.g., a library unit in Ada as opposed to a 
secondary unit), we assume that B is not fully understandable out 
of its context of definition. Otherwise, it would have been defined 
independently of A.8  

This experimental hypothesis allowed us to define the fol-
lowing measure.  

Measure 7: Average Depth 

Avg_Depth(sp) will denote the average depth of the nodes com-
posing a software part sp. 

7 EMPIRICAL VALIDATION 
In this section, we describe the last step of the approach we 
have followed in our study, i.e., the empirical validation of 
the measures we defined. More specifically, we precisely de-
scribe the goals of our empirical validation in Section 7.1. In 
Section 7.2, we show how we have carried out our empirical 

 
8. As indicated in Section 4.2, this can also be a factor in assessing the co-

hesion of A, though we did not include it as a component of our definition 
of cohesion. 

validation. Sections 7.3, 7.4, 7.5, and 7.6 describe the experi-
mental results we have obtained: Section 7.3 shows the de-
scriptive statistics, Section 7.4 the correlation analysis, and 
Sections 7.5 and 7.6 discuss the univariate and multivariate 
analysis results, respectively. 

7.1 Goals of the Empirical Validation 
In our study, the empirical validation has two main goals.  

Goal 1. We want to find out which of the measures de-
fined above have a significant (in the two senses of statis-
tically and practically significant) impact on the fault-
proneness of software parts. As said in Section 4.1, fault-
proneness is defined in this context as the probability of a 
fault to be detected in a software part by testing it. We 
think that such a definition is intuitive and can be handled 
at low cost in an experimental setting. It also allows us to 
use a robust and standard modeling technique specifically 
suitable to classification, i.e., logistic regression [27]. 
However, other definitions and modeling techniques 
could be used, e.g., number of faults and least-square re-
gression, respectively. 

In this context, we are going to  

1) identify which of our high-level design measures are 
significantly related to software fault-proneness;  

2) determine which of our hypotheses are empirically 
supported;  

3) compare the interaction-based strategy to simpler 
strategies for defining high-level design measures; 

4) assess the stability of the observed trends across pro-
jects. 

Section 7.3, 7.4, and 7.5 show the experimental results re-
lated to steps 1, 2, 3, and 4 in Goal 1. 

Goal 2. We need to investigate dependencies between 
measures, in order to determine which ones are comple-
mentary and can be used in combination for fault-
proneness prediction, and which ones capture similar phe-
nomena and are redundant. In other words, we need to 
determine whether the defined measures are redundant or 
complementary explanatory variables of fault-proneness. If 
they are complementary, then they are all potentially useful 
in order to build a prediction model for fault-proneness. If 
most of them are redundant, then a few of those measures 
are sufficient to help predict fault-proneness, assuming they 
are significant predictors. We do not expect, though, that 
our measures explain all of the variation in the data set. We 
are very well aware that other factors have an impact on 
fault-proneness, e.g., human factors, code attributes. On the 
other hand, we want to determine whether they can be a 
useful part of a prediction model.  

Section 7.6 investigates the goodness of fit obtained 
when building multivariate classification models for detect-
ing fault-prone LMHs based on the design measures that 
appeared statistically significant during univariate analysis. 
The model results are assessed and the model structure is 
investigated. 

7.2 Empirical Validation Strategy 
In order to validate software measurement hypotheses em-
pirically, one can adopt two main strategies:  
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1) small-scale controlled experiments, 
2) real-scale industrial case studies.  

In this research project, we chose the second alternative since 
we thought the phenomena we are studying would be even 
more visible and significant on software systems of realistic 
size and complexity. Also, we thought that strategy 2 should 
be a more relevant and convincing validation for the soft-
ware industry practitioners. 

However, the problem in such studies is that it becomes 
difficult to study the phenomena of interest in isolation, 
without having to deal with other sources of variation. In 
our case, we thought that, if these measures were to be in-
teresting, they should explain a significant percentage of 
the variation individually or in combination, despite other 
sources of variation. However, we expect some instability 
across projects. 

Environment. The first system studied is an attitude 
ground support software for satellites (GOADA) developed 
at the NASA Goddard Space Flight Center. The second one 
(GOESIM) is a dynamic simulator for a geostationary envi-
ronmental satellite. These systems are composed of 525 and 
676 Ada units, 90 Klocs and 170 Klocs, respectively, and 
have a fairly small reuse rate (around 5 percent of the 
source code lines have been reused from other systems, 
verbatim or slightly modified). The third system we studied 
(TONS) is an onboard navigation system for satellite, which 
has been developed in the same environment and is about 
180 Ada units and 50 Klocs large, with an extremely small 
rate of reuse (2 percent of the source code lines have been 
reused from other systems, verbatim or slightly modified). 
We selected projects with lower rates of reuse in order to 
make our analysis of design factors more straightforward 
by removing what we think is a major source of noise in 
this context. 

During development, change report forms are generated 
based on testing error reports. These forms contain data on 
the type, cause, and source of errors. In addition, they pro-
vide the modules that are affected by the change. Each mod-
ule affected is considered to contain a fault (following the 
standard IEEE terminology). Considering that this data col-
lection process has been running and institutionalized for 
more than 20 years, we expect the data collection to be reli-
able and complete. No evidence of the contrary was found. 

Tool. A tool has been developed to analyze the interface 
parts of Ada source code, in order to capture the design 
attributes of these systems. This tool is based on LEX & 
YACC [34] and extracts generic high-level design informa-
tion about the visibility and interactions of the system dec-
larations. This information is consequently used to compute 
the measures presented in Sections 4.4, 5.4, and 6, and oth-
ers that might be defined. 

Analytical Model. The response variable we use to vali-
date the design measures is binary, i.e., Was a fault detected 
in a LMH or not? In order to analyze the impact of software 
measures on the fault-proneness of software parts (i.e., 
probability of a fault to be detected in a software part), we 
used logistic regression, a classification technique [27] used 
in many experimental sciences, based on maximum likeli-
hood estimation, and presented below. In particular, we 

first used univariate logistic regression, to evaluate the im-
pact of each of the measures in isolation on fault-proneness. 
In this case, a careful outlier analysis must be performed in 
order to make sure that the observed trend is not the result 
of few observations [21].9 Then, we performed multivariate 
logistic regression, to evaluate the relative impact of those 
measures that had been assessed sufficiently significant in 
the univariate analysis. For instance, according to [27], p < 
0.25, where p is the probability for the regression coefficient 
to be different from 0 by chance, is a reasonable heuristic to 
select candidate covariates for multivariate analysis. This 
modeling process is further described in [27]. 

A multivariate logistic regression model is based on the 
following relationship equation (the univariate logistic re-
gression model is a special case of this, where only one 
variable appears): 

p(X , X , , X )
e
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where  

� p is the probability that no fault was found in a soft-
ware part during the validation phase  

� the Xis are the design measures included as explana-
tory variables in the model (called covariates of the lo-
gistic regression equation).  

The curve between p and any single Xi —i.e., assuming that 
all other Xjs are constant—takes a flexible S shape which 
ranges between two extreme cases: 

1) when a variable is not significant, then the curve ap-
proximates a horizontal line, i.e., p does not depend 
on Xi  

2) when a variable entirely differentiates fault-prone 
software parts, then the curve approximates a vertical 
line.  

The coefficients Cis will be estimated through the maximiza-
tion of a likelihood function, built in the usual fashion, i.e., as 
the product of the probabilities of the single observations, 
which are functions of the covariates (whose values are 
known in the observations) and the coefficients (which are 
the unknowns). For mathematical convenience, l = ln[L], the 
loglikelihood, is usually the function to be maximized. This 
procedure assumes that all observations are statistically in-
dependent. In our context, an observation is the detec-
tion/non detection of a fault in a LMH. Each detection/ 
nondetection of a fault is assumed to be an event independ-
ent from the other fault detections/non detections. This is in 
part justified by the fact that faults correspond to different 
change report forms and, therefore, error detection events. 

The global measure of goodness of fit we will use for such 
a model is assessed via R2—not to be confused with the least-
square regression R2—they are built upon very different for-
mulae, even though they both range between 0 and 1 and are 
similar from an intuitive perspective. The higher R2, the 
higher the effect of the model’s explanatory variables, the 
more accurate the model. However, as opposed to the R2 of 

 
9. In addition, in order to confirm the obtained results, we used non-

parametric tests for rank distributions such as the Mann-Whitney U test 
[18]. Results appeared to be consistent across techniques. 
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least-square regression, high R2s are rare for logistic regres-
sion. (The interested reader may refer to [27] for a detailed 
discussion of this issue.) R2 is defined by the following ratio: 

R
LL LL

LL
2 S

S
=

-
 

where 

� LL is the loglikelihood obtained by Maximum Likeli-
hood Estimation of the model described in formula (2) 

� LLS is the loglikelihood obtained by Maximum Likeli-
hood Estimation of a model without any variables, 
i.e., with only C0. By carrying out all the calculations, 
it can be shown that LLS is given by 

LL m ln(
m

m m ) m ln(
m

m m )S 0
0

0 1
1

1

0 1
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where m0 (respectively, m1) represents the number of 
observations for which there are no faults (respec-
tively, there is a fault). Looking at the above formula, 
LLS /(m0 + m1) may be interpreted as the uncertainty 
associated with the distribution of the binary depend-
ent variable (no fault detected in a LMH, one fault de-
tected in a LMH), according to Information Theory 
concepts. It is the uncertainty left when the variable-
less model is used. Likewise, LL/(m0 + m1) may be in-
terpreted as the uncertainty left when the model with 
the covariates is used. As a consequence, (LLS – 
LL)/(m0 + m1) may be interpreted as the part of uncer-
tainty that is explained by the model. Therefore, the 
ratio (LLS – LL)/ LLS may be interpreted as the propor-
tion of uncertainty explained by the model.  

Tables 1, 2, 3, 4, 5, and 6 contain the results we obtained 
through, respectively, univariate and multivariate logistic 
regression on the three systems. For each measure, we pro-
vide the following statistics: 

� C (appearing in Tables 3 and 4), the estimated regres-
sion coefficient. The larger the absolute value of the 
coefficient, the stronger the impact of the covariate on 
the probability p.  

� Dy (appearing in Table 3 only, i.e., in univariate analy-
sis), which is based on the notion of odds ratio [27], 
and provides an evaluation of the impact of the 
measure on the dependent variable. More specifically, 
the odds ratio y(Xi) represents the ratio between the 
probability of not having a fault and the probability of 
having a fault when the value of the measure is Xi. As 
an example, if, for a given value Xi, y(Xi) is 2, then it 
is twice as likely that the software part does not con-
tain faults than that it does contain faults. For each 
variable Xi, the value of Dyi for logistic regression is 
computed by means of the following formula 

Dy =
+y

y
( )

( )
X

X
1

 

Therefore, Dyi represents the reduction/increase in 
the odds ratio when the value Xi of the measure in-
creases by 1 unit and has the useful property to be in-
dependent of Xi in the context of logistic regression. 
This provides a more intuitive insight than regression 

coefficients into the impact of explanatory variables. 
(Since the whole range of RCI is [0, 1], we used 0.01 as 
the quantum for RCI increase with respect to which 
DyRCI is computed.)  

� p (appearing in both tables), the statistical significance 
of C, which provides an insight into the accuracy of 
the coefficient estimates. The level of significance of 
the logistic regression coefficients tells the reader 
about the probability that the coefficient is different 
from zero by chance. Historically, a significance 
threshold (a) of a = 0.05, i.e., 5 percent probability, has 
often been used in univariate analysis to determine 
whether a variable is a significant predictor. However, 
the choice of a particular level of significance is ulti-
mately a subjective decision and other levels such as 
0.01 or 0.1 are commonly used. The larger the level of 
significance, the larger the standard deviation of the 
estimated coefficients, the less believable the calcu-
lated impact of the coefficient. The significance test is 
based on a likelihood ratio test [27] commonly used in 
the framework of logistic regression. 

7.3 Descriptive Statistics 
Table 1 presents the descriptive statistics for the three pro-
jects we analyze. The minimum, maximum, median, mean, 
and standard deviation are provided in each table cell for 
each project. These descriptive statistics will be useful later 
on when we explain the differences observed in the analysis 
between the projects. Also, in future replications of this 
study, comparisons will be made easier if the sample statis-
tics can be compared. 

From Table 1, a few strong variations between TONS and 
the other two projects are visible. The standard deviation, 
mean and median of TIC are smaller for TONS. This may be 
due to the significant difference in size between the systems 
and results in fewer transitive interactions in TONS. With 
respect to ISP, differences can be observed between pro-
jects’ means and standard deviations where TONS shows 
the largest mean of imported software parts and GOESIM 
the smallest one. 

These differences may have numerous causes. GOADA 
and GOESIM are older projects and among the earlier Ada 
developments in the studied environment whereas TONS is 
a much more recent project. Higher module imports may be 
due to an increase in complexity over time of the systems 
developed in the studied environment or to the difference 
in application domain. Similarly, GOADA shows a much 
smaller median with respect to cohesion. Considering that 
GOADA was the first Ada project using object-oriented 
design in that environment, this circumstance may be ex-
plained by a lack of experience with that new technology 
and its underlying concepts. 

7.4 Correlation Analysis 
Table 2 presents the computed Pearson’s correlation coeffi-
cients (R) between the design measures computed for each 
of the three projects.  
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Most of the correlations in Table 2 are weak (the signifi-
cant ones, at the 0.01 level, are in boldface). ISP appears to 
be significantly correlated to DIC across the three projects. 
However, the relationship is relatively weak. The correla-
tion between TIC and ISP for TONS is mainly due to an 
outlier. On the other hand, the correlation between DIC and 
TIC is actually stronger (R = 0.87) when removing that out-
lier. A careful analysis of Table 2 allows us to conclude that, 
in most cases, the five measures presented capture different 
dimensions in our environment. In other words, they are 
likely not to be redundant from a predictive point of view. 
The existing significant correlations will have, however, to 
be considered in the following analysis. 

7.5 Univariate Analysis 
In this section, we present the results obtained when ana-
lyzing the individual impact of the defined design meas-
ures on fault-proneness. Table 3 presents these results by 
providing the computed regression coefficient (C), the 
variation in odds ratio when increasing the measure’s value 

of a unit (Dy), and the actual statistical significance of C (p). 
The number of LMH’s of the systems for GOADA, GOE-
SIM, and TONS are 131, 85, 83, respectively. 

Results. The best univariate logistic regression R
2
s (our 

measure of goodness of fit) are obtained with the measure 
Avg_Depth: GOADA: R2 = 0.115, GOESIM: R2 = 0.14, and 
TONS: R2 = 0.16. 

Detailed Discussion. Across the three systems under 
study, regression coefficients show the expected signs and 
seem to support our hypotheses. For example, RCI shows a 
positive sign and, therefore, suggests that the probability of 
having no fault detected increases with RCI. However, TIC 
and DIC do not appear to be very significant in TONS (p = 
0.11 and 0.08, respectively), whereas they are very significant 
in the other two systems. The analysis of the distribution of 
TIC in all three systems, respectively, shows that its standard 
deviation, mean, and median are much smaller in TONS (see 
Table 1). As a consequence, any trend related to TIC may not 
be visible in the TONS dataset. Since TONS is a significantly 

TABLE 1 
DESCRIPTIVE STATISTICS 

Measure Project minimum maximum median mean std dev 

 GOADA 0 15 1 1.41 1.65 

ISP GOESIM 0 6 1 1.19 1.13 

 TONS 0 18 1 1.69 2.2 

 GOADA 1 2.87 1.75 1.5 0.41 

Avg_Depth GOESIM 1 2.86 1.8 1.5 0.43 

 TONS 1 1.96 1.67 1.52 0.38 

 GOADA 0 1 0.003 0.11 0.17 

RCI GOESIM 0 1 0.083 0.16 0.20 

 TONS 0 1 0.034 0.16 0.24 

 GOADA 0 172 15.5 30.4 32.7 

TIC GOESIM 0 126 46.0 37.2 32.5 

 TONS 0 125 3 8.04 16.8 

 GOADA 0 67 3 5.02 9.06 

DIC GOESIM 0 32 3 4.63 6.08 

 TONS 0 36 3 5.34 7.22 

TABLE 2 
LINEAR CORRELATION COEFFICIENTS 

Measure Project ISP Avg_Depth RCI TIC DIC 

 GOADA 1 -0.05 -0.1 0.4 0.53 
ISP GOESIM 1 0.08 -0.12 0.3 0.52 
 TONS 1 0.2 -0.1 0.8 0.48 

 GOADA  1 -0.4 0.05 0.18 

Avg_Depth GOESIM  1 -0.4 -0.08 0.06 

 TONS  1 -0.23 0.3 0.38 

 GOADA   1 0.02 0.12 

RCI GOESIM   1 -0.24 0.02 

 TONS   1 -0.1 -0.2 

 GOADA    1 0.4 

TIC GOESIM    1 0.17 

 TONS    1 0.71 

 GOADA     1 

DIC GOESIM     1 

 TONS     1 
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smaller system than the other two, we can hypothesize the 
following possible explanation: the distribution of indirect 
import interactions is strongly dependent on the size of the 
system and indirect import interaction measures are likely to 
be mediocre predictors for small systems. However, well-
founded interpretations of this experimental result require 
more thorough and extensive studies, based on a larger set of 
software systems. Other interpretations might turn out to be 
as plausible. With respect to DIC, no explanation has been 
found for its mediocre level of significance in TONS. In all 
other cases, the univariate analysis results show that the five 
defined measures are significantly related (at a a = 0.05 level 
of significance) to fault-proneness. 

Comparing Models. Variations across models. i.e., uni-
variate regression equations, should be expected, due to 
differences in project characteristics and measure distribu-
tions, i.e., size, application domain. In order to evaluate the 
stability of the models, the reader should look at the Dy 
columns in Table 3. Model stability may be defined as the 
degree of variation of the Dys across projects. Based on that 
definition, it is worth noticing that, despite the fact that 
these projects belong to different application domains 
(within the context of satellite support systems) and have 
been developed at different times, most of the models are 
surprisingly stable across projects, i.e., trends are similar 
and percentages are in similar ranges. 

As a conclusion, Goal 1 of our empirical validation is ful-
filled by the above analysis since some high-level design 
measures are significantly related to fault-proneness (see C 
and p values in Table 3) (subgoal a). In addition, by analyz-
ing the trends indicated by the coefficients, we see that the 
hypotheses underlying the measures identified above as 
significant are empirically supported (subgoal b). Interac-
tion-based measures do not appear to be strongly associ-
ated with simpler high-level design measures (Table 2) and, 
therefore, seem to be complementary (subgoal c). Last, the 
observed trends appear stable across projects (Dys in Table 
3) (subgoal d). 

 

7.6 Multivariate Models 
In this section, we present the results obtained by perform-
ing a stepwise multivariate logistic regression. Table 4 pro-
vides the estimated regression coefficients (C) and their 
significance (p) based on a likelihood ratio test [27], which is 
obtained by comparing the maximum likelihood estimate 
of a parameter to its estimated standard deviation. Regres-
sion coefficients are not shown when their level of signifi-
cance is above 0.25 (substituted by a *). 

It is important to note that we do not expect high-level 
design measures to account for all of the variation of fault-
proneness, since other factors are likely to be important too, 
e.g., human factors. However, the goal of multivariate 
analysis here is to determine whether the measures appear-
ing significant in the univariate analysis are complementary 
and useful for prediction, i.e., useful to build a classifier. In 
order to do so, we have to show that these measures are, 

TABLE 3 
UNIVARIATE ANALYSIS 

Measure Project C Dy (%) p 

 GOADA -0.8 45 0.000 

ISP GOESIM -0.717 49 0.002 

 TONS -0.96 38 0.000 

 GOADA -2.27 11 0.000 

Avg_Depth GOESIM -2.4 9 0.000 

 TONS -3.9 2 0.000 

 GOADA 0.63 19 0.000 

RCI GOESIM 0.215 12 0.047 

 TONS 0.34 14 0.001 

 GOADA -0.016 98 0.001 

TIC GOESIM -0.017 98 0.002 

 TONS -0.03 96 0.08 

 GOADA -0.23 79 0.000 

DIC GOESIM -0.19 83 0.001 

 TONS -0.05 95 0.11 

 

TABLE 4 
COEFFICIENTS OF MULTIVARIATE MODELS 

 Project C p 

 GOADA -0.9 0.04 

ISP GOESIM * * 

 TONS -1.18 0.000 

 GOADA -1.8 0.003 

Avg_Depth GOESIM -3.12 0.000 

 TONS -5.62 0.000 

 GOADA 0.4 0.006 

RCI GOESIM 0.3 0.07 

 TONS 0.2 0.16 

 GOADA -0.023 0.000 

TIC GOESIM -0.02 0.005 

 TONS * * 

 GOADA 0.23 0.04 

DIC GOESIM -0.13 0.04 

 TONS -0.11 0.002 
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when used together in a multivariate model, significantly 
related to fault-proneness. In other words, when measures 
remain significant covariates when included in the multi-
variate model, this means that they are complementary in 
explaining fault-proneness. When the multivariate models 
show a better fit than univariate models, then the measures 
are deemed to be potentially useful for building a multivari-
ate model predicting fault-proneness. 

Analyzing the behavior of our measures in a multivari-
ate context allows us to refine their validation by determin-
ing the extent to which they can be useful predictors. A de-
tailed discussion of multivariate analysis and the issues 
mentioned above can be found in [21].  

Results. The very low levels of significance (p-values) in 
Table 4 suggest that, most of the time, these measures may 
be used in combination as indicators of fault-prone LMHs. 
Indeed, when used in a multivariate model, many of these 
measures are still significant and produce models that are 
more accurate than univariate models (Table 2). 

The multivariate R2s are 0.21 for GOADA, 0.24 for GOE-
SIM, and 0.43 for TONS. These values are, respectively 183, 
171, and 269 percent of the best univariate R2, i.e., the re-
sults improved significantly with the multivariate model. 
(Recall that logistic regression R2 values are usually low as 
compared to least-square regression R2s.) 

Interaction-based measures are more complex than ISP 
and Avg_Depth but they are worth collecting, since they 
provide information which is complementary to that pro-
vided by ISP and Avg_Depth. We would miss substantial 
information if we used only ISP and Avg_Depth, even 
though ISP and Avg_Depth individually perform better than 
our interaction-based measures. Interaction-level measures 
allow the building of multivariate models, with better 
goodness of fit than univariate models. We also want to 
remark that no other declaration measures we also investi-
gated, e.g., the number of data declarations as a size meas-
ure for LMH, turned out to be statistically significant. In 
addition, the average LMH depth was consistently selected 
as a very good indicator. ISP, a measure similar to the no-
tion of fan-in, shows to be significant across projects (except 
in the multivariate GOESIM model for reasons explained 
below). From a more general perspective, measures based 
on imports, regardless of the associated concepts, appear to 
explain part of the fault-proneness of software parts. 

Comparing Models. Some variability in the estimated re-
gression coefficients can be observed across projects in Ta-
ble 4. In multivariate models, coefficients have a tendency 
to adjust, statistically, for other covariates [27], [21]. Some-
times, covariates are weak predictors of the response (or 
dependent) variable when taken individually, and become 
more significant when integrated in a multivariate model. 
In Table 3, DIC showed, for TONS, a mediocre level of sig-
nificance, whereas it appears to be a significant covariate in 
Table 4. Moreover, its trend is reversed (positive) for 
GOADA. When looking more carefully at the associations 
between measures, it can be determined that this may be 
the results of a significant association between DIC and ISP 
(see Table 1) in GOADA. These associations are a typical 
source of coefficient instability, e.g., the coefficient of ISP in 

GOADA varies from –0.9 to –0.39 when DIC is removed 
from the equation. 

TIC does not appear significant in TONS and this may 
stem from its distribution in TONS (Table 1) which shows a 
much smaller mean and standard deviation in the TONS 
dataset. If most of TONS’s observations lie in the lower 
range of the TIC scale, its impact on fault-proneness may 
not be visible since we expect LMH’s with larger TIC values 
to be fault-prone. Another possible cause is the linear asso-
ciation between TIC and DIC in TONS (see Table 2). Also, 
RCI does not appear very significant in TONS. In that case, 
despite the fact that no differences in distribution or strong 
linear association can be observed (Tables 1 and 2), a strong 
nonlinear association exists between RCI and DIC. When 
using the natural logarithm to transform the scales of DIC 
and RCI, i.e., linearize the relationship between DIC and 
RCI, a correlation of R = 0.87 can be observed. This may 
very well explain the low level of significance of RCI in 
TONS. 

ISP shows a smaller mean and standard deviation in GO-
ESIM and does not appear significant as a covariate in that 
case. RCI shows a level of significance in GOESIM which is 
worse than in GOADA but better than in TONS. In that case, 
again, this may be explained by a weak but significant non-
linear relationship between DIC and RCI (after linearization, 
R = 0.46 or R = 0.59 when removing an outlier). 

It is important to note that a different set of systems 
showing different distributions might show very different 
trends. This points out a need for large scale investigation 
across various development environments and application 
domains. In addition, an investigation over a large number 
of systems would allow us to better determine the ranges of 
values in which the various measures are significant predic-
tors of fault-proneness. 

As a conclusion, Goal 2 of our empirical validation is ful-
filled since we have shown that these measures are com-
plementary and useful explanatory variables of fault-
proneness, i.e., multivariate models show a better goodness 
of fit than the univariate models. 

Goodness of Fit. In order to better assess the goodness of 
fit of the above multivariate models, we look now at other 
measures of fit which provide a perspective complementary 
to R

2
. Let us assume we wish to use the constructed logistic 

regression models to classify LMH’s in two categories, i.e., 
it is/is not likely to detect a fault in the LMH. In order to do 
so, we define a probability threshold of 0.5 to decide, based 
on the computed probability to detect a fault in each LMH, 
whether a LMH actually contains a fault. In that case, one 
may decide, for instance, to inspect or test more carefully 
the LMH. 

Based on such classification models, we obtain the classi-
fication results presented in Table 5 across the three pro-
jects. GOADA, GOESIM, and TONS contain, respectively, 
131, 85, and 83 LMHs. In addition, 270, 141, and 115 faults 
have been reported, respectively. Table 5’s rows represent 
the actual categories of LMHs, i.e., faulty or nonfaulty, 
whereas the columns represent the classification performed 
based on the logistic regression models.  
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Table 6 compares the LMH’s which actually contain a 
fault with the ones that have been predicted to contain a 
fault. Based on these results, Table 6 presents two classifica-
tion evaluation criteria: completeness, correctness. The for-
mer gives the percentage of faulty LMH’s which have been 
classified as faulty. The latter gives the percentage of times 
a LMH has been classified correctly as faulty. For example, 
in GOADA, 60 faulty LMH’s have been classified as faulty 
whereas eight of them have been classified as non-faulty. 
On the other hand, 41 nonfaulty LMH’s have been classi-
fied as faulty. In that case, Completeness = 60/68 = 88 per-
cent, whereas Correctness = 60/101 = 60 percent. These two 
criteria are complementary in assessing classification re-
sults and cannot be analyzed independently. More balanced 
completeness and correctness results could be obtained by 
using a different classification threshold than 0.5. 

Results put between parentheses in Tables 5 and 6 pro-
vide the number of faults detected in each LMH. This al-
lows us to determine correctness and completeness in terms 
of faults, instead of faulty LMHs. If we take the same ex-
ample again, Correctness = 259/300 = 86 percent and Com-
pleteness = 259/270 = 96 percent. Overall, the results appear 
to be substantially better when considering faults. This 
shows that the models are more accurate for LMHs contain-
ing a larger number of faults. 

As expected and discussed above, the classification re-
sults are not fully satisfactory and there is room for im-
provement. However, especially with respect to complete-
ness, the results show that the defined design measures are 
useful indicators of fault-prone LMHs. Furthermore, the 
design measures show to be excellent predictors of where 
most of the faults will be detected. Criteria such as correct-
ness and completeness are dependent on the choice of a 
subjective classification threshold. However, as a measure 
of fit, they are more intuitive than R

2
. 

Another important point is that there is a difference be-
tween measuring the goodness of fit of a model and assess-
ing its predictive capability. In the latter case, one should 
define a separate modeling and test sets. The modeling set is 
usually larger than the test set and is used to build the 
model. It should be representative of the whole statistical 
population under study. The test set is used to test the 
predictive accuracy of the model generated. In our study, we 

dictive accuracy of the model generated. In our study, we 
were interested in the goodness of fit and we did not investi-
gate the predictive capability of the model per se. However, a 
satisfactory goodness of fit is required in order to realistically 
expect a satisfactory predictive capability in future studies. 
Our goal was to validate our measures according to the goals 
stated above, not to build and assess predictive models. Such 
a task is however a part of our future work and would re-
quire larger data sets which are representative of the project 
population in our environment. 

8 CONCLUSION 
This paper has presented a methodology and an empirical 
study on the definition and validation of measures for high-
level object-based designs. Our experimental goal was to 
evaluate the influence of some attributes of the high-level 
object-based design on the fault-proneness of the produced 
software in the context of Ada development at NASA/ FSC. 
Based on the experimental goal, we have set experimental 
hypotheses from which we derived measures, which were 
theoretically validated by means of a property-based ap-
proach and empirically validated on three real-life software 
projects. 

The study has shown that statistical models of good sta-
tistical significance can be built based on high-level design 
information for systems designed based on abstract data 
types. In particular, we have identified some early indica-
tors for fault-prone software that may be interpreted as co-
hesion and coupling measures. The stability of the impact 
of these measures across projects allows us to draw opti-
mistic conclusions about the use of such quality indicators. 
In a given application domain, the impact of the defined 
high-level design measures seems to be relatively stable 
across projects. When differences appear across projects 
(especially in the multivariate models), they can be ex-
plained either by associations between covariates or by dif-
ferences in distributions across projects. Using early quality 
indicators based on objective empirical evidence is there-
fore a realistic objective. Quality indicators can be weighted 
according to their impact on fault-proneness in order to 
build quality models and these weights will be representa-
tive, to some extent, across projects in the given application 
domain. However, there is no guarantee that these kinds of 
indicators will behave similarly across various application 
domains and development environments. Therefore, it is 
generally prudent to precede the use of such indicators by a 
careful empirical analysis of local fault patterns in the stud-
ied environment and a thorough comparison across pro-
jects. As discussed in the Introduction, we do not believe 
that universally valid quality measures and models can be 

TABLE 5 
CLASSIFICATION RESULTS FOR THE MULTIVARIATE ANALYSIS 

   Predicted   

 GOADA GOESIM GOESIM 
Actual No Fault Fault No Fault Fault No Fault Fault 

No Fault 22 41 12 33 30 20 

Fault 8 (11) 60 (259) 2(11) 38(130) 4(7) 29(108) 

 

TABLE 6 
CLASSIFICATION ACCURACY FOR FAULTY LMHS  

FOR THE MULTIVARIATEANALYSIS 

 GOADA 

(%) 
GOESIM 

(%) 
GOESIM 

(%) 

Completeness 88 (96) 95 (92) 89 (94) 

Correctness 60 (86) 54 (80) 59 (84) 
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devised at this stage. Therefore, our approach to measure 
definition and validation can be reused, but the measures 
and models themselves should be investigated and vali-
dated locally in each studied environment. 

Our future work will be four-fold to:  

1) analyze more systems.  
2) assess, as objectively as possible, the predictive capa-

bility of models based on high-level design measures.  
3) further validate and refine the measures we defined 

in this paper. The variations across environments and 
the study/comparison of different architectures is 
likely to give us interesting insights.  

4) be consistent with our current objectives, we will ad-
dress the issues related to building measure-based 
empirical models earlier in the life cycle. In particular, 
the next stage of this research will focus on defining 
and validating measures for formal specifications [9]. 
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