
EXPERIENCES WITH A SIMPLE STRUCTURED PROGRAMMING LANGUAGE

Victor R. Basill
Albert J. Turner

Computer Science Department
University of Maryland

I. Introduction

A great deal of interest has developed in
structured programming [Dahl, DiJkstra, and Hoare,
1972] during the past few years. This paper is
concerned with some experiences obtained in the
use of a structured programming language in the
computer science curriculum at the University of
Maryland. The language used was SIMPL-X [Basili,
1973], a language designed and implemented at the
University of Maryland.

SIMPL-X was designed to be a transportable,
extendable, compiler-writing language that was
to be the base language for a family of program-
mine languages. It is, in fact, being used for
that purpose as the SlMPL-X compiler [Basili and
Turner, 1973] is written in SlMPL-X, and a com-
piler for the graph algorithmic language GRAAL
[Rheinboldt, Basili, and Mesztenyi, 1972] is
presently being designed as an extension of the
SIMPL-X compiler.

However, some of the design criteria for
SIMPL-X have made it a reasonable language for
use in programming courses at all levels. These
criteria include the requirements that the lan-
guage

I) have a "simple" control structure and
require only a "simple" run time envir-
onment.

2) conform to the standards of structured
programming and modular program design.

3) support and encourage the writing of
readable, well-commented programs.

4) be translatable into efficient object
code for most machines.

This paper summarizes the SIMPL-X language
and some of the experiences resulting from its
use at the University of Maryland. Also included
are some opinions on the use of a structured pro-
grammlng language in a computer science curricu-
lum°

2. The SIMPL-X Language

Most of the features of SlMPL-X were derived
from components that exist in other programming
languages. As an overview of SIMPL-X, some of its

main features are

i) the main statement constructions are the
assignment, while, if-then-else, case, and
call statements. There is no goto state-
ment.

2) a program contains a sequence of proce-
dures and functions, each of which can
access a set of global variables, and a
set of parameters and local variables.

3) there are compound statement constructions
but there is no block structure other than
that provided by procedures.

4) facilities for declaring external refer-
ences and entry points are included.

5) procedures and functions can be recursive
if so declared.

6) an extensive set of operators may be used
in an expression. These include arith-
metic, relational, logical, bit manipula-
tion, shift, and partword operators.

These features are briefly discussed below.

A SIMPL-X program consists of a set of global
declarations and a set of segments. Each segment
is a procedure or function that consists of a
parameter specification, a set of local declara-
tions, and a statement llst to be executed when-
ever the segment is invoked. Execution begins
with the procedure designated as the start pro-
cedure.

In keeping with the design objective of
simplicity, segments may be neither declared as
locals (that is, there are no internal procedures
or functions) nor passed as parameters. Thus an
identifier is either local to a particular seg-
ment or global to all segments.

There are five basic statement types in
SIMPL-X: assignment statement, CALL statement,
IF statement, WHILE statement, and CASE state-
ment. The assignment and CALL statements are
similar to the corresponding statements in ALGOL,
FORTRAN, or PL/I.

The structure of the IF statement is given by

144

IF <expression>
THEN <statement liStl>

{ELSE <statement llst2>}
END

This causes the execution of <statement llst >
if <expression> has a nonzero value and <state-
ment llst_> otherwise. (There is no boolean
type in S~MPL-X.) The braces ({}) indicate that
the ELSE part is optional.

AWHILE statement is used to cause the re-
peated execution of a llst of statements. Its
syntax is given by

WHILE <expression>
DO <statement llst> END

This causes the <statement list> to be executed
repeatedly as long as <expression> has a non-
zero value.

The CASE statement is essentially an ex-
tended IF statement. The syntax is

CASE <expression> OF
~n~ <statement llst_>
~n2\ <statement list~>

{kEL ~ <statement listk>
<statement liStk+l> }

where nl,n2,...,nk are constants. When this
statemeflt Is executed, the value of <expression>
determines the statement list to be executed.
If <expression> - n~ for some i-l,...,k, then
<statement llst.> i~ executed. Otherwise, the
ELSE part, <statement liStk+l >, is executed (if
included).

Two additional statements, the EXIT and
RETURN statements, are also available to facil-
itate the abnormal termination of a WHILE loop
and the termination of a procedure execution,
respectively. The RETURN statement is also
used to specify the value that is the result
of a function call.

The data types available in SIMPL-X are
integer, character, and (character) string.
The only structure in the language is a one-
dimensional array whose elements must all be
of the same type (integer, character, or
string). Strong typing is observed as no
implicit type conversion is permitted.

The operators available in SIMPL-X in-
clude those found in most general-purpose lan-
guages and will not be discussed extensively
here. However, it does seem desirable to comment
on the relational and boolean operators since
there is no boolean type in SIMPL-X.

Relational operators (-,<,#,etc.) are binary
operators whose operands must be of the same type.
The result of a relational operation is zero if
the relation is false, and one if the relation is
true. Boolean operators (.AND.,.OR.,.NOT.) apply

only to integer operands and also result in one
or zero. The expression X .AND. Y has value 1
if both X and Y are nonzero. The .OR. and
.NOT. operators function in a similar manner.

The syntax of SIMPL-X is free format, but
statement separators, such as semicolons, are not
used. This lack of redundancy enhances the sim-
plicity of the language and removes a stumbling
block for students, who seem to have trouble
learning where to put the semicolons in languages
such as ALGOL or PL/I. Comments are delimited
by /* and */ and may be inserted wherever blanks
may occur.

3. Experience with SIMPL-X

SIMPL-X was first used in a course during
the Fall Semester 1972 in an upper-division
compiler writing course. A typical programming
effort for this course was the writing of a small
compiler. Previously both ALGOL and FORTRAN

had proved to be unsatisfactory for use in the
course, although for different reasons. ALGOL
was undesirable for the writing of large programs
due in part to the lack of facilities in the lan-
guage for separately compiled program modules,
and in part to the deficiency of the UNIVAC 1108
implementations in handling large programs. FOR-
TRAN, while adequately supporting large programs,
did not have good compiler-wrltlng facilities
nor did it have desirable structuring.

The second use of SIMPL-X was in the Spring
Semester 1973 in a second-semester programming
course and in an upper-division systems program-
m/ng course. The programming course involved
the teaching of a second semester of algorithmic
problem-solvlng and the basics of programming.
All of the students had been programming in FOR-
TRAN for at least a semester and a half, but its
inadequate statement structure made its continued
use undesirable. Only two sessions of one and
one-half hours each were required to teach them
the SIMPL-X language.

In the systems programming course, most of
the work was done for the PDP-II using a SIMPL-X
cross-compiler on the UNIVAC 1108. The projects
included the design and programming of a loader,
a segmentation program, and other operating
system routines.

In some respects SIMPL-X was more of a pro-
blem to use for the more advanced students in
the compiler writing course than for the students
in the early course. Many of the more experienced
students were hindered by bad habits that they
had learned previously and were unwilling to learn
to do the kind of thinking and organizing re-
quired by the gotoless nature of SlMPL-X. On
the other hand, most students in the earlier
course enjoyed the structured approach to program-
ming and seemed to have relatively little trouble
in learning to program in SIMPL-X.

Perhaps surprisingly, there was little ob-
Jection by the students in the programming course
to the lack of aGOTO statement. In fact, several
commented that they especially liked this feature
of SlMPL-X.

145

Additional experience with SIMPL-X has been
obtained through its use by some students in
special projects. Typical of their generally
favorable comments has been a statement to the
effect that the syntax and structure of the
language are such that fewer errors are made
when programming in SIMPL-X as opposed to lan-
guages previously used.

As a result of these favorable early exper-
iences, SIMPL-X has been adopted for usage in
courses by several faculty members. These
courses include the second-semester program-
ming course, graduate and undergraduate com-
piler-writing courses, graduate and undergraduate
systems programming courses, and a course in the
structure of program~/ng languages. Addition-
ally, some hlgher-level courses use a structured
SIMPL-X-like language for expressing algorithms
and program-type function definitions. Exam-
ples of these courses are a course in the certi-
fication of programs and courses in semantic
models for programming languages.

The following are results from a question-
naire submitted to two classes whose students
used SlMPL-X after progr,mm~ng in FORTRAN for
at least a semester and a half. These results
were not obtained by using statistically valid
evaluation procedures. However, they were ob-
tained without any attempt to bias the students
in favor of SlMPL-X and have been considered
worthy of note by many faculty members.

Question Yes No

1. Was SIMPL-X easy to learn? 33 5
2. Is SIMPL-X easy to program in? 29 8
3. Did SIMPL-X contribute to your

understanding of programming
and algorithms? 35 2

4. Do you think SIMPL-X would be
a good first programming
l anguage? 26 13

4. Conclusion

Simplicity is an important attribute of any
programming language [Hoare, 1973]. Attempts
have been made to achieve simplicity by using
a subset of an existing language [Holt, 1973].
Although using a language subset may achieve the
desired simplicity, it can also cause confusion
if, for example, a construction occurs that is
valid in the superset but not in the subset
[Hoare, 1973]. Thus the use of a complete,
simple language is preferable to the use of a
subset of an existing language.

The simplicity and lack of syntactic redun-
dancy in SIMPL-X seem to be important factors
that contribute to the writing of more error-
free programs by both experienced and inexper-
ienced programmers. Additionally, the simplicity
of SIMPL-X aids its compiler in error analysis,
even though the lack of redundancy in the syntax
can cause problems in error recovery. The fact
that SIMPL-X is a simple, yet reasonably power-
ful, language that encourages the use of struc-
tured programming techniques makes it a desirable
language to use at all levels in a computer

science curriculum.

There is some disagreement regarding the
stage at which a language like SIMPL-X should be
introduced into the curriculum. One view is
that such a language should be used in a first
course in computer science. It is argued that
too many programmers have already been at least
partially hindered by having been taught to program
using poor programming principles primarily due to
inherent deficiencies in the language used. The
other vlewmalntalns that the entrenchment of
FORTRAN and similar languages, plus the scarcity
of reasonable alternative languages in the "out-
side world", rule against the use of languages
such as SIMPL-X. Those holdlng this latter opinion
feel that it is important to provide a student with
a programming tool that is likely to be available
wherever he may go.

These opposing points of view, coupled with
the common problem of what to teach a student who
will take only one programming course, have re-
sulted in making the structured programming course
the second programming course at the University of
Maryland. It is generally felt that one semester
of FORTRAN will not do too much damage to a stu-
dent since few, if any, habits (good or bad) are
learned in one semester of an introductory course.
Thus SIMPL-X is currently being used in the second
programming course and is not used in the introduc-
tory course. However, future developments, such
as a more definite delineation of courses, could
well result in the use of SIMPL-X in an introduc-
tory course for majors.

We feel strongly that the art of programming
is developing more and more into a science, and
that the use of methods such as structured pro-
grammlng should be taught at an early stage in
the development of programmers and computer scien-
tists. It is time to do away with practices that
encourage students to use "micro tricks to save
micro seconds" [Holt, 1973]. Our experiences with
SIMPL-X have led us to believe that not only do
students prefer programming in a structured lan-
guage but they also make fewer errors and write
"better" programs when using structured programming
techniques. We also feel that the use of a struc-
tured programming language llke SIMPL-X gives
students a better understanding of programing and
more respect for programming languages as a power-
ful tool for problem solving.

5. Acknowledgments

The development of the SlMPL-X language and
its compiler was supported in part by the Office
of Naval Research under Grant N00014-67-A-0239-
0021 (NR-044-431) and in part by the Computer
Science Center of the University of Maryland.

6. References

Basili, V.R., SIMPL-X. A Language for Writing
Structured Programs, TR-223, University of Mary-
land, Computer Science Center, January 1973.

Basill, V.R., and Turner, A.J., A Transportable
Extendable Compiler, TR-269, University of Mary-
land, Computer Science Center, October 1973.

146

Dahl, O.J., DiJkstra, E.W., and Hoare, C.A.R.,
Structured Programming, Academic Press, 1972.

Hoare, C.A.R., Hints on Programming Language
Design, Address at SIGACT/SIGPLAN Symposium on
Principles of Programming Languages, October
1973.

Holt, R.C., Teaching the Fatal Disease (or)
Introductory Compucer Programming Using
PL/I, SIGPLAN Notices 8, 5, May 1973.

Rheinboldt, W.C., Basili, V.R., and Mesztenyi,
C.K., On a Programming Language for Graph
Algorithms, BIT 12, 2, 1972.

147

