
9 4 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 7 . 0 0 © 2 0 0 3 I E E E

manager
E d i t o r : D o n a l d J . R e i f e r � R e i f e r C o n s u l t a n t s � d . r e i f e r @ i e e e . o r g

I
n the May 2001 issue of Computer, two
of us published an article called “COTS-
Based Systems Top 10 List” (pp. 91–93).
The list identified 10 hypotheses that
served as challenges for enhancing our
empirical understanding of commercial

off-the-shelf software. These hypotheses were
primarily related to COTS-based systems
development.

CBSs remain one of three focus areas (the
other two are defect reduction and agile meth-
ods) of both our US Federal Aviation Agency-
sponsored research and our National Science
Foundation-sponsored Center for Empirically

Based Software Engineering (CeBASE) efforts.
As our original article said, COTS software us-
age remains relatively immature as it pro-
gresses through a peak of inflated expecta-
tions, a trough of disillusionment, a slope of
enlightenment, and a plateau of productivity.
Based on presentations at the recent 2nd Inter-
national Conference on COTS-Based Software
Systems (ICCBSS 2003 Proceedings, Springer-
Verlag), risks inherent to COTS use are large—
as are the potential returns. Pursuing custom
solutions remains unattractive primarily be-
cause it takes so much time and effort to de-
velop software products.

We have recently extended the Top 10 list
of challenges in the original Computer article
to encompass the life cycle’s maintenance
phase. During maintenance, COTS products
undergo a technology refresh and renewal cy-
cle. As part of this activity, maintainers decide
whether to upgrade their COTS products or
retain old versions. If they choose to retain old
versions, they’ll eventually reach the point
where the vendor no longer supports those
versions. If they choose to update, they must
synchronize the associated update with their
release cycle and with product updates other
vendors are making. They must also coordi-
nate the update of wrappers and glue code so
that they will work with the new versions.

Because COTS maintenance is relatively im-

Eight Lessons Learned during
COTS-Based Systems
Maintenance
Donald J. Reifer, Victor R. Basili, Barry W. Boehm, and Betsy Clark

S e p t e m b e r / O c t o b e r 2 0 0 3 I E E E S O F T W A R E 9 5

MANAGER

mature, we present empirical results
gathered to date as lessons learned rather
than as either results or hypotheses. We
hope these results will help those trying
to manage COTS maintenance.

Lesson learned 1
The refresh and renewal process for

CBSs must be defined a priori and
managed so COTS package updates
can be synchronized with each other
and the organization’s release and busi-
ness cycle. If they aren’t, updates might
occur sporadically during the mainte-
nance part of the cycle and the risk of
technology obsolescence might increase
dramatically.

Source. A recent US Air Force Scien-
tific Advisory Board study (SAB-TR-99-
03, April 2000) surveyed 34 COTS-
based systems to look at COTS software
management within weapon systems.

Implications. Currently, few COTS
software lifecycle models address CBS
maintenance processes. Guidance is
needed to define refresh and renewal
process activities. We must also define
criteria for making decisions regarding
when to incorporate updates within re-
leases, along with those criteria’s asso-
ciated risks and business implications.

Lesson learned 2
COTS software capability and qual-

ity evaluation must be managed as a
continuing task during the mainte-
nance phase.

Source. Most publications that dis-
cuss CBS processes advocate that com-
panies establish a market watch func-
tion (see lessons-learned papers in
COTS workshops such as ICCBSS 1
and 2 and in research reports by the
National Research Council of Canada,
the Software Engineering Institute, and
the University of Southern California).

Implications. Most COTS software
studies recommend that firms not only
establish a market watch function to
keep track of where their packages are
heading but also that they continu-

ously assess their options. A market
watch looks at the marketplace as a
whole, monitoring a specific vendor’s
health and viability as well as what
competitors are coming out with.
COTS evaluation gives you a detailed
assessment of package capabilities,
quality issues, and future options. It
typically involves conducting some
form of operational demonstration.

Lesson learned 3
The cost to maintain COTS-based

systems equals or exceeds that of de-
veloping custom software. Mainte-
nance in this context involves updating
CBSs with new releases, modifying
wrappers and glue code, and incorpo-
rating fixes and repairs into the system.

Source. Reifer Consultants recently
studied the cost of COTS software
across 16 systems, some of which em-
ploy over 40 different packages, across
three large firms. Costs average 10 per-
cent of the development cost per year
over a projected 10-year life for the
system. Although releases occur every
year, COTS technology refreshes occur
every two years or across two releases.
Defect rates per release for CBSs are
poorer than for custom-built software,
averaging 10 to 40 percent higher.

Implications. Even though firms can
save time and effort during develop-
ment using CBSs, they should evaluate
the total lifecycle cost of options prior
to making commitments. Such analysis

could identify risks that negate many
of the advantages that CBSs bring to
the table. For example, firms must co-
ordinate glue code updates along with
package improvements. Considering
that a line of glue code costs, on aver-
age, three times that of a line of custom
code to develop and maintain, mainte-
nance effort can get quite expensive. In
situations where CBSs have a long life,
custom solutions might work out to be
cheaper than COTS alternatives. Pro-
ject managers whom RCI interviewed
also said that, unlike custom systems,
COTS-based systems need a continual
stream of funding throughout their life
cycle. Such funding is necessary to keep
up with a dynamic marketplace in
which vendors are continually releas-
ing new versions. Funding was an issue
with several of the projects in this
study because their maintenance bud-
gets often get cut. The managers be-
lieve that this hurts a CBS more than a
custom system because they can delay
maintenance on the latter if they have
to because of budget limitations.

Lesson learned 4
The most significant variables that

influence the lifecycle cost of COTS-
based systems include the following (in
order of impact):

� Number of COTS packages that
must be synchronized within a release

� Technology refresh and renewal cy-
cle times

� Maintenance workload (the amount
of effort software engineers expend
to handle the task at hand) for glue
code and wrapper updates

� Maintenance workload to reconfig-
ure packages

� Market watch and product evalua-
tion workload during maintenance

� Maintenance workload to update
databases

� Maintenance workload to migrate
to new standards

� COTS maintenance license costs

Source. The RCI study mentioned
earlier was a source here also. The
study identified these parameters using

The cost to maintain
COTS-based systems

equals or exceeds
that of developing
custom software.

9 6 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

MANAGER

a survey that asked those responsible
for maintenance for insight. The num-
ber of packages requiring synchroniza-
tion was twice as sensitive as the need
to migrate to new standards.

Implications. Cost models like USC’s
COCOTS (see http://sunset.usc.edu for
information) should be updated to en-
compass the full CBS life cycle. Cur-
rently, they focus on estimating the costs
associated with evaluating, adapting,
and deploying COTS software packages
during development and maintenance.
In the future, such models should incor-
porate additional variables such as the
last three bullets on our list to permit
those assessing lifecycle costs to estimate
the full cost of the maintenance portion
of the CBS life cycle.

Lesson learned 5
Maintenance complexity (and costs)

will increase exponentially as the num-
ber of independent COTS packages in-
tegrated into a system increases.

Source. USC’s COCOTS team has
initial results of a study of 20 projects.

Implications. Projects should under-
stand the maintenance implications of
integrating a large number of COTS
products into a system. In addition to
the effort involved in the initial inte-
gration, they should consider that each
product will evolve in its own way, ac-
cording to different timetables, at the
vendors’ discretion. They will have to
expend considerable effort to handle
these products’ continuing evolution
(for example, understanding the im-
pact of an upgrade on the rest of the
system or making changes to glue code.

Lesson learned 6
Software engineers must spend sig-

nificant time and effort up front to ana-
lyze the impact of version updates (even
when the decision is made not to incor-
porate the updates).

Source. Initial results of the CO-
COTS team’s 20-project study suggest
that analysis efforts during mainte-

nance directed toward updates can tax
the organization severely. This is par-
ticularly true for safety-critical systems.

Implications. Maintenance modeling
must assume that CBSs incur fixed and
variable costs. Fixed costs are those as-
sociated with market watch and contin-
ued product evaluation. Variable costs
are a function of the work performed to
incorporate updates, fixes, changes, and
optimizations into the impending re-
lease. The workload performed by the
fixed staff must be optimized (bal-
anced) as part of this process.

Lesson learned 7
Flexible CBS software licensing

practices lead to improved perfor-
mance, reliability, and expandability.

Source. RCI performed surveys in
2000 and 2001 on best acquisition
practices for the US Army (see www.
reifer.com for a paper on innovative li-
censing).

Implications. The studies identi-
fied partnering instead of conflict
management as the preferred ap-
proach to licensing. Shared goals lead
to products with improved “goodness
of fit” and “functionality” for the
buyer. Leveraging relationships to
achieve shared goals is highly desir-
able. Innovative contracting under
such arrangements lead to deep vol-
ume discounts and priority service

and bug fixes. Traditional approaches
to licensing, where contracts instead
of relationships govern, lead to dis-
trust and poor results.

Lesson learned 8
Wrappers can be effectively used to

protect a CBS from unintended nega-
tive impacts of version upgrades.

Source. Several projects were inter-
viewed for the COCOTS database.
One project successfully used wrappers
for information hiding so that different
versions of COTS products (or differ-
ent products) could be swapped with-
out affecting the rest of the system.

Implication. CBS architectures should
accommodate COTS changes through-
out the system life cycle.

T o make better decisions relative to
CBSs, we need empirical knowledge.
To gain this knowledge, we must

more fully understand the lifecycle
processes people use when harnessing
COTS packages. The initial findings re-
ported here are but the first step in our
attempts to capture this empirical
knowledge. We plan to continue col-
lecting data and investigating the phe-
nomenology of COTS-based systems.
This work complements the more gen-
eral results available at our CeBASE
Web site (http://cebase.org/cbs) and the
SEI Web site (www.sei.cmu.edu/cbs).
We welcome your comments, input,
and contributions.

Donald J. Reifer is a visiting associate with the Center
for Software Engineering at the University of Southern California
and president of Reifer Consultants Inc. Contact him at
dreifer@earthlink.net.

Victor R. Basili is a professor in the Computer Science
Department at the University of Maryland and director of the
Fraunhofer Center–Maryland. Contact him at basili@cs.umd.edu.

Barry W. Boehm is director of the Center for Software
Engineering at the University of Southern California. Contact him
at boehm@sunset.usc.edu.

Betsy Clark is president of Software Metrics and works
with USC on several CBS projects. Contact her at betsy@soft-
ware-metrics.com.

Traditional approaches
to licensing, where
contracts instead of

relationships govern,
lead to distrust

and poor results.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

