
4 6 I E E E S O F T W A R E M a y / J u n e 2 0 0 2 0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E

to better use its internal software knowledge
in two ways. First, it wanted to improve soft-
ware development and acquisition processes
to increase software quality and repeatability
of success. Second, it wanted to explicitly
reuse knowledge from previous software
projects to enhance future ones. In particular,
DaimlerChrysler considered reusing experi-
ences as a key to better project performance
and higher software quality.

We can view such experience exploita-
tion as a variant of knowledge manage-
ment.1 Unlike factual knowledge, we can’t
find experience in textbooks. Experiences
are related to the environment and context
in which they occurred, and when reused in
their original context, they can direct soft-
ware process improvement (SPI). For exam-
ple, we can calibrate the frequency and in-
tensity of design or code inspections to
optimize effort spent and errors detected.

Here, we report on DaimlerChrysler’s
Software Experience Center project. The
SEC aimed to investigate experience reuse (as
a variant of knowledge management) and ap-
ply insights and collected experiences to SPI.

Experience-based SPI
The SEC’s operational goal was to provide

business units with the concepts of a learning
organization and a prototype of an experience
base. To do this, researchers acted as experi-
ence and knowledge engineers and coaches for
the business units to assist them in their expe-
rience exploitation activities and transfer in-
sights into SPIs. DaimlerChrysler expected a
learning software organization would better
use the scarce resource of available software
competency.2

The SEC built on the concept of an experi-
ence factory,3 which is an organizational unit
that supports several software projects. As a

focus
Experience in
Implementing a Learning
Software Organization

Kurt Schneider and Jan-Peter von Hunnius, DaimlerChrysler Research Center

Victor R. Basili, University of Maryland

DaimlerChrysler
created its Software
Experience Center to
investigate
experience reuse
and encourage
experience-based
software process
improvement. Here,
the authors report
on challenges the
company faced when
creating the SEC.

C
ompetence in software development and acquisition has become
essential for the automotive industry. As a manufacturer of pre-
mium-class cars, DaimlerChrysler depends on high-quality soft-
ware for its sophisticated electronic control units. ECUs imple-

ment features such as intelligent brake assistants, electronic stability, and
engine controls. Unfortunately, software development and acquisition com-
petencies are a scarce resource. Consequently, DaimlerChrysler decided

knowledge management

separate entity, an experience factory receives
plans, status information, and experiences
from all participating projects. Incoming data
is organized in models, such as defect density
models, Pareto charts of defect class baselines,
algorithms, and so forth.4 These models pro-
vide projects with immediate feedback—such
as “your error density is now 10 percent
higher than usual”—and experience-based
advice—“when you inspect more than five
pages of code at a time, your performance
goes down.” NASA first implemented this
concept.5 DaimlerChrysler’s situation and en-
vironment called for some modifications.6 Its
experiences were more qualitative than those
of a classical experience factory because it had
less quantitative data available. Consequently,
it also used process models rather than para-
metric equations.

DaimlerChrysler’s SEC supported all activ-
ities, from experience elicitation to making
experience available for a software task at
hand. Experience elicitation involved inter-
views, feedback forms, and an optimized ver-
sion of a lightweight elicitation workshop.7

To spread consolidated experiences, we used
an intranet description of the software
process at hand (for example, of an inspection
process). Using HTML, we could describe a
process and link it to such items as training
materials, experiences, checklists, frequently
asked questions, and expert emails. We called
this collection our experience base for any
given topic (topics include software inspec-
tions, software risk management, and re-
quirements engineering). An experience base
is the persistent storage of experiences, organ-
ized around a software process.8 It offers
email contact in different contexts and users
are encouraged to provide feedback. We had
some scripts that could quickly update an ex-
perience base, but beyond this, there was no
automation. Elicitation and reuse procedures
were more critical than tools or automation.

Three major challenges for a
learning software organization

Establishing an SEC as a learning organ-
ization in the business units participating in
this project was surprisingly difficult. We
discuss two cultural challenges and one
technical challenge that were decisive for
turning a department or business unit into a
learning software organization at Daimler-
Chrysler.

Learning implies broad and deep change
Introducing a learning software organiza-

tion deeply changes how developers and man-
agers should work. Developers must change
their mindsets, skills, and behavior; managers
must change their expectations about what
gets delivered and when; and the organization
must reconsider its training approach and any
processes that interact with the primary
process it is changing. If the effects of change
do not occur across the organization, im-
provements will not happen, and the cost and
effort invested will have been wasted.

Experiences at DaimlerChrysler. We experi-
enced several situations in which manage-
ment commitment was limited in time and
scope. For example, one manager complained
about an insufficient effect of change after
only two months of SEC operation. In an-
other case, a manager constantly refocused
the area for improvement. In both cases, man-
agement blocked emerging change by not un-
derstanding an important implication of
change: it takes time.

On the other hand, when handled with
care, change can lead to success. For example,
over a three-year period, a quality manage-
ment support group encouraged a software
risk management process by developing pilot
projects, discussing the process in user
groups, submitting it to management for ap-
proval and commitment, offering training in
tailored courses, and using a specific, custom-
made risk management experience base. The
group considered all stakeholders and their
concerns, differences, and needs; it antici-
pated and addressed ripple effects (for exam-
ple, the need for training).9 Risk management
is now accepted in the entire department and
applied to all top strategic software projects
as well as to a growing number of other soft-
ware projects. Risks are now identified earlier
and can be mitigated more effectively.

Recommendations. Improvement causes
change, and effective change is not local. Be-
cause we cannot always control the speed of
ripple effects, patience and a long-term vi-
sion are indispensable. All stakeholders must
understand what is happening, why it is hap-
pening, how it affects their jobs, and why it
takes so long. Things usually differ from
what we first believe, so adaptation and iter-
ation are needed. Spreading best practices in

M a y / J u n e 2 0 0 2 I E E E S O F T W A R E 4 7

Introducing a
learning
software

organization
deeply changes
how developers
and managers
should work.

experience bases can support the ripple of
change and its speed. Plan activities that help
stakeholders adjust to the ripple effects, and
advise key people that they must adjust their
own behavior—not just provide funding.

Capitalizing on learning involves risk
There is much to gain by making changes

based on learning—for example, there are
many opportunities in SPI.2 However, im-
provement programs and learning initia-
tives imply that skills must change and ac-
quired expertise might become obsolete,
which could be perceived as personal risks.
Consequently, employees sometimes try to
avoid the change. Ignoring or neglecting
personal risks can turn into a serious risk
for the entire SPI activity. Unfortunately,
risk management is rarely applied to SPI,
and an ignored risk is the worst kind.10

Experiences at DaimlerChrysler. We intro-
duced a use case technique for requirements
engineering in one group, not considering the
risk this introduction posed for several group
members. As electrical engineers, they were
used to model-based development. Conse-
quently, the new technique was neither openly
rejected nor actively adopted. Because we
couldn’t modify the team’s background, we
decided to cancel the method introduction
when we reconsidered it from a risk perspec-
tive. We thus immediately stopped wasting
money and no longer risked the SPI initiative’s
reputation. Instead, we refocused and concen-
trated on a more appropriate improvement ac-
tivity (improving documentation structure).

Recommendations. Apply risk management
to your software improvement initiative and
learning efforts just as you would to a soft-
ware development project. Use experience-
based checklists of common risks in your
environment (such as personnel and budget
risks), thus reusing knowledge and experi-
ence gained in earlier projects. Watch out
for personal risks that an activity might cre-
ate for important stakeholders. Stop an ac-
tivity before you lose too much money and
your reputation. Better yet, refocus activi-
ties long before risks turn into problems,
and you’ll avoid failure completely.

Experience value through packaging
The experience base must provide infor-

mation in a format that is useful for intended
users. At DaimlerChrysler, qualitative expe-
riences are most common. Packaging refers
to the activity of comparing, analyzing, and
combining several pieces of raw experiences
received from various projects (for example,
from developers or project leaders). We or-
ganize this material according to the steps of
the process models. The result is a document
that represents either a consolidated view of
the packaged experiences or modifications
to an existing (process) model.

Packaging is a technical challenge because
it requires identifying and working with sev-
eral models.4 The key is to make experience-
related material relevant to a real user. This
includes tailoring contents and format to a
concrete anticipated usage situation. Experi-
ence is only valuable when set in context. We
must base iteration, evolution, and learning
on explicit information to form the seed for
the next cycle.11

Experiences at DaimlerChrysler. SEC re-
searchers observed quality circles: Quality
assurance staff gathered in an informal way
to exchange experiences. Unfortunately,
they captured little information, writing
down almost nothing. The few items they
did capture were hardly reusable. To assist
their experience capturing, the SEC team
needed to develop expertise in the subject
under discussion (such as inspections and
review plans, and quality management is-
sues). Over time, the QA staff adopted this
practice and wrote down more information
and introduced an experience base for qual-
ity assurance. Establishing the base was a
lengthy process of describing, reworking,
and representing (on paper and on slides)
inspection processes, support material, and
review plans.8

Recommendations. Develop packaging tech-
niques and tailor them for your organization.
Domain experts should create packages based
on anticipated user needs. It should be made
as simple as possible to create and use pack-
ages. Be aware of the importance and timeli-
ness of feedback. Iterate often to know what
the users really need. Don’t fall in love with an
idea you might have packaged, and don’t try
to reach the final solution in one iteration. Let
the user see, use, and comment on partial so-
lutions over several iterations.

Apply risk
management to
your software
improvement
initiative and

learning efforts
just as you
would to a
software

development
project.

4 8 I E E E S O F T W A R E M a y / J u n e 2 0 0 2

E ach issue we’ve discussed was more
of a challenge than tool support and
automation. We have learned to bet-

ter cope with these challenges, but they re-
main the most decisive issues in implement-
ing a learning software organization through
explicit experience exploitation. We recom-
mend providing advice on dealing with the
issues, but each organization must find its
own approach.

Once we recognized these challenges and
dealt with them directly, the SEC ran more
smoothly. It has improved many processes,
and learning from experience has become a
more natural part of daily life in the busi-
ness units.

References
1. T.G.P. Davenport, Knowledge Management Case Book,

John Wiley & Sons, New York, 2000.
2. R.V. Solingen et al., “No Improvement without Learn-

ing: Prerequisites for Learning the Relations between
Process and Product Quality in Practice,” Product Fo-
cused Software Process Improvement (PROFES 2000),
Springer-Verlag, New York, 2000, pp. 36–47.

3. V. Basili, G. Caldiera, and D.H. Rombach, “The Expe-
rience Factory,” Encyclopedia of Software Eng., John
Wiley & Sons, New York, 1994, pp. 469–476.

4. V. Basili and F. McGarry, “The Experience Factory:
How to Build and Run One,” Proc. Int’l Conf. Soft-
ware Eng. (ICSE 19), ACM Press, New York, 1997,
pp. 643–644.

5. V. Basili et al., “The Software Engineering Laboratory:
An Operational Software Experience Factory,” 14th
Int’l Conf. Software Eng. (ICSE ’92), ACM Press, New
York, 1992, pp. 370–381.

6. F. Houdek and K. Schneider, “Software Experience Cen-
ter: The Evolution of the Experience Factory Concept,”
Int’l NASA-SEL Workshop, Proc. 24th Ann. Software
Eng. Workshop, NASA Goddard Software Eng. Lab
(SEL), Greenbelt, Md., 1999.

7. K. Schneider, “LIDs: A Light-Weight Approach to Expe-
rience Elicitation and Reuse,” Product Focused Soft-
ware Process Improvement (PROFES 2000), Springer-
Verlag, New York, 2000, pp. 407–424.

8. K. Schneider and T. Schwinn, “Maturing Experience
Base Concepts at DaimlerChrysler,” Software Process
Improvement and Practice, vol. 6, 2001, pp. 85–96.

9. K. Schneider, “Experience-Based Training and Learning
as a Basis for Continuous SPI,” Proc. 6th Ann. European
Software Eng. Process Group Conf. (EuropeanSEPG),
2001.

10. E.M. Hall, Managing Risk: Methods for Software Sys-
tems Development, Addison-Wesley, Reading, Mass.,
1997.

11. G. Fischer, “Seeding, Evolutionary Growth and Reseed-
ing: Constructing, Capturing and Evolving Knowledge
in Domain-Oriented Design Environments,” Automated
Software Eng., vol. 5, no. 4, Oct. 1998, pp. 447–464.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

M a y / J u n e 2 0 0 2 I E E E S O F T W A R E 4 9

About the Authors

Kurt Schneider is a researcher and project leader at the DaimlerChrysler Research Cen-
ter, Ulm, Germany. He currently works in software process improvement, software quality, and
lightweight approaches to software development. He has led large research projects—in par-
ticular the SEC project—with several business units and international partner companies. He
studied computer science at the Friedrich-Alexander Universität Erlangen-Nürnberg, Germany,
and received his doctoral degree in software engineering from the Universität Stuttgart, Ger-
many. Contact him at DaimlerChrysler Research Center Ulm, P.O. Box 2360, 89013 Ulm, Ger-
many; kurt.schneider@daimlerchrysler.com.

Jan-Peter von Hunnius is a researcher and PhD student at the DaimlerChrysler Re-
search Center, Ulm, Germany. His research interests include experience-based process improve-
ment, software development processes in general, extreme programming, and the rational uni-
fied process. He received his Diplom-Informatiker in computer science from the Albert-Einstin
Universität Ulm, Germany. Contact him at DaimlerChrysler Research and Technology, Software
Process Engineering (RIC/SP), P.O. Box 2360, 89013 Ulm, Germany; jan.hunnius@
daimlerchrysler.com.

Victor R. Basili is a professor of computer science at the University of Maryland,
College Park, and the executive director of the Fraunhofer Center, Maryland. He is also one
of the founders and principals in the Software Engineering Laboratory. He works on measur-
ing, evaluating, and improving the software development process and product and has con-
sulted for many organizations. He is co-editor-in-chief of the International Journal of
Empirical Software Engineering, published by Kluwer. He is an IEEE and ACM Fellow.

Get
access
to individual IEEE Computer

Society documents online.

More than 67,000 articles

and conference papers available!

$5US per article for members

$10US for nonmembers

http://computer.org/publications/dlib

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

