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I. Introduction

A formal definitional facility for specifying the semantics of a programming language should
provide a tool that aids in the design, definition, implementation and comparison of programming
languages. This paper deals with the development of such a facility. The approach taken is that the
metalanguage for defining the semantics of a language should try to represent the semantic structure
of that langhage in a manner similar to the way that phrase structure grammars are used to represent
the syntactic structure of languages. Just as we think of the complexity of the syntactic structure
of a language as being classified by the complexity of the algorithm required to tranmslate it, we would
like to be able to think of the complexity of the semantic structure of a language as belng categorized
by the complexity of the algorithm required to interpret it, '

The purpose of this paper is to demonstrate this formal definitional facility by modeling a
specific programming language and to point out the possibilities for using it to relate the semantie
complexity of the language with the complexity of the machine required to interpret it. The language
defined is SIMPL-X [1l], a procedure-oriented, structured programming language. A set of hierarchical
directed graphs are defined to model the program and data structures of the language and a set of
semantic functions are defined for describing the execution of its programs. The semantic functions
are divided into two categories: the control functions and the component functions. The contrcl
functions are those that specify program flow and call for the execution of the compenent functions.
The component functions are those that define the execution of the high-level components of the
language relative to a particular control mechanism (set of control functions). It is the specifica-
tion of the control mechanism required to define the execution of a particular language which can be
considered as characterizing the complexity of that language.

- Informally, the system can be viewed as a 4~tuple (N,0,4,F) where N 4is a set of nodes, ¢ 1is a
set of objects, /M is a set ¢f nappings from N into 0 and F 1is a set of transition functicans which
can vary the selection of the mappings In M. More specifically, in the model defined here, 0 is
partitioned into three disjoint sets (0,G,A) where . 0 represents a set of atomic elements, G repre-
sents a set of directed graphs over the nodes in N, and A represents a set of attributes or properties,
M consists of all mappings v, h, and a .where viN - D, hill = G, and aiN x I+ -+ A (vhere it is the
set qf positive integers). F contains the three transition functions: setv, seth, seta, which vary
the selection of the v, h, and a mappings, respectively.

1)
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It should be noted thav aany Interpretation svstoms for proeraiaine Languages, such as the Vieana®
J h b > > 133 b
Definition Language [3], the hicrarchical graph system of Pratt (4], and the Contour Model of Johnscoun 11)
can be abstracted to the above 4-tuple.

In the next section we describe the formal deflnicional faei lity HGL, a hicrarchical granh lan-

guage, whilch cousists of a set of formally~-defined structures callnd ateributed h-eraphs, and a set of

primitive transition functions acting on these h- -graphs and transforming them into other h-graphs. We
then defina Lor the specific language SIMPL-X a set of graph structures and their construction and
accessing primitives to be uscd in a wmodel for the language. Using these structures we next define a
machine structure for SIMPL-X by defining its syntactic structure in terms of h-graphs.

In Section III the semantic structure of the language is defined by a set of control functionms.
Thase control functions are defined in terms of the primitive transition functions, the graph construc-

tion and accessing primitives, and some standard mathematical primitives.

II. The Hierarchical Graph Language (IIGL)

HGL offers a method of describing the semantics of a programming language relative to a particular
graph structure defined over a set of nodes. Each node may be thought of as representing a unit of
information. Associated with the node may be some atomic data value (possibly representing program
data), some further substructure of information again represented by a graph aver the nodes (possibly
representing‘program or data structures), and some set of attributes which might define the character-
istics of that unit of information (possibly representing some compile-time properties of that unit).
The model defined permits the structuring of both program-and data., This syntactic description is
accomplished by using an attributed h-graph as the basic syntactic structure.

Let N be a set of nodes, D be a set of atoms, and A be a set of attributes. Let G be the
set of all graphs defined over nodes in N with labels (if any) from 0.

Definition: An attributed hierarchical graph (h~graph) over (N,D,A G) is a 7-tuple (N,D,A,G,v,h,a)
where NC N, Dc D, AcA, GS G, and viN > D, h:N =+ G, and a:N x i

-+ A where I+ denotes the first

k k

k pos1tive integers,

The graphs of G are used for specifying the structure of the language. The types of graphs
(e.g., multigraph, tree, list, pseudograph, etc.) used may vary depending upon the model.

The execution of a program P is defined in the usual manner as a sequence of states, Each state
is represented by an h-graph, which in turn represents the program and its data structures at some point
in the execution. A state transition is caused by some change in one of the three mappings v, h, or a
on the nodes or the inclusion or removal of a node from the set N of nodes. The three functions
which change the v, h, a mappings arelggE!,_EEEE, and_isgi which are defined below. The two functiens

that alter the set N are create and delete.

Let Si = (Ni,Di,Ai,Gi,vi,h,,a ) be the h-graph representation of the program in state Si and

8141 (N, 1+1° 1+l’ 1+l’Gi+l’v1+l’h1+l’ai+l) be the h-graph representation of the program in state Si+1'
The state transitions associated with the mappings from the state graph Si into the state graph Si+l
are defined in Table 1. For all states Si’ Di {d [ \ {n) = d, for some n ¢ N }, Gi = {g | h(n) =
for some n ¢ Ni}’ and Ai ={a] a (n k) = a, for some n E Ni, k € Ij}

In order to define a model for a specific language L, there is a set of nodes NL c N, a set of
atoms DL €V, a set of attributes A < A, and a set of graphs G € G, which define the subuniverse
pertinent to the model ML for the lanouagc L. ML may then be defined as a triple (H,T,S). H is
the set of all h-graphs defined over (NL, L,AL,GL), i.e., the set of all possible states, T is the
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p, m=n, k =}

(seta assigns an attribute to a node)

stV Ni x D {truc} seth: Ni x G {true}
where the assoclated transltlon Si - Si+l for where the asscciated transition 5, ~ S'+l fov
setv(n,d) is defined by: seth(n,g) is defined by: Bood
= N F: = = \ = X ’ = = :
Nigq T Ny @g4 T 8p Byyy 7By, and Nprn T T Vg TV 3g4p T 8 ond
v.(m), Ym€N,,m#n h @, 7med, mén
(m) = i i h (m) = 1 i
i+l i+l
d, m=n g, 0 = n
{setv assigns an atomic value to a node) (seth assigns a graph to a node)
+
seta: Ni x I x A~ {true} create: ¢ -+ N - Ni
where the associated transition Si - Si +1 for where the associated transition Si - Si+l for
seta(n,]j,p) is defined by: create = n is defined by:
N, =N, v, =v,h, =h,, aud N1+1 =N Udnk vy @) = vy (),
i+1 i i+l i i+l i h
i +1(In) (m), and
a (m k), form# n, m €N +
and k € IT; and %or i+1(m’k) ai(m,k), 7me€ Ni’ k¢ Ir’ and
- n=n, k# j, and - \ - _ .
a +l(m,k)' K € Ii hi+1(n) ai+l(n vi+1(n) = undef}ned

(create adds a new node to the nodeset of the
h-graph)

delete: N. -+ {true}
where the associated transition Si - S i+1 for
delete(n) is defined by:
N =8~ b vy, @) = v, @),
hi+l(m) = hi(m), and N
’ai+l(m,k) = ai(m,k), Ym#n € Ni’ k € I

(delete removes a node from the nodeset of the
h-graph)

Table 1.

State Transitions

Then, for a specific program P, the model generates the tuple ({Pi},PO,S) where PO
syntax of the program and {Pi} represents the set of all possible states generable by 3

state PO.

Let us now consider a model for the programming language SIMPL-X.

is the h-graph

o

starting in

The following graph definition

and graph constructlon and accessing primitives are used to represent the structures of the language.

Definition:
b d ;) E ¢ N
y nodes(g); g < Ny

is a distinguished node called the entry rode and denoted by entry(g); and eg:Eg

mapping.

Let G be a set of directed graphs.

graph construction and accessing primitives in Table 2 and Table 3 are defined.

of these primitives may be found in [5].

A directed graph g is a 4-tuple (Ng,Eg,n ,eg) vhere Ng

g

b Ng is the set of edges,denoted by arcs(g),with (n,n) £ Eg for all n € Ng; ng

€ N is the set of nodes, denoted

€N
g

- D 1is the edge label

In order to construct and traverse the graphs g € G, the

A further discussion




attach: Cx Nx N <D 06 detach: G x & -
If g' = attach(g,n,m,d), then If g' = detach{g,n), then
nodes(3') = nodes(g) U {n,m}, nodes(g') = acdes(y) -~ {u},
arcs(g') = arcs(g) U {(n,m)}, ares(g') = ares(3) -~ ({(n,n)|nénades(g)} U
entry(g') = entry(g), and - {G2,n) |nenodes(2) 1),
Cg(P,Q), for (P:Q)_G arcs(g), and entry(g') = entry(g).
ep(PaQ) = p#n, qfnm Note that the graph is not well-defined.
- d, forp=n, q =m if n = entry(g).)
(attach adds a node(s) and any associated arc (detach removes a node and its associated arcs
to a graph) from a graph)

setentry: G x N -G

If g' = setentry(g.n) where n € nodes(g), then nodes(g') = nodes(g), arcs(g') = arcs(g), entry(g') = n,
and eg. = eg. (setentry sets the entry node of a graph)
Table 2. Graph Construction Primitives
. N ' N
padj: N x G > 27, defined by nadj: N x G + 2", defined by
padi{(n,g) = {ménodes(g)|(n,m)€arcs(g)} nadj(n,g) = {ménodes(g)|(m,n)¢€arcs(g)}
(padj (n,g) is the set of nodes that terminate " (nadj(n,g) is the set of nodes that begin an
an outgoing arc from node n in graph g) incoming are to node n in graph g)

Table 3. Graph Accessing Primitives

What follows is an example giving the h-graph syntax for a major subset of SIMPL-X. (A subset was

chosen for the sake of brevity; the full language has been modeled by the authors.) This syntax defines

the specification for the translation mapping T. The notation used is an extension to BNF notation,

and the standard regular expression notation.

The following extensions to BNF are defined:

.a)

b)

c)

d)

<a> ii= [<b>] | [<e>] | [<d>; <e>]

This means that <a> is defined as: [<b>}, a node whose h value is given by <b>; or [<c>), a
node whose v value is given by <c>; or [<d>; <e>], a node whose h value is given by <d> and
whose v value is given by <e>.

<f> 1= [<g>]; att, = vall,...,attn = valn

1
This means that <f> is defined as a node whose h value is given by <g> and whose ay value

is given by wval, for all attributes att, given.

* <j> k>

<h> 1i= <i> %

i

This means that <h> is defined as a directed graph from an element of class <i> to an element
of class <k> with a directed arc from <i> to <k> whose label is an element of class <j>. The
entry node of the graph is <i>,

<f> ii= [<ml>,...,<mi>x,...,<mn>] _
This wmeans that <?> may be defined as a node whose h +value is a graph with n disjoint com~

onents, from classes <m.>,<W. >,...,<m >. The entry node of the graph is <m,>.
y 1 27 <l 7 P 1

The h-graph syntax for expressions {s basically given by a two-node graph where the operator is

contained in the entry node and the arguments are contained in the other node as nodes in a graph. This

syntax

L5 used for all che funeticas defiped in the cdel,




<exprs 1= <operation | <varlable>

<pperation> i+ [<oparatot>ﬁ{*~:opur;md .!.ist::}l]; class = 'operation'
<operand list> 1:= [<Operar‘.fl>x{"’JQper&Ild:‘}]

<gperand> = <expr>

<operator> :i= (<primitive binary function>]; form = 'binary', type = 'primitive'|

[<primitive unary function>]; form = 'unary', type = 'primitive’|

{<semantic function>]

The <primitive binary function> and <primitive unary function> represent the primitive langunge

)

operations such as add, subtract, multiply, unary minus, ete. The <semantic function> vepresents the

semantic routines such as assign, ref, convert, call, etc. that are used to define the semantics of the
language.

Since this expression graph is used so heavily throughout this paper, the following shorthand
notation will be used for the sake of brevity and readability:

[name] - [x + y] will be written as name(x,y)

Data in SIMPL-X is of one type, Integer, and the only data structure is a one-dimensional array,.
However, procedures may be recursive and so local variables and parameter variables are defined as
recursive variables, containing their owm stacks.

<variable> t:= <simple vaxr> | <rec var>

<simple var> i:= [<integer>] | [<undefined>]; class = 'data', type = 'int', form = 'simp'

-

<rec var> i:= [<simple var>*{~><simp1e var>}]; class = ‘'data’, type = ‘'int', form = 'rec'

<array> :i= <simple array> | <rec array>

<simple array> :!= [<simple var>*{—’<simp1e var>}]; class = 'data', type = 'array', form = 'simp'

<rec array> i:= [<simple array>*{—><simple array>}]; class = 'data', type = 'array', form = 'rec'

A program in SIMPL-X consists of a set of global variables and a set of procedures, one of which is
marked-as the start procedure. Prccedures may be recursive. There are f£ive types of statements:
assignment statement, call statement, if statement, while statement, and case statement.

<program> ::= [ {<global variable>},<proc def>*, {<proc def>}]

<global var> ::= <simple var> | <simple array>; scope = 'global'

<proc def> ::= {{<formal parlist>}l,[{<loc var>}],<stat list>*]

<formal par list> ::= [<par>* {=<par>}]; class = 'parlist’

<par> :i= <rec var> | <rec array>

<loc var> ::i= <rec var> | <rec array>; scope = 'local'

<stat list> ::= [<stat>*{-’<st:at>}]; class = 'program'

<stat> ti1= [<if stat>] | [<while stat>] | [<case stat>] | [<assign stat>] | [<call stat>]

<call stat> ::= <entry>* -+ [<call operation>] ~+ <exit>

<assign stat> 1= <entry>* -+ [<assign operation>] - <exit>

1 <stat list>

*
<if stat> ::= <entry> - [<convert operation>]< 0 1/,;:,<exit>
{<stat list>}

o -
- ---—l-—-> <stat list>
n

.

n :
bl <stat” list> ———'7’
1

-else o {cspat list>}

* r——z-——> <stat list>e— 7%
<case stat> !i= <entry> <-* <expr> : b-;“‘<exit>




<entry> 1= [no-op]

<exit> 1:= [no-op]

<assign operaticn> ii= assign (<p-,<exprs

<¢p> 1i1= <variablex | <ref operations

<ref operation> ::i= ref (<arrays,<expr>)

<call operaticn> ::= call (<proc defs, {<arg 1ist>})
<arg list> = [<arg>*{ﬁ<arg>}]

<arg> ::= <expression> | <array>

<convert operation> :i= convert («exprs)

As an example, consider the following SIMPL-X program and its h-graph representation:

program
x i *Yo Y1 Yo
1 1 3 3 6
‘*example
N1
no-op
int x, 1 =1 N2 N4
int array y(2)=(1,3,6)
N3
proc example
x 1= y[i] * *x * *y i
start example assign | | rtref | L
N4 b
no-op

Note that all nodes marked with the same label are the same ncde

with the same v, h, and a mappings.



ITY, The Sunantilc Punctions

The sernantics of a programming language are defined as a set of routines, called gomantle Tvactions,

which are written rolative to a machine whose structure is defined by the hilerarculzal graph staucturces
chosen for the languapge and whose instruction set consists of the state transition primitives, zhe graph
structure construction and accessing primitives and some mathematical primitives. The semantic functions

fall into two categories: those that specify the sequence of control, called contrel functlouns, and

those that define the meaning of the constituent components of the languagas (e.g., procedures) relative

to one another, cailed component functions. The control functions define a contrnl mechanism which

permits the execution of the component functions., The component functions are then defined relative to
this control mechanism.

For example, the graph structures defined for SIMPL-X in the previous section define the structure
of the SIMPL-X machine. Using thils machine structure and the instruction set of supplied primitives, a
set of control functions for SIMPL-X is defined below. Thase control functions define a control mechan-
ism which calls for the evaluation of all the semantic functions and uses the results of these evalua-
tions, when necessary, to determine flow of control for a particular program.

Since SIMPL-X is a structured prograuming language, the semantic functions have been defined as a
set of functions which are highly recursive in nature. The definition of the format of these functions
is given in Appendix I.

Throughout the semantic function definitions, several primitive notions are used which have not
been defined in this paper. Most of these are well-known set-theoretic and mathematical primitives.
Those whose meaning may not be clear are given in Appendix II along with some notational shorthand that
is also used.

Using the definition of semantic functions in Appendix I, the following control functions are given
as the definition of the control mechanism for SIMPL-X. There are three functions, each of which must
be understood in terms of the other. An example of their use is given at the end of Section IIT.

execute (node) =

[

class(node) = 'operation' = eval (node)
class(node) = 'program' = traverse(*node,node)

traverse (node, gnode) = : R
class(node) = 'data' = v(node) '

true = traverse(result-node(execute{node),node,gnode),gnode)

result-node (value, node, gnode) =

value = undefined = [undefined]

size({padj (node,h(gnode)})=0 = {value]

size({padj (node,h(gnode))})=1 = padj(node,h{gnode))

size({xspadj(node,h(gnode))Ieh(gnode)(node,x)=value})=; =
elt{xépadj(node,h(gnode))|eh(gnode)(node,x)“value}

size({xepadj(node,h(gnode))leh(gnode)(node,x)='else'})=l =
elt{xépadj(node,h(gnode))!eh(gnode)(node,x)f'else'}

true =» [undefined]

The recursive function execute executes the single node argument passed to it and returns the value
resulting from the execution of that node. The value resulting from the executlon of a node is the value
of the primitive function contained somewhere In that node which was evaluated last., The funetlon

wouie executes 2 node as follcows: (1) 1f the nede In oo oporation o

fi.e., a=n

cisn), thaa the contonts of rhae node {(che fuanccion) ave wvaluated by tac Duncolon 2val, aod Loe vioade

of this evaluatica is returned as the valuc of execute; (2) if the acde is a projrem nede (i.e., vonrains

a graph to be executed), then the traverse function is called to traverse the grvaph contained in thot

wanuln af

¢

nede by passing to 1t as arguments the eutry voint of the graph and tha graph ltself, and th



the traverse function (i.e., the value resulting {rem exccuting that node) s weturned as the valus of
fxecute.

The recursive function traverse contrels the traversal of the path of exacutlon throush a ziaph g,
starting at node n, and returns the value resulting from the last successfully executed node in the path.
It calculates the.proper path by calling for the executlon of the node n (via the exocute function) and
using the value returned by the execution of n to calculate the next node, m, in.the graph to bve
executed (via the result-node function). If m 1s a program node or an operatlcn node, traverss calls
itself recursively to execute m and calculate the next node In the path. If wm 1s a data ncde, then
n was the last executable node in the path of executlon and the contents of m 1s the value returned
by the execution of n (by the definition of result-node). At this point the function terminates,
returning the value of m. ‘ _

The function result-node, given a value v, a node n, and the graph g containing node n,
returns either (1) the next node m in the path of executlon, possibly using the value v to determine
that node, or (2) a node containing the value v. It determines what node to return by calculating the
number of edges that leave the given node n relative to the given graph g. If there are no edges
leaving the node n, then result-node returns a node coutalning the value v. If there is one edge
{n,m) leaving node n, then result-node returns the node m. If there is more than one edge leaving the
node, then result-node returns the node m for which the edge (n,m) is labeled by the value v. If,
however, the given value v is the special constant undefined or none of the above possibilities hold,

a node containing the special constant undefined is returned. This has the effect of aborting the execu-
tion. .

Having defined the control mechanism for SIMPL-X, we now complete the definition of the semantics of
the language by defining the component functions relative to this control mechanism,

The first function, eval, calls for the evaluation of all data nodes, primitive functions, and seman-
fic functions. It does this by determining what kind of node it is evaluating and then returning the
appropriate evaluation. If the node to be evaluated is a data node, eval returns the value contained in
that node or the entry node of the graph contalned in it, If the node contains a primitive operation of
the language (e.g., add, mult, etec.), eval assumes that operation to be a defined primitive and evaluates

it., If the node is a semantic function, eval calls for its evaluation,

eval (node) =
class (node) = 'data' =
form (node) = 'simp' = v(node)
T = v(*node)
class (node) = 'operation' = ,
form (node ) = 'bin' = v(*node)(gggi(argl(node)),gzg;(argz(node)))
form (node ) = 'un' = v(*node)(gggl(argl(node)))

v(*node) = 'assign' = assign(argl(node),arg2(node))

v(*node) = 'convert' = convert(argl(node))

v(*node) = 'call' = call(argl(node),arg2(node),pars(argl(node)))
v(*node) = 'reref' = rtref(argl(node),arz2(node))

v(*node) = 'installp' = justallp(argl(node),arg2(node},argl(node})

il .. L Lk,

e other scasntic functisns ave given wonhoutn aay detalied explanacioa o appsanil
.
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As an example, conslder the te functlon operating on the node pregram in the cramplae of
Seetion IL. E denotes the node example and P denotes the node program,
exgente(P) = traverse(k,P)
= traversc(result-neda(execute(®),,P),P)
= (traverse(yl,k),E,P),?)
= ' . (traverse(result-node(execute (L), N1,E),E),E,P),P)
= 4 . (eval(Nl),N1,E),E,F),P)
= . (no-op,N1,E),E),K,P),P)
= traverse(result~node(trua,N1,E),E),E,P),P)
= » . (traversa(N2,8),E,P),P)
= ’ (travexrse(result-ncde{exccute(N2),N2,E),E)E,P),P)
= ’ (eval(N2),82,E),E),E,P),P)
= . . (assign(x,¥2),N2,E),E),E,P),P)
= (setv(x,eval (N3)),¥2,E),E),E,P),P)
= . . (setv(x,rtref(y,1)),N2,E),E),E,P),P)
= ’ * (setv(x,eval(xef(y,1))),N2,E),E),E,P),P)
= (setv(x,eval (item(eval(i),y))),N2,E),E),E,P),P)
= . . (setv(x,eval (item(1,y))),N2,E),E),E,P),P)
- | (setv(x,eval(y,)),N2,E),E),E,P) ,P)
= - (setv(x,3),N2,E),E),E,P),P)
= ‘ . (traverse(result-node(true,N2,E),E),E,P),P)
‘= ) (traverse(4,E),E,P),P)
= (traverse(result-node (execute (N4),N4,E),E),E,P),P)
= ’ . * (eval(N4),N4,E),E),E,P),P)
= L (no-op,Né4,k),E),E,P),P)
- ‘ ) (traverse(result-node(true,N4,E),E),E,P),P)
= (traverse({truel,E),E,P),P)

traverse(result-node(true,E,P),P)

traverse({true],P)

true

IV. Conclusion

To reiterate briefly, this paper presents a method for modeling programming languages by supplying
a hierarchical, structured framework for defining program and data structures. A particular language, or
class of languages, may be dcfined relative to a particular graph structure, or set of graph structures,
that best describes the actual structures of the language., Each graph structure has associated with it
a set of construction and accessing primitives, thus defining the basic machine upon which the semantic
functions are defined.

The semantic functions define the language by describing the effect of execution of the various
components of the language upon the basic machine. This is done by first defining a control mechenism
via set of control functions, and then defining a set of component functions that describe executicn of
the language components relacive to that control mechaniem,

In this paper, the authors have attempted to demonstrate the important role played by the control
nechanism in chavacterizing the complexity of a language for the purpeses of comparisen. SIMPL-X is a
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machine in crder to analyze and compare the couplexity of languages and language compon<ints.

As a tool in language design, the hievarchlcal modular framework of HOL provides a gued basic
structure for a top~down approach, permitting the examination of language componcnts at a varlery of
levels of detail. As a definitlonal facility, HOGL permits the choice of structures and semantic Function
format that are most '"natural' for the language. For exauple, the SIMPL-X program structure can be
represented as a f{lowchart-type directed graph; LISP data structures could be represented using actual
lists; and lumbda exprassions could be used as the basis for the semantic function format for LISP.

As an implementation tool, HGL permits the analysis of a varlety of data structures and assocciated primi-
tives for the representation of the different language components. Finally, HGL permits che choice of
the most convenient data and control structures for use in the comparison of programming languages.

HGL is quite similar in many respects to other semantic models [6]. The flexibility of the model
and the high level of permissible structures mzke it more general than the more widely used models (such
as VDL [3]). The authors have derived much benefit from using HGL as a tool in language design, as a

definitional facility, and as an implementation model.
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Appendix I, Semantic Function Svatax and Somanties

Somantde Tunction Syntax

<semantic fu» 1= «fu name>{(<formal parlist>)}? = wsemantic £ body>
<semantic fn body> ::= <cond def list> i <fn call> I <value>

<cond def list> ::i= {«<cond def list>,}‘<cond> = <senantic fn body>
<cond> ::= <Boolean ecxpression>

<fn call> ::= <semantic fn call> l <primitive fn call>

<semantic fn call> ::= <semantic fn name>{(<actual parlists)}!
<primitive fn call> ::= <primitive fn name>{(<actual parlist>)}!
<actual parlist> ::= {<actual parlist>,}l<actual par>

<actual par> ::= <fn call> | <graph form> l <value>

%
<graph form> ::= [<node> {-<node>}]; class = 'program’
<nod 1:= [<semantic fn>]; class = ‘semantic fn' | [<primitive fn>]; class = 'primitive fn'|
[<graph form>]; class = 'program' | [<value>]; class = 'data'l

<variable> | <expression> | <program> | <segment def> | <stat lists

<value> ::= true | false | undefined | <number>

<formal parlists ::= {<formal parlist>,}1<identifier>
<primitive fn name> ::= add l nult]...

Semantic Function Semantics

Let a function be called evaluable if none of its arguments are functions and it is not contained
in a <graph form>. To evaluate a semantic function, expand the function by

1. a) substituting the actual parameters given in the <semantic fn call>, for the corresponding
parameters given in the <semantic fn> (this is equivalent to a call by name macro expansion)
and '

- b) evaluating all evaluable primitive functions, or if there are none -
c) expanding all evaluable semantic functions
2. repeat step 1 until all functions are evaluated or expanded and a single value is returned as the

result of the original semantic function call.

Appendix IT. Semantic Function Primitives and Abbreviations

elt (set) returns any element from & set

item (k,node) returns the kth node in the graph h (node) where the graph 1s a list

size (set) returns the number of elements in the set

nsize (graph ) = size (nodes(g))

*node = entry (h(node)) (i.e., the entry node of the graph associated with a node)

argl (node) = *elt(padj(*node,h(node))) (i.e., the first argument node of an argument list node)

arg2 (node) = elt(padj(argl(node),h(elt(padj(xnodé,h(node))))))

argld (node) = etc.
N N St .‘T. N L < . FoN 31 H .
vars (neoed soelt (el mih( acde,node) ) and cluss Co='parlist® Y (f.e., ¢ wla whoon R i) i
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loes (prov) = rhe node whose h mar the graph of leocals

locsandpars (proc) = the node whose & map Is the graph of locals and parameters



Aprendix TII. Ceovonent Scumuancis Functions for STMPL-X

assign (p,rp) =

type (fp) = 'integer' =
form (¢p) = 'simp' = setv(Zp,eval(rp))
form (Zp) = 'rec' = setv(*Zp,gzﬂg(rp))
class (Zp) = 'operation' A v(*ep) = fraf' = setv(ggg(argl(ip),argZ(ép)),EXQL(rp))

T > undef
ref (array,expr) =
form (array) = 'rec' = item(gggi(expr)+l,*array)
T = iten(eval (expr)+l,array)
xtref {array,expr) = eval(ref(array,expr))
convert (node) =
eval (node) = 0= 0
T = 1

call (proc,args,pars) = execute({[installp(proc,args,pars)] - proc - [return(proc)]]

installp (proc,args,pars) =
execute([(cvalargs(args,pars)] - [installpargs(args,pars)] - [installplocs(locs(proc))]]

evalargs (args,pars) =
nsize(h(args))

|

nsize(h(pars)) # 0 = evalarg( args,args, pars,pars)

nsize(h(args)) = nsize(h(pars) = 0 = true
T = undef
evalarg (afg,args,pat,pars) = execute([[setv(par,eval(arg))] -+ [nextevalarg(arg,args,par,pars)]])
nextevalarg (arg,args,par,pacs) =
size(padj(arg;h(args))) = 0 = true
T = evalarg(elt(padj(arg,h(args))),args, elt(padj(par h(pars))),pars)
installpargs (args,pars) =
nsize(h(args)) # 0 = installgarg(*h(args),args,*h(pars),pars)
T ) = true
installparg (arg,args,par,pars) =
type(par) = type(arg) = 'integer! =
execute({[setv(push(create,par),v(par))] ~ [ngtgarg(arg;args,par,pars)]])
type(par) = type(arg) = 'array' =
form(arg) = 'simp' = execute({[seth(push(create,par),h(arg)] - [nextparg(arz,par,pars)l]])
T gxecute([[seth(gggh(create,par),h(*arg)] -+ [nextparg(arg,par,pars)]])
T = undefined '

i}

"

nextparg (arg,args,par,pars)
size{padj(arg,h(args)))
T = installparg(elt(padj(arg,h(args))),args,elt(padj(par,h(pars))),pars)

n

0= true

installplocs (locs)

nsize(h(locs))

T = installploc(l,locs)

0= true
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1 = nsize(h(locs)) =

type(item(i,locs)) = ’int' = pushfcreate,item(l,locs))
T = installplocarray(create,nodesize(*item(i,locs)),item(i,lccs))
T =
type(iten(d,locs)) = 'int' = execute({[push(create,item(i,locs))] - [installploc(i+l,lous)]])

. *
T = execute({{installplocarray(create,nodesize( item(d,locs)),iten(i,locs))] -~
{installploc(i+l,locs)1])

installplocarray (node,n,array) =

n = 0 = truef (push(node,array))
T = execute({[truef (push(create,node))] + [installplocarray(node,n~1l,array)]})

return (proc) = release(locsandpars(proc))
release (locsandpars) =
nsize(h(lccsandpars)) = 0 = true
T = releaseloc(l,locsandpars)
releaseloc (1i,locsandpars) = .
1 = nsize(h(locsandpars)) = truef (pop(item(i,locsandpars)))
T= execﬁte([[truef(Rgg(item(i,locsandpars)))] - [releaseloc(i+1,locsandpars)]])

truef (node) = true
push - (nodel,node2) =

nsize(h(node2)) = 0 = seth(node2,setentry(node,nodel))

T = seth(nodeZ,setentry(attach(h(nodeZ),nodel,*node2),nodel))
pop (node) = »

nsize(h(node)) = 1 » execute([[seth(node,[])] -+ [pass(*node)]])

* * %
T = execute([{seth(node,detach(setentry(h(node),elt(padj( node,h(node)))), node))] - [pass( node)]l)

pass (node) = node



