SETS AND GRAPHS

IN
GRAAL*

Victor R. Basili

Department of

Computer Science
University of Maryland

KEY WORDS: GRAAL, graphs, sets, model, design

This paper is an attempt at presenting a
high level model of the set and graph aspects of
the graph algorithmic language GRAAL [5]. The
problem area for which the language GRAAL was de-
signed was the solution of graph problems of the
type primarily arising in applications. It was
designed with two objectives in mind. The first
was to develop a language which permitted the
writing of graph algorithms in a highly readable
form with as natural a set of primitives as pos-
sible for describing the algorithm. The second
was to allow for a wide variety of graphs of dif-
ferent types and complexity with as little degra-
dation as possible in the efficient implementation
and execution of an algorithm designed for a spe-
cific type of problem. .

LANGUAGE OVERVIEW

The first pass in the design consisted of a
general specification of the language primitives.
It was decided that strictly set theoretic devel-
opment of graph theory would allow for consider-
able flexibility in the selection of storage rep-
resentations for different graph structures (see
[S] for a motivation of this decision). Therefore
two primitives that were included in the language
were sets and graphs.

Sets, however, were placed in GRAAL mainly
for the purpose of defining graphs and their spe-
cific design was motivated by this. Their intro-
duction into the language generated the need for
several set operations. These include the stan-
dard set union (U), intersection (n), difference
(-), and symmetric sum (a). There is a subset
operator which constructs the subset of ail ele-
ments of a set that satisfy a specified boolean
relation. There are some common relational op-
erators such as =, #, and € which return the val-
ue true if two sets are equal, not equal or one is
a subset of the other, respectively, and the value
false otherwise.

There are a variety of graph structures
available in GRAAL distinguished by the family
of graph operators provided for constructing and
traversing each specific structure, The present
graph definitions include a directed pseudograph,
an undirected pseudograph, a directed graph,in
node form and an undirected gravh in node form.

We use the generic term 'graph” for all of these.
*This research was supported in part by the Office
of Naval Research, Mathematics Branch, under
Grant NOO014-67-A-0239-0021 (NR-044-431).

The graph construction operators consist of
an assign operator which would attach a node, arc,
node Eﬁ§ arc or two nodes and their connecting arc
to a graph, and a detach operator which would re-
move a set of nodes or arcs from a graph.

Both of these operators return graphs as a result.

There are two graph operators, nodes and
arcs, which return the set of all nodes and the
set of all arcs in a graph, respectively.

The graph connectivity operators take as an
argument a set expression which designates either
a set of nodes or of arcs of the specified graph.
The various possible operators presently included
in the language are the incidence operator ingc,
the positive and negative incidence operators pinc
and ninc, the star operator star, the positive an
negative star operators pstar and nstar, the bound
operator bd, the positive and negative boundary
operators pbd and nbd, the coboundary operator
cob, the pesitive and negative coboundary opera-
tors pcb and ncb, the adjacency operator adj, and
the positive and negative adjacency operators padj
and _adj. Each one of these operaters is associc
ated with specific types of graphs.

The cata structures decided upon for the
language were arrays and lists. It was felt that
these two structures could handle the static and
dynamic storage needs of the type of problems at-
tacked by the language.

The control structure decided upon was the
standard algebraic language control structure
since the purpose of the language was for writing
readable and easily expressed algorithms. In fact,
it was felt that the language should be imbedded
in a standard algebraic language format which in-
cludes the normal integer and real variables and
integer and real arithmetic.

This defines the basic outline of language
features. Almost all, except for the set and
graph constructs, are common to a large number of
standard programming languages, such as ALGOL or
FORTRAN. In fact, GRAAL was originally designed
as an extension to ALGOL [5] and a first imple-
mentation of the language was done as an exten-
sion to an existing FORTRAN compiler on the UNIVAC
1105 {1]. What is needed is a closer look at the
definition of sets and graphs. ’

The first questions are what is a set in the
context defined here, and what dJdoes it consist of?
Tha: is, where do s2ts fit in the definition of an
algebraic programming language and what are rea-
sonable ways of defining them for their use in

the definition of graphs?

. _There are several other programming lan-
-guages that include sets among their constructs.’
SETL . {6] and SETTEL [9] are both languages which
were designed for writing general set-theoretic
algorithms. 1In SETL a set is basically consider-
ed as an unstructured data structure whose ele-
ments may be a variety of objects such as integers
or even other sets. In SEITEL a set is defined
over some user-specified universe which might be
the integers or integers and reals, etc. MADCAP
{7], a language which was primarily defined for
combinatorial computing, treats sets as subsets
of the natural numbers. There are also several
other languages that have set constructs of some
form or other. ’

For GRAAL it was decided at the beginning
that a set would be a data type rather than a
structure. The basic philosophy that guided this
decision was that the data types of a language
represented the basic set of primitives of the
language. That is, they represent those data ele-
ments and their respective operators which are
used at the basic level of the algorithms written
in that language. Thus it was agreed that sets
and the set operations were part of the basic
primitive notions of GRAAL.

This is not a new approach, although it
appears to be with respect to sets. It attempts
to separate the concepts of data types and data
Structures into disjoint categories in a particu-
lar language, depending upon the applications ad-
dressed by that language. Data types are the
primitive data elements of the application area
and represent the lowest level upon which the al-
gorithm is based. For example, in the standard
algebraic languages, FORTRAN and ALGOL, integer
and real are the basic data types since they are .
the basic units of data used by algorithms in the
languages. These data types may be thought of as
unstructured data types because their structure
(which is usually defined by the machine word-
size) is fixed. There are basic data types which
do have a more variable, nonmachine-defined struc-
ture. Strings in SNOBOL, for example, are a
Structured data type. In fact, there is a very
close analogy between strings in SNOBOL and sets
in GRAAL. They both have a definite structure
whose internal definition is hidden from the user
and immaterial to him. They consist of subele-
ments, which are characters for strings and ele-
ments for sets. They have operators acting upon
them which allow the user to access any subgroup
of the elements as well as operations between
them, such as concatenation for strings or union
for sets. They may be stored in structures, such
as arrays, whose structural design is more vis-
ible to the user because he uses the array strict-
ly as a storage mechanism for his primitive data
types.

Granted that a set is a data type rather
than a data structure, what is a reasonable def-
inition of its members? They are elements, usu-
ally representing nodes or arcs, which are members
of some universe of elements, just as the subele-
ments of a string are characters which are mem-
bers of some universe of characters. The differ-
ence is that the maximum size of the universe of
characters is usually thought of as fixed while
the universe of elements must be highly dynamic.
In order to define a new element, it must be dy-
namically created from this universe of elements.

Each element may have associated with it any

" “number of typed properties. This permits the ele-

ments of a set or the nodes and ares of - Ireph to
have any number of integer, real, or strirg ~vluss
associated with them.

We may now ask a similar question abou: u
graph. What is a graph and what is it composed
of? The answer to this question is similar to the
answer to the previous one. For the same reasons
a graph is really a structured data type, which is
composed of undeclared data elements which play
the roles of nodes or arcs and are interrelated to
define the particular graph structure.

MODEL OF SETS AND GRAPHS

Now that some of the basic informal GRAAL
design has been given, we are ready to present a
high-level informal model of these concepts. The
operational semantic modeling language used is an
informal version of the hierarchical language HGL

[2].

Essentially HGL is a definitional facility
for specifying models which may be used to des-
cribe the semantics of programming languages. The
basic HGL primitives consist of (1} a set of nodes
each with an associated structured value, atomic
value, and a set of attributes, and {2) a set of
primitive transition functions that can change the
structure, atom, or an attribute associated with a
node and can define and delete nodes. More speci-
fically, each node n in HGL may be thought of as
a high-level memory cell representing a unit of
information about the language. The atomic value
associated with the node v(n) usually represents
some nonstructured program or data element. The
structured value associated with a node h{n) usu-
ally represents some language component which must
be structured and whose structure is of interest.
The attributes associated with a node, a(n,attri-
bute); usually represent characteristics or prop-
erties of the unit of information contained in a
node. These attributes can be thought of as a
symbol table which might contain the compile time
properties known about that unit of information.

The association between a node and a struc-
ture value, atomic value, and attributes can be
defined as mappings, but they may be thought of
as pointers. Thus each node would have a pointer
to an atomic value, a structure value, and a table
of attributes. Let N be a set of nodes, D
be a set of atoms, and A be a set of attributes.
Let G be a set of graphs defined over elements
of N . An attributed hierarchical graph (h-
graph) over (N, D, A, G) 1s defined as a 4-tuple

(N, v, h, a) where NS H, vi N+ D, h: N+~ G, and
a: N x I; + A vwhere I; denotes the first k-pos-

itive integers, are the value, structure, and
attribute mappings, respectively.

The three primitives that change the atom,
structure or an attribute associated with a node
are setv(n,d) which assigns the atomic value d
to node n , seth(n,g) which assigns the graph
structure g to node n , seta(n,att,p} which
assigns value p to attribute att of node n ,
respectively. The two primitves that add and re-
rove nodes are define {(niv n)=d,h(n)=g,a(n,att1)=
a1,...,a(n,attr=ar)) wiiich adds a new node to

the nodeset of the h-graph along with its associ-

ated. .v,. h; and a mappings and delete(n) which re-
moves ‘the node n from the nodeset of the h-graph.

We now model the set and graph features of .
GRAAL by defining their interpretation on a high-
level machine whose primitive operations are the
HGL operations and whose data structure and con-
trol structure are given below.

The data structure used is a set. The set
is defined over nodes from N . Construction prim

itives for a set will consist of (i) enumerating
the elements of the set, e.g., {nl,nz}, (ii) de-

fining sets in terms of other sets using the stan-
dard set-theoretic operators such.as U, N, -,
etc., (iii) defining a set by a predicate, i.e.,
{x|BE(x)=true} where BE is some boolean expres-
sion on the set.

An accessing primitive which yields an ele-
ment of a set will be defined by select (s) which
returns a random element from the set s .

The control mechanism used for expressing
algorithms consists of (i) set expressions using
the set construction and accessing primitives
along with the five HGL primitive functions, (ii)
a linear sequence of statements of type (i) which
are performed in sequential order. Each statement
or subsequence of statements may be preceded by a
conditional implying the statement or subsequence
is performed only if the conditional is true.

We use these data and control structures to
define a model (high-level machine architecture)
for the set and graph features of GRAAL. The mem-
ory is essentially an associative memory which can
be accessed by set operations returning the node
or nodes which satisfy some specified requirements
It will also be assumed that each node in memory
has a special name associated with it, called the
id attribute of that node. This id-attribute
will be used to access a node when the rode id is
known and uniquely specified; otherwise, socme set
operation will be used. For example, h{n) ,
where n is a node, may sometimes be written as
h{id(n)) . :

Let the universe of elements be defined by a
node, with id-attribute U , which contains all
the elements of the universe. Each element can
then be represented as a node of U having an
id-attribute which distinguishes it from all other
element nodes. Assume the id of each element node
takes the form u, where i represents a unique

(id=0)

h(v)={u1 sUgslzs e .}
h(u1)={x,y}
h{x)=a,v(x)=32
h(y)=a,v{y)=3.7

integer ordering of the elements. In what follows :
--an- extended BNF notation is used to define the
- .syntactic structures of the model.

ts use is ex- -
plained as the examples proceed. Basically, its
uses brackets [x] to represent a node whose V

or h mapping is defined by x . The distinction
between the v and h mappings is made by using
an underscore to designate the v mappings. We
will use the term contents of a node when it is
immaterial as to whether we are referring to the

v or h mappings of that node. Thus

<universe> ::= {{<element>}}; id = U

defines universe to be a node with one attribute
id, equal to U , whose h mapping is a set of
elements, i.e., h(U) = a set of elements.

Properties may then be associated with an
element by setting the h mapping of that element
node to a set of nodes called property nodes. The
contents of a property node is the property value
and the attributes represent the name and type of
that property. The property may be an atomic
value, if the type is integer or real, for exam-
ple, or it may be a structure if the type is set
or graph. Thus we may define

<element> ::= [{<property>}]};
id = <unique name u;>

<property> ::= [<atomorstructure>];
id = <identifier>, type = <type>
<atomorstructure> ::= <value>]<stnx:t:ure>

<structure> ::= {[<atomorstructure>}}

<value> ::= <identifier>|<number>| etc.

A set may then be modeled by a node whose
content is a set of element nodes {ui,...,uk} .
It should be noted that the nodes in “the set are
not copies of the element nodes but the actual
element nodes. (In terms of an implementation, a
set can be though of as containing pointers to the
actual elements in the universe.)

<set> ::= [{<element>}];
id = <identifier>, type = set

(id=u;)

(id=x,

@type=inte :

(id=y,

@ty‘pe=rea‘

er)

The universe of clements and an element with two properties x and vy

Figure 1

For convenience let us assume there is a
node with id-attribute SETS , such that h(SETS) =
the nodes defining all the sets in the language,
i.e.,

<sets> ::= [{<set>}]; id = SETIS

The GRAAL set operators can now be defined
using the above definitions of the set and uni-

verse data structures and the set construction and

accessing operators. The- operators are un-
derlined to distinguish them from the set-theoret-
ic ones.

The GRAAL set operators are create which
Creates a single element set, called an atomic
set, from a newly-specified element in the wni-
verse; subset which creates a set of elements from
elements in the universe that satisfy some boolean
condition; elt which creates an atomic set by ran-
domly selecting an element from a designated set;
U the set union operator; N the set intersection
operator; ~ the set difference operator; 4 the
symmetric sum operator; = the equivalence predi-
cate; # the nonequivalence predicate; < the sub-
set predicate. These operators may be defined in
terms of the model as follows:

create = {select({n€h(U)|v(n)=h(n)=a(n)=nrn/h(S),
V 5 € SETS}} vwhere 2 represents an
undefined value

subset(x,BE(x)) = {n|BE(n)=true}, where BE is
any valid boolean expression in the

languaga
elt(s) = {{select(S)} if S=p

if S=9
U(S,T) = h(S) U h(T)
0(5,T) = h(S) N h(T)
2(S,T) = h(S) ~ h(T)
A(S,T) = (h{S)-h(T)) U (h(T)-h(S))
_ . J true if h(S) = h(T
=651 = {?:Ia;ul?elotherwise ©

= 4 true if h(S) # h(T

£(S,T) = {Tmelotherwise M

. { true if h(S) S h(T)
(s, {Ealse otherwise

Accessing a property of an element node of
a set is done by the two-argument function access
whose first argument is the id of a property node
and whose second argument is an atomic set con-
taining the element whose preperty. is desired.
The function returns the property node itself.

access (prop,set) =

select({x!x&h(select(S))/\id(x)=prop})
if |setf=1 A select(set)ch(U)
und=finad otherwise

We will now discuss four of the various
graph types found in GRAAL. For a more extensive
discussion, see [3].

<graph> ::= <directed graph in ncde form|
<undirected graph in node form>
<directed pseudograph>]
<undirected pseudograph>

It was stated earlier that in GRAAL a graph is
defined by its operators. A graph may then be
modeled by the set of nodes which compose it if it
is a graph in node fomm or the sets of nodes and
arcs which compose it if it is a pseudograph. The
actual graph structure of a graph g may be mod-
eled by letting each of its component elements
contain as property nodes the sets of nodes or
arcs defined by the relevant graph operators on
that component, relative to the graph g . For
example, a directed graph in node form would be
modeled by a node whose type attribute is direct-
ed graph and whose id attribute is the name OF
the graph, say g . This node would contain a
single node representing the nodes of g and
whose id would be nodes-g (a convenient way of
chaining unique names). Then each of the elements
in the node called nodes:g would contain two prop-
erty nodes of type set, one containing the set of
nodes which form the positive adjacency of that
node in g , whose id attribute is pa:-g , and one
containing the set of nodes which form the nega-
tive adjacency of that node in g , whose id at-
tribute in na.g . Other graph types are defined
analogously. This approach permits the definition
of graphs without imposing any specific data
structure on them.

In order to make what follows more concise
and at the same time to separate the data struc-
ture dependent primitives from the general algo-
rithm, consider the following auxiliary functions:
insert, add, and sub. Assume p is a property
name, a is an atomic set, s is a set, and
is a node.

insert(p,a}) = seth(select(a)},
h(select (a)u{define(m| id (m)=patype (m) =set)})

/* insert adds to the element in a property node
with id = p and type = set #/

add(n,s) = seth(n,h(n)us)

/* add unions the set of nodes S to the contents
of n */

sub(n,s) = seth(n,h(n)-s)

/* sub removes the set of nodes S from the con-
tents of n */

The directed graph, undirectsd graph, un-
directed pseudograph, and directed pseudograph
and their relevant operations will now be defined.
In what follows g will represent a graph of the
appropriate type, a; atomic sets, and s; any
sats.

directed graph

<directed graph in node form> ::= [<nodes>];
id = <identifier>, type = directed graph
<nodes> ::= [{<element>}};

id = nodes-<identifier>
For each directed graph g , the graph structure

(id:g1 stype=directed graoh}

J

h(g,) = {nodes-g,} h(u,,) = (...propj,...,a’gl,na‘gl,...)

. h(access(pa‘gl,(un})) = {u10’u7}
h(nodes-gl) = {u7,u10,u72} h(access(na-gl,{un})) =0
h(u.,) = {propl,...,propn, pa‘g;,na‘g,...} h(u.m) = (...propk,...,pa’gl,na‘gl,...}
htaccess(pa'gl,(u7})) = {uy,} h(access(pa~gl,{u10})) =g :
h(access(na-gl,(u7})) = {u,,} h(access(na'g,,(u,4})) = {ug,u.}

4“10
Representation of the Directed Graph g / \
Y>>
Figure 2

will be defined as follows: For all elements x detach(g,s) =
x € n(nodes-g), there will be two property nodes
n, and n, € h(x) such that id(nl) = pa‘g , sub(nodes*g,s)
type(n;) = set, id(ny) = na-g, and type(n,) = set. sub(access (pa°g,{x}),s), ¥ x € nodes(g)
These two nodes represent the sets of positive and sub(access (na-g,{x}),s), Y x € nodes(g)

negative adjacency nodes for that element x in .
g - These nodes are defined by the appropriate sub(y,{pa-gh), Yy €s
graph construction operators. sub(y,{na'g}), Yy €s

detach(g,sl,sz) =
nodes(g) = {n|n¢h(nodes g)}
sub(access(pa'g,{x}),sl), Y xe¢ S,

assign(g,al,azj - sub(access(na‘g,{x}),sz), Y x € 1

a, ¢ nodes(g) + add(nodes- 2:2,) padj(s,g) =xzsh(3CCESS(Pa'g,(x))
insert(pa-g,al) nadj (s,g) =xlé'sh(access(na'g,{x})
insert(na‘g,a,) adj (s,g) =_padj(s,g} U nadi(s,g)

a, ¢ nodes(g) + add(nodes-g,az)
insert(pa* g,az) The undirected graph, the undirected_pseuc}ograph,
insert(na-g, a,) and \Ehe directed pseudograph are defined in anal-

ogous ways.

add(access (pa'g,nl) ,nz)

add (access (na-g,n,) ;) uwndirected graph

s . - <undirected graph in node form> ::= {<nodes>];
M(g’dl) - id = <identifier>, type = wundirected graph
2y % nodes(g) - add(nodes'g,alj
insert(pa'g,al) assign(g,alaz) =

insert(na'g,al) o % nodes(g) - add(nodes-g,al)

insert(a'g,al)
a, % nodes(g) - add(nodes- g,3;)

insert(a-g, aZ)
add(access (a'g,a,) »3,)
add(access (a°g,a,) »3,)

assigg_x(g,al)
a; ¢ nodes(g) » add(nodes'g,al)
insert(a'g,al)
detach(g,s) =
sub(nodes-g,s)
sub(access(a‘g,{x}),s), Y x € nodes (g}
sub(y,{a'g}), Yy €s
detach(g,sl,sz) =
sub(access(a'g,{x}),sl), Vxe s,

sub(access(a-g,(x}),sz), VxeEs

adj(s,g) = U h(access(a‘g,{x})
XEs

1

undirected pseudograph

<undirected pseudograph> ::= [<nodes> ,<arcs>];
id = <identifier>, type = undirected pseudo-

sub(arcs- g,Sm)
sub(y,{s°g}), Yy € S,
subly,{i'gh), Vyes_
sub(access (s g,{x}) ’Sna) » Y x € nodes(g)
star(s,g) = U h(access(s g,(x})
XES
inc(s,g) = U h(access(i-g,{x})
X€S
bd(s,g) = & {inc({x},g)|size(inc({x},g))=2}
X€S

cob(s,g) = 4 {star(ix},g)|size(inc({m},g))=2}
- X€S

directed pseudograph

graph

arcs ::= [{<element>}]; id = arcs‘<identifier>

Then the operators are

arcs(g) = {n{n€h(arcs'g}}

assigg(g,al,az,a:s) =
a ¢ nodes (g) add(nodes’g,al)
i.nsert(s'g,al)
a, ¢ nodes(g) add(nodes* g,az)
insert(s'g,az)

a; ¢ arcs(g) add(arcs‘g,as)
i.nsert(i'g,as)

add(access(s "8531),35)

add(access(s'g,az),as)

add (access(i'g,as) 184)

add(access(i-g,as) »a,)
detach(g,S) =

let S = {meS|m€arcs(g)}

then sub(_arcs-g,sa)
sub(access(s’g,{x}),sa), ¥ x € nodes(g)
sub(y,{i:g}), Yy ¢ S,

let S, = {m&S|nenodes (g) }

and S = {m€arcs(g) l_:i_n_c_({m},g)ﬂsn"r"x))

then sub(aodes- g,Sn)

<directed pseudograph> ::= [<nodes>,<arcs>];
id = identifier type = directed pseudcgraph

assi@(g,al,az,as) =

a, % nodes(g) add(nodeS'g,al)
insert(ps-g,a,)
insert(ns-g,a;)

a, # nodes(g) ~ add(nodeS‘g,az)
insert(ps-g,a,)
insert(ns-g,a,)

ag ¢ arcs(g) - add(arcs-g,a5)
insert(pi-g,az)
insert(ni-g,a,)

add (access(ps "2:2),a4)
add(access (ns-g,a,),a5)

add (access(pi "2,35),4)

add (access (ni-g,a) »a5)

detach(g,S) =

let S, = {m€S}mearcs(g)}
then sub(arcs-g,sa)

sub(access(pS'g,(x}),Sa) » ¥ x € nodes(g)

sub(access(ns-g,{x}),sa), ¥ x € nodes(g)

sub(y,{ni-g}), Yy € Sa

sub(y,{pi-g}l), Yy € Sal
let Sy = {m€S|rénodes (g) }
and Spa = {m€arcs(g)|pinc({x},g) N S, P

V ninc({x},g) N S, = [’}

then sub{(nodes-g,S n)

sub{arcs-g, Sna)

sub(y,{ps-g}), Yy € Sn

sub(y,({ns-g}}, Yy € Sn
sub(y,{pi-g}), Yy € Spa
sub(y,{ni-g}), Yy € sna
sub(access(pS'g,{x},Sm) ,¥x € nodes{g))
sub(access-[m'g,{x},Sna} ,¥x € nodes(g))

pstar(S,g) = U h(access(ps-g,{x})
X€S

nstar(S,g) = U h{access(ns'g,{x})
X€S
pstar(S,g) U nstar(S,g)

il

star(S,g)

H

pinc(S,g) = U h{access(pi‘g,{x})
x€S

ninc(S,g) = U h(access(ni‘g,{x})

X€S
inc(S,g) = pinc(S,g) U ninc(S,g)
pbd(S,g) = a EénC((x},g)

X€
nbd(S,g) =

8 ninc({x},g)
X@
bd(S,g) = pbd(S,g) & nbd(S,g)

peob(S,g) = A pstar({x},g)
xég
ncob(S,g) = A nstar({x},g)
Xx€S
cob(S,g) = pcob(S,g) A ncob(S,g)
EXAMPLES AND IMPLEMENTATION

In order to demonstrate the use of these
graph and set features in the solution of a par-
ticular problem, consider these features imbedded
in a standard algebraic programming language. Two
procedures are given; one creates a subgraph of a
graph, the other creates a Spanning tree for a
graph.

procedure subgraph {graph G, set N, graph subG)

/* This procedure sets up-the subgraph of */
/* G which has a given set N of nodes of */
/* G as node set. */

set S,x,y,a

while N # empty
dox i=elt ()

S := subset(a, a € star(x,G) A inc(a,G) € N)
N:=Nax
i S = empty

then assign (subG,x)
else for all a €S
do y := inc(a,G) ~ x
if y = empty
then y := x
end /* if %/
assign (subG, x - y to a)
end /* for all */
end /* if */
end /* vhile %/

precodure spantree (grash G, set r, graph TREE)

/* This procedure generates a directed span- */
/* ning tree with root v for the comnectad */
/* component of G containing the node v . #/

32T 5,"1.,“4'53\',)',3

S:=r
T := cob(r,G)

vhile T # empty
doforallaeT
do w := bd(a,G)

y i=w-8§

iy # empty
then S:=Svy
X =Way
assign(TREE, x + y to a)
end /* if */
end /* for all */
T := cob(S,G)
end /* while */

For the sake of completeness, a brief dis-
cussion of a possible internal data structuring of
the universe, sets and graphs will now be given.

A natural data structure for the vniverse of ele-
ments would be dynamic array-like structure which
would permit an easy and quick ordering and acces-
sing scheme for the elements. This can be done by
using the index of the element in the array as its
unique (integer) name. This would lead to a rela-
tively efficient implementation of the universe
and of sets.

Sets could be implemented using a list type
data structure because of their dynamically vary-
ing size. These lists can be ordered, hovaver,
according to the unique integer name assoCiated
with each element in the unive.se. TIhis intrimsic
ordering permits a great i.grovement in the effi-
ciency of the set oper~cions [7].

Properties, like sets, should also be defin-
ed by a list structure since there are a variable
number of properties associated with each e?~ment.
This tends to be efficient with vecievt to space
but inefficient with respect tc ac.essing speed.

Graphs are essentially defined through the
properties of their nodes and arcs. However the
individual elements of a particular graph can be
ch~i..ec together across their respective property
tists. For a complete description of a particular
implementation, see [4].

PEFERENCES

{1} Basili, V.R., Mesztenyi, C.K., and Pheinboldt,

W.C., FGRAAL--FORTRAN extended graph algo-
rithmic language, University of Maryland,
Computer Science Center, Technical Report
TR-179, 1972.

{2] Basili, V.R., and Turner, A.J., A hierarchi-
cal machine model for semantics of program-
ming languages, Proceedings, Symposium on
High-Level Language Computer Architecture,
ACM, November 1973.

131 Basili, V.R., A structured approach to the
design of CRAAL, University of Maryland, Com-
puter Science Center, Technical Report TR-299
1874,

(4]

[s]

(6]

[7]

(8

(9]

tesztenyi, C.K., Brietenlohner, H., and Yeh,
J.C., FGRAAL technical documentation, Univer-
sity of Maryland, Computer Science Center,
Technical Report TR-200, 1972.

Rheinboldt, W.C., Basili, V.R., and Mesztenyi,
C.X., On a programming language for graph
algorithms, BIT 12, 1972, 220-241.

Schwartz, J., On programming, I and II: An
interim Teport on the SETL project, New York
University, Courant Institute of Mathemati-
cal Science, 1973,

Shapiro, S., The list set generator, CACM
13, 1970, 741-744.

Wells, M.B., Elements of Combinatorial Com-
puting, Pergamon Press, ord,

Wipple, J., Set theoretic extensions of
algorithmic languages, Ph.D. Dissertation,
Stevens Institute of Technology, 1972.

