
0018-9162/03/$17.00 © 2003 IEEE June 2003 47

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Iterative and Incremental
Development:
A Brief History

A s agile methods become more popular,
some view iterative, evolutionary, and
incremental software development—a
cornerstone of these methods—as the
“modern” replacement of the waterfall

model, but its practiced and published roots go back
decades. Of course, many software-engineering stu-
dents are aware of this, yet surprisingly, some com-
mercial and government organizations still are not.

This description of projects and individual con-
tributions provides compelling evidence of iterative
and incremental development’s (IID’s) long exis-
tence. Many examples come from the 1970s and
1980s—the most active but least known part of
IID’s history. We are mindful that the idea of IID
came independently from countless unnamed pro-
jects and the contributions of thousands and that
this list is merely representative. We do not mean
this article to diminish the unsung importance of
other IID contributors.

We chose a chronology of IID projects and
approaches rather than a deep comparative analy-
sis. The methods varied in such aspects as iteration
length and the use of time boxing. Some attempted
significant up-front specification work followed by
incremental time-boxed development, while others
were more classically evolutionary and feedback
driven. Despite their differences, however, all the
approaches had a common theme—to avoid a sin-
gle-pass sequential, document-driven, gated-step
approach.

Finally, a note about our terminology: Although
some prefer to reserve the phrase “iterative devel-

opment” merely for rework, in modern agile meth-
ods the term implies not just revisiting work, but
also evolutionary advancement—a usage that dates
from at least 1968.

PRE-1970
IID grew from the 1930s work of Walter

Shewhart,1 a quality expert at Bell Labs who pro-
posed a series of short “plan-do-study-act” (PDSA)
cycles for quality improvement. Starting in the
1940s, quality guru W. Edwards Deming began
vigorously promoting PDSA, which he later
described in 1982 in Out of the Crisis.2 Tom Gilb3

and Richard Zultner4 also explored PDSA applica-
tion to software development in later works.

The X-15 hypersonic jet was a milestone 1950s
project applying IID,5 and the practice was consid-
ered a major contribution to the X-15’s success.
Although the X-15 was not a software project, it is
noteworthy because some personnel—and hence,
IID experience—seeded NASA’s early 1960s Project
Mercury, which did apply IID in software. In addi-
tion, some Project Mercury personnel seeded the
IBM Federal Systems Division (FSD), another early
IID proponent.

Project Mercury ran with very short (half-day)
iterations that were time boxed. The development
team conducted a technical review of all changes,
and, interestingly, applied the Extreme Pro-
gramming practice of test-first development, plan-
ning and writing tests before each micro-increment.
They also practiced top-down development with
stubs.

Although many view iterative and incremental development as a modern
practice, its application dates as far back as the mid-1950s. Prominent
software-engineering thought leaders from each succeeding decade
supported IID practices, and many large projects used them successfully.

Craig
Larman
Valtech

Victor R.
Basili
University of
Maryland

48 Computer

The recollections of Gerald M. Weinberg,
who worked on the project, provide a win-
dow into some practices during this period. In
a personal communication, he wrote:

We were doing incremental development as
early as 1957, in Los Angeles, under the direc-
tion of Bernie Dimsdale [at IBM’s Service
Bureau Corporation]. He was a colleague of
John von Neumann, so perhaps he learned it
there, or assumed it as totally natural. I do
remember Herb Jacobs (primarily, though we
all participated) developing a large simulation
for Motorola, where the technique used was,
as far as I can tell, indistinguishable from XP.

When much of the same team was reassem-
bled in Washington, DC in 1958 to develop Project
Mercury, we had our own machine and the new
Share Operating System, whose symbolic modifi-
cation and assembly allowed us to build the system
incrementally, which we did, with great success.
Project Mercury was the seed bed out of which
grew the IBM Federal Systems Division. Thus, that
division started with a history and tradition of
incremental development.

All of us, as far as I can remember, thought
waterfalling of a huge project was rather stupid,
or at least ignorant of the realities… I think what
the waterfall description did for us was make
us realize that we were doing something else,
something unnamed except for “software devel-
opment.”

The earliest reference we found that specifically
focused on describing and recommending iterative
development was a 1968 report from Brian Randell
and F.W. Zurcher at the IBM T.J. Watson Research
Center.6 M.M. Lehman later described Randell and
Zurcher’s work and again promoted iterative devel-
opment in his September 1969 internal report to
IBM management on development recommenda-
tions:7

The basic approach recognizes the futility of sep-
arating design, evaluation, and documentation
processes in software-system design. The design
process is structured by an expanding model
seeded by a formal definition of the system, which
provides a first, executable, functional model. It is
tested and further expanded through a sequence
of models, that develop an increasing amount of
function and an increasing amount of detail as to
how that function is to be executed. Ultimately,
the model becomes the system.

Another 1960s reference comes from Robert
Glass:8

It is the opinion of the author that incremental
development is worthwhile, [it] leads to
a more thorough system shakedown, avoids
implementer and management discouragement.

THE SEVENTIES
In his well-known 1970 article, “Managing the

Development of Large Software Systems,”
Winston Royce shared his opinions on what would
become known as the waterfall model, expressed
within the constraints of government contracting
at that time.9 Many—incorrectly—view Royce’s
paper as the paragon of single-pass waterfall. In
reality, he recommended an approach somewhat
different than what has devolved into today’s
waterfall concept, with its strict sequence of
requirements analysis, design, and development
phases. Indeed, Royce’s recommendation was to
do it twice:

If the computer program in question is being
developed for the first time, arrange matters so
that the version finally delivered to the customer
for operational deployment is actually the second
version insofar as critical design/operations areas
are concerned.

Royce further suggested that a 30-month project
might have a 10-month pilot model and justified
its necessity when the project contains novel ele-
ments and unknown factors (hardly a unique case).
Thus, we see hints of iterative development, feed-
back, and adaptation in Royce’s article. This iter-
ative feedback-based step has been lost in most
descriptions of this model, although it is clearly not
classic IID.

What did Royce think about the waterfall ver-
sus IID when he learned of the latter approach?
In a personal communication, Walker Royce,
his son and a contributor to popular IID meth-
ods in the 1990s, said this of his father and the
paper:

He was always a proponent of iterative, incre-
mental, evolutionary development. His paper
described the waterfall as the simplest description,
but that it would not work for all but the most
straightforward projects. The rest of his paper
describes [iterative practices] within the context
of the 60s/70s government-contracting models (a
serious set of constraints).

“We were doing
incremental

development as
early as 1957, in

Los Angeles, under
the direction of
Bernie Dimsdale

[at IBM’s
Service Bureau
Corporation].”

June 2003 49

This was an ironic insight, given the influence this
paper had as part of the bulwark promoting a strict
sequential life cycle for large, complex projects.

The next earliest reference comes from Harlan
Mills, a 1970s software-engineering thought leader
who worked at IBM FSD. In his well-known “Top-
Down Programming in Large Systems,” Mills pro-
moted iterative development. In addition to his
advice to begin developing from top-level control
structures downward, perhaps less appreciated was
the related life-cycle advice Mills gave for building
the system via iterated expansions:10

… it is possible to generate a sequence of interme-
diate systems of code and functional subspecifica-
tions so that at every step, each [intermediate]
system can be verified to be correct…

Clearly, Mills suggested iterative refinement for
the development phase, but he did not mention
avoiding a large up-front specification step, did not
specify iteration length, and did not emphasize
feedback and adaptation-driven development from
each iteration. He did, however, raise these points
later in the decade. Given his employment at IBM
FSD, we suspect Mills’s exposure to the more clas-
sic IID projects run there in the early 1970s influ-
enced his thought, but we could not confirm this
with colleagues.

Early practice of more modern IID (feedback-dri-
ven refinement with customer involvement and
clearly delineated iterations) came under the lead-
ership of Mike Dyer, Bob McHenry, and Don
O’Neill and many others during their tenure at IBM
FSD. The division’s story is fascinating because of
the extent and success of its IID use on large, life-
critical US Department of Defense (DoD) space and
avionics systems during this time.

The first major documented IBM FSD applica-
tion of IID that we know of was in 1972. This was
no toy application, but a high-visibility life-critical
system of more than 1 million lines of code—the
command and control system for the first US
Trident submarine. O’Neill was project manager,
and the project included Dyer and McHenry.
O’Neill conceived and planned the use of IID
(which FSD later called “integration engineering”)
on this project; it was a key success factor, and he
was awarded an IBM Outstanding Contribution
Award for the work. (Note that IBM leadership vis-
ibly approved of IID methods.)

The system had to be delivered by a certain date
or FSD would face a $100,000 per day late penalty.
The team organized the project into four time-

boxed iterations of about six months each.
There was still a significant up-front specifi-
cation effort, and the iteration was longer
than normally recommended today. Although
some feedback-driven evolution occurred in
the requirements, O’Neill noted that the IID
approach was also a way to manage the com-
plexity and risks of large-scale development.11

Also in 1972, an IBM FSD competitor,
TRW, applied IID in a major project—the
$100 million TRW/Army Site Defense soft-
ware project for ballistic missile defense. The
project began in February 1972, and the
TRW team developed the system in five iter-
ations. Iteration 1 tracked a single object, and
by iteration 5, a few years later, the system was
complete. The iterations were not strictly time
boxed, and there was significant up-front specifi-
cation work, but the team refined each iteration in
response to the preceding iteration’s feedback.12

As with IBM FSD, TRW (where Royce worked)
was an early adopter of IID practices. Indeed, Barry
Boehm, the originator of the IID spiral model in the
mid-1980s, was chief scientist at TRW.

Another mid-1970s extremely large application
of IID at FSD was the development of the Light
Airborne Multipurpose System, part of the US
Navy’s helicopter-to-ship weapon system. A four-
year 200-person-year effort involving millions of
lines of code, LAMPS was incrementally delivered
in 45 time-boxed iterations (one month per itera-
tion). This is the earliest example we found of a
project that used an iteration length in the range of
one to six weeks, the length that current popular
IID methods recommend. The project was quite
successful: As Mills wrote, “Every one of those
deliveries was on time and under budget.”13

In 1975, Vic Basili and Joe Turner published a
paper about iterative enhancement that clearly
described classic IID:14

The basic idea behind iterative enhancement is to
develop a software system incrementally, allowing
the developer to take advantage of what was being
learned during the development of earlier, incre-
mental, deliverable versions of the system.
Learning comes from both the development and
use of the system, where possible. Key steps in the
process were to start with a simple implementa-
tion of a subset of the software requirements and
iteratively enhance the evolving sequence of ver-
sions until the full system is implemented. At each
iteration, design modifications are made along
with adding new functional capabilities.

The first major
documented
IBM FSD IID

application was
the life-critical
command and

control system for
the first US Trident

submarine.

50 Computer

The paper detailed successful IID applica-
tion to the development of extendable com-
pilers for a family of application-specific
programming languages on a variety of hard-
ware architectures. The project team devel-
oped the base system in 17 iterations over 20
months. They analyzed each iteration from
both the user’s and developer’s points of view
and used the feedback to modify both the
language requirements and design changes in
future iterations. Finally, they tracked mea-

sures, such as coupling and cohesion, over the mul-
tiple iterations.

In 1976, Tom Gilb published Software Metrics
(coining the term), in which he discussed his IID
practice—evolutionary project management—and
introduced the terms “evolution” and “evolution-
ary” to the process lexicon. This is the earliest book
we could find that had a clear IID discussion and
promotion, especially of evolutionary delivery:3

“Evolution” is a technique for producing the
appearance of stability. A complex system will be
most successful if it is implemented in small steps
and if each step has a clear measure of successful
achievement as well as a “retreat” possibility to a
previous successful step upon failure. You have the
opportunity of receiving some feedback from the
real world before throwing in all resources
intended for a system, and you can correct possi-
ble design errors…

The book marked the arrival of a long-standing
and passionate voice for evolutionary and iterative
development. Gilb is one of the earliest and most
active IID practitioners and promoters. He began
the practice in the early 1960s and went on to
establish several IID milestones. His material was
probably the first with a clear flavor of agile, light,
and adaptive iteration with quick results, similar
to that of newer IID methods.

By 1976, Mills had strengthened his IID message:15

Software development should be done incremen-
tally, in stages with continuous user participation
and replanning and with design-to-cost program-
ming within each stage.

Using a three-year inventory system project as a
backdrop, he challenged the idea and value of up-
front requirements or design specification:

...there are dangers, too, particularly in the con-
duct of these [waterfall] stages in sequence, and

not in iteration—i.e., that development is done in
an open loop, rather than a closed loop with user
feedback between iterations. The danger in the
sequence [waterfall approach] is that the project
moves from being grand to being grandiose, and
exceeds our human intellectual capabilities for
management and control.

And perhaps reflecting several years of seeing IID
in action at FSD, Mills asked, “...why do enter-
prises tolerate the frustrations and difficulties of
such [waterfall] development?”

In 1977, FSD incorporated the Trident IID
approach, which included integrating all software
components at the end of each iteration into its
software-engineering practices—an approach
McHenry dubbed “integration engineering.” Some
Trident team members and Mills were key advisers
in this incorporation effort.16 Integration engi-
neering spread to the 2,500 FSD software engi-
neers, and the idea of IID as an alternative to the
waterfall stimulated substantial interest within
IBM’s commercial divisions and senior customer
ranks and among its competitors.

Although unknown to most software profes-
sionals, another early and striking example of a
major IID success is the very heart of NASA’s space
shuttle software—the primary avionics software
system, which FSD built from 1977 to 1980. The
team applied IID in a series of 17 iterations over 31
months, averaging around eight weeks per itera-
tion.17 Their motivation for avoiding the waterfall
life cycle was that the shuttle program’s require-
ments changed during the software development
process. Ironically (in hindsight), the authors sound
almost apologetic about having to forego the
“ideal” waterfall model for an IID approach:

Due to the size, complexity, and evolutionary
[changing requirements] nature of the program, it
was recognized early that the ideal software devel-
opment life cycle [the waterfall model] could not
be strictly applied...However, an implementation
approach (based on small incremental releases)
was devised for STS-1 which met the objectives by
applying the ideal cycle to small elements of the
overall software package on an iterative basis.

The shuttle project also exhibited classic IID prac-
tices: time-boxed iterations in the eight-week range,
feedback-driven refinement of specifications, and
so on.

The first IID discussion in the popular press that
we could find was in 1978, when Tom Gilb began

Tom Gilb
introduced the

terms “evolution”
and “evolutionary”

to the process
lexicon.

June 2003 51

publishing a column in the UK’s Computer Weekly.
The column regularly promoted IID, as well as evo-
lutionary project management and delivery. In his
6 April 1978 column, Gilb wrote,

Management does not require firm estimates of
completion, time, and money for the entire pro-
ject. Each [small iterative] step must meet one of
the following criteria (priority order): either (a)
give planned return on investment payback, or, if
impossible, then (b) give breakeven (no loss); or, at
least, (c) some positive user benefit measurably; or,
at least (d) some user environment feedback and
learning.

Another discussion of incremental development,
although published in 1984, refers to a System
Development Corp. project to build an air defense
system, which began in 1977 and finished in 1980.
The project combined significant up-front specifi-
cations with incremental development and builds.
Ostensibly, the project was meant to fit within DoD
single-pass waterfall standards, with testing and
integration in the last phase. Carolyn Wong com-
ments on the unrealism of this approach and the
team’s need to use incremental development:18

The [waterfall] model was adopted because soft-
ware development was guided by DoD stan-
dards… In reality, software development is a
complex, continuous, iterative, and repetitive
process. The [waterfall model] does not reflect this
complexity.

THE EIGHTIES
In 1980, Weinberg wrote about IID in “Adaptive

Programming: The New Religion,” published in
Australasian Computerworld. Summarizing the
article, he said, “The fundamental idea was to build
in small increments, with feedback cycles involv-
ing the customer for each.” A year later, Tom Gilb
wrote in more detail about evolutionary develop-
ment.19

In the same year, Daniel McCracken and Michael
Jackson promoted IID and argued against the “stul-
tifying waterfall” in a chapter within a software
engineering and design text edited by William
Cotterman. The chapter’s title, “A Minority
Dissenting Position,” underscored the subordinate
position of IID to the waterfall model at the time.20

Their arguments continued in “Life-Cycle Concept
Considered Harmful,”21 a 1982 twist on Edsger
Dijkstra’s late 1960s classic “Go To Statement
Considered Harmful.”22 (The use of “life cycle” as

a synonym for waterfall during this period
suggests its unquestioned dominance.
Contrast this to its qualified use in the 1990s,
“sequential life cycle” or “iterative life
cycle.”)

In 1982, William Swartout and Robert
Balzer argued that specification and design
have a necessary interplay, and they promoted
an iterative and evolutionary approach to
requirements engineering and development.23

The same year also provided the earliest ref-
erence to a very large application successfully
built using evolutionary prototyping, an IID
approach that does not usually include time-
boxed iterations. The $100 million military com-
mand and control project was based on IBM’s
Customer Information Control System technology.24

In 1983, Grady Booch published Software
Engineering with Ada,25 in which he described an
iterative process for growing an object-oriented sys-
tem. The book was influential primarily in the DoD
development community, but more for the object-
oriented design method than for its iterative advice.
However, Booch’s later 1990s books that covered
IID found a large general audience, and many first
considered or tried iterative development through
their influence.

The early 1980s was an active period for the
(attempted) creation of artificial intelligence systems,
expert systems, and so on, especially using Lisp
machines. A common approach in this community
was the IID practice of evolutionary prototyping.26

In another mid-1980s questioning of the sequen-
tial life cycle, Gilb wrote “Evolutionary Delivery
versus the ‘Waterfall Model.’” In this paper, Gilb
promoted a more aggressive strategy than other IID
discussions of the time, recommending frequent
(such as every few weeks) delivery of useful results
to stakeholders.27

A 1985 landmark in IID publications was
Barry Boehm’s “A Spiral Model of Software
Development and Enhancement” (although the
more frequent citation date is 1986).28 The spiral
model was arguably not the first case in which a
team prioritized development cycles by risk: Gilb
and IBM FSD had previously applied or advocated
variations of this idea, for example. However, the
spiral model did formalize and make prominent the
risk-driven-iterations concept and the need to use
a discrete step of risk assessment in each iteration.

In 1986, Frederick Brooks, a prominent soft-
ware-engineering thought leader of the 1970s and
1980s, published the classic “No Silver Bullet”
extolling the advantages of IID:29

The IID practice
of evolutionary
prototyping was
commonly used
in 1980s efforts

to create artificial
intelligence

systems.

52 Computer

Nothing in the past decade has so radically
changed my own practice, or its effectiveness
[as incremental development].

Commenting on adopting a waterfall process,
Brooks wrote:

Much of present-day software acquisition pro-
cedure rests upon the assumption that one can
specify a satisfactory system in advance, get
bids for its construction, have it built, and
install it. I think this assumption is fundamen-
tally wrong, and that many software acquisi-
tion problems spring from that fallacy.

Perhaps summing up a decade of IID-promoting
messages to military standards bodies and other
organizations, Brooks made his point very clear in
his keynote speech at the 1995 International
Conference on Software Engineering: “The water-
fall model is wrong!”

In 1986, David Parnas and Paul Clements pub-
lished “A Rational Design Process: How and Why
to Fake It.”30 In it, they stated that, although they
believe in the ideal of the waterfall model (thorough,
correct, and clear specifications before develop-
ment), it is impractical. They listed many reasons,
including (paraphrased)

• A system’s users seldom know exactly what
they want and cannot articulate all they know.

• Even if we could state all requirements, there
are many details that we can only discover
once we are well into implementation.

• Even if we knew all these details, as humans,
we can master only so much complexity.

• Even if we could master all this complexity,
external forces lead to changes in require-
ments, some of which may invalidate earlier
decisions.

and commented that for all these reasons, “the pic-
ture of the software designer deriving his design in
a rational, error-free way from a statement of
requirements is quite unrealistic.”

In 1987, TRW launched a four-year project to
build the Command Center Processing and Display
System Replacement (CCPDS-R), a command and
control system, using IID methods. Walker Royce
described the effort in 60 pages of detail.31 The
team time-boxed six iterations, averaging around
six months each. The approach was consistent
with what would later become the Rational
Unified Process (to which Royce contributed):

attention to high risks and the core architecture in
the early iterations.

Bill Curtis and colleagues published a particu-
larly agile-relevant paper during this decade,32

reporting results on research into the processes that
influenced 19 large projects. The authors identified
that the prescriptive waterfall model attempted to
satisfy management accountability goals, but they
did not describe how projects successfully ran. The
paper also noted that successful development
emphasizes a cyclic learning process with high
attention to people’s skills, common vision, and
communication issues, rather than viewing the
effort as a sequential “manufacturing process.” As
the authors state,

The conclusion that stands out most clearly from
our field study observations is that the process of
developing large software systems must be treated,
at least in part, as a learning and communication
process.

In 1987, as part of the IBM FSD Software
Engineering Practices program, Mills, Dyer, and
Rick Linger continued the evolution of IID with
the Cleanroom method, which incorporated evo-
lutionary development with more formal methods
of specification and proof, reflecting Mills’s strong
mathematical influences.33

By the late 1980s, the DoD was experiencing
significant failure in acquiring software based on
the strict, document-driven, single-pass waterfall
model that DoD-Std-2167 required. A 1999
review of failure rates in a sample of earlier DoD
projects drew grave conclusions: “Of a total $37
billion for the sample set, 75% of the projects
failed or were never used, and only 2% were used
without extensive modification.”34 Consequently,
at the end of 1987, the DoD changed the water-
fall-based standards to allow IID, on the basis of
recommendations in an October 1987 report from
the Defense Science Board Task Force on Military
Software, chaired by Brooks. The report recom-
mended replacing the waterfall, a failing approach
on many large DoD projects, with iterative devel-
opment:

DoD-Std-2167 likewise needs a radical overhaul
to reflect modern best practice. Draft 2167A is a
step, but it does not go nearly far enough. As
drafted, it continues to reinforce exactly the doc-
ument-driven, specify-then-build approach that
lies at the heart of so many DoD software prob-
lems….

The Cleanroom
method

incorporated
evolutionary
development

with more formal
methods of

specification
and proof.

June 2003 53

In the decade since the waterfall model was devel-
oped, our discipline has come to recognize that
[development] requires iteration between the
designers and users.

Finally, in a section titled “Professional Humility
and Evolutionary Development” (humility to
accept that the 2167’s goals—get the specifications
accurate without incremental implementation and
feedback—was not possible), the report stated:

Experience with confidently specifying and
painfully building mammoths has shown it to be
simplest, safest, and even fastest to develop a com-
plex software system by building a minimal ver-
sion, putting it into actual use, and then adding
functions [and other qualities] according to the
priorities that emerge from actual use.

Evolutionary development is best technically,
and it saves time and money.

Both DoD overseers and contractors often view
the updated DoD-Std-2167A, released in February
1988, as the epitome of a waterfall specification.
Yet, its authors actually wanted it to be an amend-
ment (hence the A) for life-cycle neutrality that
allowed IID alternatives to the waterfall:

This standard is not intended to specify or dis-
courage the use of any particular software devel-
opment method. The contractor is responsible for
selecting software development methods (for
example, rapid prototyping) that best support the
achievement of contract requirements.

Despite this intent, many (justifiably) interpreted
the new standard as containing an implied prefer-
ence for the waterfall model because of its contin-
ued document-driven milestone approach.

Ironically, in a conversation nearly a decade later,
the principal creator of DoD-Std-2167 expressed
regret for creating the strict waterfall-based stan-
dard. He said that at the time he knew of the sin-
gle-pass document-driven waterfall model, and
others he questioned advised it was excellent, as
did the literature he examined, but he had not heard
of iterative development. In hindsight, he said he
would have made a strong recommendation for IID
rather than the waterfall model.

In 1988, Gilb published Principles of Software
Engineering Management, the first book with sub-
stantial chapters dedicated to IID discussion and
promotion.35 In it he reiterated and expanded on
the IID material from Software Metrics. Gilb

described the Evo method, distinguished by
frequent evolutionary delivery and an empha-
sis on defining quantified measurable goals
and then measuring the actual results from
each time-boxed short iteration.

1990 TO THE PRESENT
By the 1990s, especially the latter half, pub-

lic awareness of IID in software development
was significantly accelerating. Hundreds of
books and papers were promoting IID as their
main or secondary theme. Dozens more IID
methods sprang forth, which shared an in-
creasing trend to time-boxed iterations of one
to six weeks.

In the 1970s and 1980s, some IID projects
still incorporated a preliminary major specification
stage, although their teams developed them in iter-
ations with minor feedback. In the 1990s, in con-
trast, methods tended to avoid this model,
preferring less early specification work and a
stronger evolutionary analysis approach.

The DoD was still experiencing many failures with
“waterfall-mentality” projects. To correct this and
to reemphasize the need to replace the waterfall
model with IID, the Defense Science Board Task
Force on Acquiring Defense Software Commercially,
chaired by Paul Kaminski, issued a report in June
1994 that stated simply, “DoD must manage pro-
grams using iterative development. Apply evolu-
tionary development with rapid deployment of
initial functional capability.”

Consequently, in December 1994, Mil-Std-498
replaced 2167A. An article by Maj. George
Newberry summarizing the changes included a sec-
tion titled “Removing the Waterfall Bias,” in which
he described the goal of encouraging evolutionary
acquisition and IID:36

Mil-Std-498 describes software development in one
or more incremental builds. Each build implements
a specified subset of the planned capabilities. The
process steps are repeated for each build, and within
each build, steps may be overlapping and iterative.

Mil-Std-498 itself clearly states the core IID prac-
tices of evolving requirements and design incre-
mentally with implementation:

If a system is developed in multiple builds, its
requirements may not be fully defined until the
final build…. If a system is designed in multiple
builds, its design may not be fully defined until the
final build.

Tom Gilb’s
Principles of

Software
Engineering

Management was
the first book with

substantial chapters
dedicated to

IID discussion
and promotion.

54 Computer

Meanwhile, in the commercial realm, Jeff
Sutherland and Ken Schwaber at Easel Corp.
had started to apply what would become
known as the Scrum method, which
employed time-boxed 30-day iterations. The
method took inspiration from a Japanese IID
approach used for nonsoftware products at
Honda, Canon, and Fujitsu in the 1980s;
from Shashimi (“slices” or iterations); and
from a version of Scrum described in 1986.37

A 1999 article described their later refine-
ments to Scrum.38

In January 1994, a group of 16 rapid appli-
cation development (RAD) practitioners met
in the UK to discuss the definition of a stan-
dard iterative process to support RAD devel-

opment. The group drew inspiration from James
Martin’s RAD teachings. Martin, in turn, had taken
his inspiration from the time-boxing work at
Dupont, led by Scott Shultz in the mid-1980s. The
RAD group’s process definition would eventually
become the Dynamic Systems Development
Method (DSDM), an IID method that predictably
had more early advocates in Europe and has since
spread.39

In the early 1990s, a consortium of companies
began a project to build a new-generation
Canadian Automated Air Traffic Control System
(CAATS) using a risk-driven IID method. The pro-
ject, under the process leadership of Philippe
Kruchten, used a series of six-month iterations, rel-
atively long by today’s standards. The project was
a success, despite its prior near-failure applying a
waterfall approach.40

In the mid-1990s, many contributors within
Rational Corp. (including Kruchten and Walker
Royce) and its clients created the Rational Unified
Process, now a popular IID method. A 1995 mile-
stone was the public promotion of the daily build
and smoke test, a widely influential IID practice
institutionalized by Microsoft that featured a one-
day micro-iteration.41

In 1996, Kent Beck joined the Chrysler C3 pay-
roll project. It was in this context that the full set of
XP practices matured, with some collaboration by
Ron Jeffries and inspiration from earlier 1980s
work at Tektronix with Ward Cunningham. XP
went on to garner significant public attention
because of its emphasis on communication, sim-
plicity, and testing, its sustainable developer-
oriented practices, and its interesting name.42

In 1997, a project to build a large logistics system
in Singapore, which had been running as a water-
fall project, was facing failure. With the collabora-

tion of Peter Coad and Jeff De Luca, the team res-
urrected it and ran it as a successful IID project.
DeLuca created an overall iterative process descrip-
tion, Feature-Driven Development (FDD), that also
incorporated ideas from Coad.43

In 1998, the Standish Group issued its widely
cited “CHAOS: Charting the Seas of Information
Technology,” a report that analyzed 23,000 pro-
jects to determine failure factors. The top reasons
for project failure, according to the report, were
associated with waterfall practices. It also con-
cluded that IID practices tended to ameliorate the
failures. One of the report’s key conclusions was
to adopt IID:

Research also indicates that smaller time frames,
with delivery of software components early and
often, will increase the success rate. Shorter time
frames result in an iterative process of design, pro-
totype, develop, test, and deploy small elements.

In 2000, DoD replaced Mil-Std-498 with
another software acquisition standard, DoD
5000.2, which again recommended adopting evo-
lutionary acquisition and the use of IID:

There are two approaches, evolutionary and sin-
gle step [waterfall], to full capability. An evolu-
tionary approach is preferred. … [In this]
approach, the ultimate capability delivered to the
user is divided into two or more blocks, with
increasing increments of capability...software
development shall follow an iterative spiral devel-
opment process in which continually expanding
software versions are based on learning from ear-
lier development.

In 2001, Alan MacCormack reported a study of
key success factors in recent projects; first among
these was adopting an IID life cycle:44

Now there is proof that the evolutionary approach
to software development results in a speedier
process and higher-quality products. […] The iter-
ative process is best captured in the evolutionary
delivery model proposed by Tom Gilb.

In February 2001, a group of 17 process
experts—representing DSDM, XP, Scrum, FDD,
and others—interested in promoting modern, sim-
ple IID methods and principles met in Utah to dis-
cuss common ground. From this meeting came the
Agile Alliance (www.agilealliance.org) and the now
popular catch phrase “agile methods,” all of which

XP garnered
significant public
attention because
of its emphasis on
communication,
simplicity, and
testing, and its

sustainable
developer-oriented

practices.

June 2003 55

apply IID. And in 2002, Alistair Cockburn, one of
the participants, published the first book under the
new appellation.45

I n a typical quip, H.L. Mencken said, “For every
complex problem, there is a solution that is sim-
ple, neat, and wrong.” In the history of science,

it is the norm that simplistic but inferior ideas first
hold the dominant position, even without sup-
porting results. Medicine’s four humors and related
astrological diagnosis and prescription dominated
Europe for more than a millennium, for example.

Software development is a very young field, and
it is thus no surprise that the simplified single-pass
and document-driven waterfall model of “require-
ments, design, implementation” held sway during
the first attempts to create the ideal development
process. Other reasons for the waterfall idea’s early
adoption or continued promotion include:

• It’s simple to explain and recall. “Do the
requirements, then design, and then imple-
ment.” IID is more complex to understand and
describe. Even Winston Royce’s original two-
iteration waterfall immediately devolved into
a single sequential step as other adopters used
it and writers described it.

• It gives the illusion of an orderly, accountable,
and measurable process, with simple docu-
ment-driven milestones (such as “requirements
complete”).

• It was promoted in many software engineering,
requirements engineering, and management
texts, courses, and consulting organizations.
It was labeled appropriate or ideal, seemingly
unaware of this history or of the statistically
significant research evidence in favor of IID.

This brief history shows that IID concepts have
been and are a recommended practice by promi-
nent software-engineering thought leaders of each
decade, associated with many successful large pro-
jects, and recommended by standards boards.

Yet, even though the value of IID is well known
among literate, experienced software engineers,
some commercial organizations, consulting com-
panies, and standards bodies still promote a docu-
ment-driven single-pass sequential life cycle as the
ideal. We conclude with this recommendation: In
the interest of promoting greater project success
and saving taxpayer or investor dollars, let’s con-
tinue efforts to educate and promote the use of
IID methods. �

References
1. W. Shewhart, Statistical Method from the Viewpoint

of Quality Control, Dover, 1986 (reprint from
1939).

2. W.E. Deming, Out of the Crisis, SPC Press, 1982;
reprinted in paperback by MIT Press, 2003.

3. T. Gilb, Software Metrics, Little, Brown, and Co.,
1976 (out of print).

4. R. Zultner, “The Deming Approach to Quality Soft-
ware Engineering,” Quality Progress, vol. 21, no. 11,
1988, pp. 58-64.

5. W.H. Dana, The X-15 Lessons Learned, tech. report,
NASA Dryden Research Facility, 1993.

6. B. Randell and F.W. Zurcher, “Iterative Multi-Level
Modeling: A Methodology for Computer System
Design,” Proc. IFIP, IEEE CS Press, 1968, pp. 867-
871.

7. M.M. Lehman, “The Programming Process,” inter-
nal IBM report, 1969; reprinted in Program Evolu-
tion—Processes of Software Change, Academic Press,
1985.

8. R. Glass, “Elementary Level Discussion of Com-
piler/Interpreter Writing,” ACM Computing Surveys,
Mar. 1969, pp. 64-68.

9. W. Royce, “Managing the Development of Large
Software Systems,” Proc. Westcon, IEEE CS Press,
1970, pp. 328-339.

10. H. Mills, “Debugging Techniques in Large Systems,”
Software Productivity, Dorset House, 1988.

11. D. O’Neill, “Integration Engineering Perspective,” J.
Systems and Software, no. 3, 1983, pp. 77-83.

12. R.D. Williams, “Managing the Development of Reli-
able Software,” Proc. Int’l Conf. Reliable Software,
ACM Press, 1975, pp. 3-8.

13. H. Mills, “Principles of Software Engineering,” IBM
Systems J., vol. 19, no. 4, 1980, pp. 289-295.

14. V. Basili and J. Turner, “Iterative Enhancement: A
Practical Technique for Software Development,”
IEEE Trans. Software Eng., Dec. 1975, pp. 390-
396.

15. H. Mills, “Software Development,” IEEE Trans.
Software Eng., Dec. 1976, pp. 265-273.

16. D. O’Neill, “The Management of Software Engi-
neering,” IBM Systems J., vol. 19, no. 4, 1980, pp.
421-431.

17. W. Madden and K. Rone, “Design, Development,
Integration: Space Shuttle Flight Software System,”
Comm. ACM, Sept. 1984, pp. 914-925.

18. C. Wong, “A Successful Software Development,”
IEEE Trans. Software Eng., no. 3, 1984, pp. 714-
727.

19. T. Gilb, “Evolutionary Development,” ACM Soft-
ware Eng. Notes, Apr. 1981, p. 17.

20. W.W. Cotterman et al., eds., Systems Analysis and

56 Computer

Design: A Foundation for the 1980’s, North-Hol-
land, 1981.

21. D. McCracken and M. Jackson, “Life-Cycle Concept
Considered Harmful,” ACM Software Eng. Notes,
Apr. 1982, pp. 29-32.

22. E. Dijkstra, “Go To Statement Considered Harmful,”
Comm. ACM, Mar. 1968, pp. 147-148.

23. W. Swartout and R. Balzer, “On the Inevitable Inter-
twining of Specification and Implementation,”
Comm. ACM, July 1982, pp. 438-440.

24. D. Tamanaha, “An Integrated Rapid Prototyping
Methodology for Command and Control Systems:
Experience and Insight,” ACM Software Eng. Notes,
Dec. 1982, pp. 387-396.

25. G. Booch, Software Engineering with Ada, Benjamin-
Cummings, 1983.

26. R. Budde et al., eds., Approaches to Prototyping,
Springer Verlag, 1984.

27. T. Gilb, “Evolutionary Delivery versus the ‘Waterfall
Model’,” ACM Software Requirements Eng. Notes,
July 1985.

28. B. Boehm, “A Spiral Model of Software Development
and Enhancement,” Proc. Int’l Workshop Software
Process and Software Environments, ACM Press,
1985; also in ACM Software Eng. Notes, Aug. 1986,
pp. 22-42.

29. F. Brooks, “No Silver Bullet: Essence and Accidents
of Software Engineering,” Proc. IFIP, IEEE CS Press,
1987, pp. 1069-1076; reprinted in Computer, Apr.
1987, pp. 10-19.

30. D. Parnas and P. Clements, “A Rational Design
Process: How and Why to Fake It,” IEEE Trans.
Software Eng., Feb. 1986, pp. 251-257.

31. W. Royce, Software Project Management, Addison-
Wesley, 1998.

32. W. Curtis et al., “On Building Software Process Mod-
els under the Lamppost,” Proc. Int’l Conf. Software
Eng., IEEE CS Press, 1987, pp. 96-103.

33. H. Mills et al., “Cleanroom Software Engineering,”
IEEE Software, Sept. 1987, pp. 19-25.

34. S. Jarzombek, Proc. Joint Aerospace Weapons Sys-
tems Support, Sensors and Simulation Symp., Gov’t
Printing Office Press, 1999.

35. T. Gilb, Principles of Software Engineering Manage-
ment, Addison Wesley Longman, 1989.

36. G.A. Newberry, “Changes from DOD-STD-2167A
to MIL-STD-498,” Crosstalk: J. Defense Software
Eng., Apr. 1995; www.stsc.hill.af.mil/crosstalk/
frames.asp?uri=1995/04/Changes.asp.

37. H. Takeuchi and I. Nonaka, “The New New Product
Development Game,” Harvard Business Rev., Jan.
1986, pp. 137-146.

38. M. Beedle et al., “SCRUM: An Extension Pattern
Language for Hyperproductive Software Develop-

ment,” Pattern Languages of Program Design, vol.
4, 1999, pp. 637-651.

39. J. Stapleton, DSDM: Dynamic Systems Development
Method, Addison-Wesley, 1997.

40. P. Kruchten, “Rational Development Process,”
Crosstalk: J. Defense Software Eng., July 1996;
www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1996/07/
rational.asp.

41. J. McCarthy, Dynamics of Software Development,
Microsoft Press, 1995.

42. K. Beck, Extreme Programming Explained: Embrace
Change, Addison-Wesley, 1999.

43. P. Coad et al., “Feature-Driven Development,” in
Java Modeling in Color with UML, Prentice Hall,
1999.

44. A. MacCormack, “Product-Development Practices
That Work,” MIT Sloan Management Rev., vol. 42,
no. 2, 2001, pp. 75-84.

45. A. Cockburn, Agile Software Development, Addi-
son-Wesley, 2002.

Craig Larman is chief scientist for Valtech, an
international consulting company, and he speaks
and consults worldwide. He is also the author of
Agile and Iterative Development: A Manager’s
Guide (Addison-Wesley, 2003), which examines
both historical and other forms of evidence demon-
strating the advantages of iterative methods. Lar-
man is a member of the ACM and the IEEE.
Contact him at craig@craiglarman.com.

Victor R. Basili is a professor of computer science
at the University of Maryland and executive direc-
tor of the Fraunhofer Center-Maryland, where he
works on measuring, evaluating, and improving
the software development process and product. He
is an IEEE and ACM fellow and co-editor-in-chief
of Kluwer’s Empirical Software Engineering: An
International Journal. Contact him at basili@cs.
umd.edu.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

