
January 2001 135

S O F T W A R E M A N A N G E M E N T

R ecently, a National Science
Foundation grant enabled us to
establish the Center for Empiri-
cally Based Software Engineer-
ing. CeBASE seeks to transform

software engineering as much as pos-
sible from a fad-based practice to an
engineering-based practice through deri-
vation, organization, and dissemination
of empirical data on software develop-
ment and evolution phenomenology. The
phrase “as much as possible” reflects the
fact that software development must
remain a people-intensive and continu-
ally changing field. We have found, how-
ever, that researchers have established
objective and quantitative data, relation-
ships, and predictive models that help
software developers avoid predictable pit-
falls and improve their ability to predict
and control efficient software projects.

Here we describe developments in this
area that have taken place since the publi-
cation of “Industrial Metrics Top 10 List”
in 1987 (B. Boehm, IEEE Software, Sept.
1987, pp. 84-85). Given that CeBASE
places a high priority on software defect re-
duction, we think it is fitting to update that
earlier article by providing the following
Software Defect Reduction Top 10 List.

ONE
Finding and fixing a software problem

after delivery is often 100 times more
expensive than finding and fixing it dur-
ing the requirements and design phase.

As Boehm observed in 1987, “This

insight has been a major driver in focus-
ing industrial software practice on thor-
ough requirements analysis and design,
on early verification and validation, and
on up-front prototyping and simulation
to avoid costly downstream fixes.”

For this updated list, we have added
the word “often” to reflect additional
insights about this observation. One
insight shows the cost-escalation factor
for small, noncritical software systems to
be more like 5:1 than 100:1. This ratio
reveals that we can develop such systems
more efficiently in a less formal, continu-
ous prototype mode that still emphasizes
getting things right early rather than late.

Another insight reveals that good
architectural practices can significantly
reduce the cost-escalation factor even for
large critical systems. Such practices
reduce the cost of most fixes by confining
them to small, well-encapsulated mod-
ules. A good example is the million-line
CCPDS-R system described in Walker
Royce’s book, Software Project Manage-
ment (Addison-Wesley, 1998).

TWO
Current software projects spend about

40 to 50 percent of their effort on avoid-
able rework.

Such rework consists of effort spent
fixing software difficulties that could
have been discovered earlier and fixed
less expensively or avoided altogether. By
implication, then, some effort must con-
sist of “unavoidable rework,” an obser-
vation that has gained increasing
credibility with the growing realization
that better user-interactive systems result
from emergent processes. In such
processes, the requirements emerge from
prototyping and other multistakeholder-
shared learning activities, a departure
from traditional reductionist processes
that stipulate requirements in advance,
then reduce them to practice via design
and coding. Emergent processes indicate
that changes to a system’s definition that
make it more cost-effective should not be
discouraged by classifying them as avoid-
able defects.

Reducing avoidable rework can pro-
vide significant improvements in software
productivity. In our behavioral analysis
of how software cost drivers affected
effort for the Cocomo II model (B. Boehm
et al., Software Cost Estimation with
Cocomo II, Prentice Hall, 2000), we
found that most of the effort savings gen-
erated by improving software process
maturity, software architectures, and soft-
ware risk management came from reduc-
tions in avoidable rework.

THREE
About 80 percent of avoidable rework

comes from 20 percent of the defects.
That 80 percent value may be lower

for smaller systems and higher for very
large ones. Two major sources of avoid-
able rework involve hastily specified

Software
Defect Reduction
Top 10 List
Barry Boehm, University of Southern California
Victor R. Basili, University of Maryland

Software’s complexity and
accelerated development
schedules make avoiding defects
difficult. These 10 techniques can
help reduce the flaws in your code.

136 Computer

S o f t w a r e M a n a g e m e n t

requirements and nominal-case design
and development, in which late accom-
modation of off-nominal requirements
causes major architecture, design, and
code breakage. A tracking system for
software-problem reports that records
the effort to fix each defect lets you ana-
lyze the data fairly easily to determine
and address additional major sources of
rework.

FOUR
About 80 percent of the defects come

from 20 percent of the modules, and
about half the modules are defect free.

Studies from different environments
over many years have shown, with amaz-
ing consistency, that between 60 and 90
percent of the defects arise from 20 per-
cent of the modules, with a median of
about 80 percent. With equal consis-
tency, nearly all defects cluster in about
half the modules produced.

Obviously, then, identifying the char-
acteristics of error-prone modules in a
particular environment can prove worth-
while. A variety of context-dependent
factors contribute to error-proneness.
Some factors usually contribute to error-
proneness regardless of context, however,
including the level of data coupling and
cohesion, size, complexity, and the
amount of change to reused code.

FIVE
About 90 percent of the downtime

comes from, at most, 10 percent of the
defects.

Some defects disproportionately affect
a system’s downtime and reliability. For
example, an analysis of the software fail-
ure history of nine large IBM software
products revealed that about 0.3 percent
of the defects accounted for about 90
percent of the downtime. Thus, risk-
based testing—including understanding
a system’s operational profiles and
emphasizing testing of high-risk scenar-
ios—is clearly cost-effective.

SIX
Peer reviews catch 60 percent of the

defects.
Given that finding and fixing most

defects earlier in the project development
cycle is more cost-effective than finding

them later, we seek techniques that find
defects as early as possible. Numerous
studies confirm that peer review provides
an effective technique that catches from
31 to 93 percent of the defects, with a
median of around 60 percent. Thus, the
60 percent value cited in the 1987 col-
umn remains a reasonable estimate.

Factors affecting the percentage of
defects caught include the number and
type of peer reviews performed, the size
and complexity of the system, and the
frequency of defects better caught by exe-
cution, such as concurrency and algo-
rithm defects. Our studies have provided
evidence that peer reviews, analysis tools,
and testing catch different classes of
defects at different points in the devel-
opment cycle. We need further empirical
research to help choose the best mixed
strategy for defect-reduction investments.

SEVEN
Perspective-based reviews catch 35

percent more defects than nondirected
reviews.

A scenario-based reading technique
(V.R. Basili, “Evolving and Packaging
Reading Technologies,” J. Systems and
Software, vol. 38, no. 1, 1997, pp. 3-12)
offers a set of formal procedures for
defect detection based on varying per-
spectives. The union of several perspec-
tives into a single inspection offers broad
yet focused coverage of the document
being reviewed. This approach seeks to
generate focused techniques aimed at
specific defect-detection goals by taking
advantage of an organization’s existing
defect history.

Scenario-based reading techniques have
been applied in requirements, object-ori-
ented design, and user interface inspec-

tions. Improvements in fault detection
rates vary from 15 to 50 percent. Further,
focused reading techniques facilitate train-
ing of inexperienced personnel, improve
communication about the process, and
foster continuous improvement.

EIGHT
Disciplined personal practices can

reduce defect introduction rates by up to
75 percent.

Several disciplined personal processes
have been introduced into practice.
These include Harlan Mills’s Cleanroom
software development process and Watts
Humphrey’s Personal Software Process
(PSP).

Data from the use of Cleanroom at
NASA have shown 25 to 75 percent reduc-
tions in failure rates during testing. Use of
Cleanroom also showed a reduction in
rework effort so that only 5 percent of the
fixes took more than an hour, whereas the
standard process caused more than 60 per-
cent of the fixes to take that long.

PSP’s strong focus on root-cause analy-
sis of an individual’s software defects and
overruns, and on developing personal
checklists and practices to avoid future
recurrence, has significantly reduced per-
sonal defect rates. Developers frequently
enjoy defect reductions of 10:1 between
exercises 1 and 10 in the PSP training
course.

Effects at the project level are more scat-
tered. They depend on factors such as the
organization’s existing software maturity
level and the staff’s and organization’s
willingness to operate within a highly
structured software culture. When you
couple PSP with the strongly compatible
Team Software Process (TSP), defect
reduction rates can soar to factors of 10 or
higher for an organization that operates
at a modest maturity level. Results tend to
be less spectacular if the organization
already employs highly mature processes.

The June 2000 special issue of
CrossTalk, “Keeping Time with PSP and
TSP,” offers a good set of relevant dis-
cussions, including experience showing
that adding PSP and TSP to a CMM
Level 5 organization reduced acceptance
test defects by about 50 percent overall,
and reduced high-priority defects by
about 75 percent.

Peer reviews,
analysis tools,

and testing catch
different classes of
defects at different

points in the
development cycle.

January 2001 137

A 1987 study in this area (P.S. Brown
and J.D. Gould, “An Experimental Study
of People Creating Spreadsheets,” ACM
Trans. Office Info. Sys., July 1987, pp.
258-272) found that 44 percent of 27
spreadsheet programs produced by expe-
rienced spreadsheet developers contained
nontrivial defects—mostly errors in
spreadsheet formulas. Yet the developers
felt confident that they had produced
accurate spreadsheets.

Subsequent laboratory experiments
have reported defective spreadsheet rates
between 35 and 90 percent. The analy-
sis of operational spreadsheets reveals
defect rates between 21 and 26 percent;
the lower rates probably stem from cor-
rections already made during operation.

Now, and increasingly in the future,
user programs will escalate from spread-
sheets to Web-scripting languages capa-
ble of sending agents into cyberspace to
make deals for you. The ranks of “sor-
cerer’s apprentice” user-programmers
will also swell rapidly, giving many who
have little training or expertise in how to
avoid or detect high-risk defects tremen-
dous power to create high-risk defects.
One study for the Cocomo II book esti-
mated that the US will have 55 million
user-programmers by 2005. If we clas-
sify active Web-page developers as user-
programmers, this prediction appears to
be on track.

Thus, the creators of Web-program-
ming facilities face the challenge of pro-
viding their tools with the equivalent of
seat belts and air bags, along with safe-
driving aids and rules of the road. This

NINE
All other things being equal, it costs 50

percent more per source instruction to
develop high-dependability software
products than to develop low-depend-
ability software products. However, the
investment is more than worth it if the
project involves significant operations
and maintenance costs.

The analysis of 161 project data points
for the Cocomo II model resulted in an
added cost of 53 percent for its “required
reliability” factor, while normalizing for
the effects of 22 other factors. Does this
mean that Philip Crosby’s landmark
book, Quality Is Free (Mentor, 1980),
had it all wrong? Maybe for some low-
criticality, short-lifetime software, but
not for the most important cases.

First, in the Cocomo II maintenance
model, low-dependability software costs
about 50 percent per instruction more to
maintain than to develop, whereas high-
dependability software costs about 15
percent less to maintain than to develop.
For a typical life-cycle cost distribution
of 30 percent development and 70 per-
cent maintenance, low-dependability
software becomes about the same in cost
per instruction as high-dependability
software—again, assuming all other fac-
tors are equal.

Second, in the Cocomo II-related qual-
ity model, high-dependability software
removes about four times as many
defects as average-dependability soft-
ware, which in turn removes about four
times as many defects as low-depend-
ability software. For example, consider
an average-dependability system such as
a commercial billing system, in which the
operational cost of software defects—
due to lost worker time, lost sales, added
customer service costs, litigation costs,
loss of repeat business, and so on—
roughly equals life-cycle software devel-
opment and maintenance costs. For such
a system, the increased defect rate of
using low-dependability software would
make its ownership costs roughly three
times higher than the ownership costs of
high-dependability software.

TEN
About 40 to 50 percent of user pro-

grams contain nontrivial defects.

software engineering research challenge
is one of several identified by a National
Science Foundation study, “Gaining
Intellectual Control of Software Develop-
ment,” which we recently summarized in
Computer (May 2000, pp. 27-33).

S urely, our list can benefit from
refinement and further empirical
research on defect reduction. Much

of the data we have reported, for exam-
ple, fails to account for the interaction
between many of the variables that, if
known, could provide answers to ques-
tions like:

• If I invest in peer reviewing,
Cleanroom, and PSP, am I paying
for the same defects to be removed
three times?

• How much testing would this
investment enable me to avoid?

We hope to involve the software com-
munity in expanding the Software Defect
Reduction Top 10 List and other cur-
rently available data into a continually
evolving, open source, Web-accessible
handbook of empirical results on soft-
ware-defect reduction strategies. We also
plan to initiate counterpart handbooks
for commercial off-the-shelf systems and
other emerging software areas. We wel-
come your participation in this effort and
urge you to visit the CeBASE Web site at
http://www.cebase.org for further infor-
mation. You can also find an expanded
version of this column at http://www.
cebase.org/defectreduction/ top10. ✸

Barry Boehm is director of the Univer-
sity of Southern California Center for
Software Engineering. Contact him at
boehm@sunset.usc.edu.

Victor R. Basili is a professor in the Insti-
tute for Advanced Computer Studies and
the Computer Science Department at the
University of Maryland. Contact him at
basili@cs.umd.edu.

The creators of
Web-programming

facilities face
the challenge of

providing their tools
with the equivalent of

seat belts and
air bags, along with

safe-driving aids
and rules of the road.

