A TESTING TOOL FOR A FIRE-CONTROL ENVIRONMENT

Victor R. Basili
Robert E. Noonan
Department of Computer Science
University of Maryland
College Park, Md. 20742

This paper describes the design of a testing tool
to be used by an independent validation/verification
group for fire-control software. The basic approach
is to generate for each test case an execution histo-
gram of the program; this must be done without modi-
fying the object program. Using computer generated
reports showing the completeness of testing so far
achieved, the tester is aided in constructing a mini-
mal effective test set.

Introduction

The most practical tool in the validation and
verification (V/V) of medium to large scale software
systems is to test the system using a carefully
chosen set of test data. The test sets can be chosen
for two purposes: to show that the program satisfies
its specifications, and to show that the program
operates correctly. At the present time, little work
has been published about the generation of test cases
to validate the specifications.

In recent years a great deal of research has been
devoted to studying the problem of generating tfst
data to show that a program operates correctly 12,3
It is well known that if the tester views the program
as a black box, then complete testing of the program
is impossible in practice. For example, if one con-
siders the problem of checking a program which multi-
plies two 36-bit integer numbers, the time required
on a modern high speed computer is on the order of
billions of years. However, not all test cases are
of equal value. Taking the structure of the program
into account, one can choose a reasonably smail set
of test cases which provide a high level of confidence
in the reliability of the program.

One criteria for choosing test cases is to insure
that every statement has been executed at least once
and that every loop is executed 0,1 and n times (if
possible) where n - is some relative maximum value.
This provides the tester with the knowledge that every
line of code is reachable, was executed at least once
to give correct results, and can lead to termination.

One view of a testing system is as a man-machine
interaction. For example, some aspects of this task
are better handled by the machine:

(1)
(2)
(3)
(4)

(5)

executing the test cases,

recording which test cases have been run,
recording for each test case which state-
ments were executed,

compiling over all test cases the execution
history of the program,

informing the tester which statements have
never been executed.

Relative to the state of the art, other aspects might
best be handled by man. These include:

(1) test case generation]
(2) selection from the test cases of a minimal
effective set.

The above criteria for program testing werg used
in the design of a test tool for a fire-control

3

environment.

Project Background

The Navy, in developing a new submarine-based
intercontinental ballistic missile system called the
Trident, is writing new fire-control software. The
Naval Surface Weapons Center/Dahlgren Laboratory is
responsible for the development of this software.
Organizationally, there are separate groups with re-
sponsibility for the development and for the valida-
tion/verification (V/V) of the software. The inde-
pendence of these two groups is an important organiza-
tional constraint within which a testing tool was to
be developed.

The goal of the V/V group is to test the programs
in an environment as close as possible to the actual
environment. Note that this goal can not be realized
absolutely since to do so would necessitate actually
firing the missiles. Other than the fact that the
missile firing hardware is simulated by a computer,
the actual test environment must be identical to the
one on board the ship.

In meeting this goal, the V/V group operates under
fairly rigid constraints.

(1) For confidence in the correctness of the pro-
duction system, the object program tested
must be identical to the production program.
Additional code cannot be inserted or existing
code modified for testing purposes.

The nature of the programs and of the onboard
(fire-control) computer system is such that
the assumption has to be made:that little or
no memory space is available for testing
requirements.

(2)

These two constraints help to insure that not only the
programs but also their environment are substantially
the same under testing as they are under actual op-
erational conditions. These constraints made the
development of a testing tool using the onboard compu-
ter very difficult.

Fortunately, an emulator for the onboard computer
was available on a Nanodata QM-1. The latter machine
had more memory than the onboard computer and any
software required for testing purposes could be reason-
ably constructed using a combination of microcode and
machine code. Thus, it was decided to develop a test-
ing tool usingfthe QM-1.

The progfamming language being uied is an ALGOL-
1ike expression langauge, called THLL®, which was
developed expressly for this project. ine compiler
for THLL runs on a large, batch machine, the CDC 6700
and produces assembly code output. Since the compiler
was developed using a translator writing system, it
was theoretically possible to instrument the compiler
to generate additional code for testing purposes.
However, given the constraints cited above, this was
not a viable option, since it would have meant modi-
fying the programs considerably and expanding their
size.

Throughout the remainder of this paper, the term

compilation system will be used to refer collectively : i -
to all the passes required to produce an absolute THLL
deck, that is, the passes of compilation, assembly, : program

Tinkage editing, etc. In addition to the absolute
deck, the compilation system also produces an ex- -
tended attribute/cross-reference table called the CDC 6700
Schema. This table contains the absolute machine

addresses of each variable, Tabel, and procedure, as .
well as the first instruction of each high level Compilation
language statement. The existence of this table is system

essential given the constraints already cited.

77

Overview ;V
The purpose of this section is to describe the Schema Object
Trident Testing Environment job flow (see Figure 1). data program

The programs to be tested are written in the high
level language THLL. They are run through the com-

pilation system on the CDC 6700 producing as output cDC 6700

the Schema data and the object program for the on-
board computer.
Instfumenta-
The instrumentation program modifies the object tion
program to allow an execution histogram to be built program

as the program is run. This is accomplished by re-
placing key instructions in the flow of control of
the object program by trap instructions, and storing
any related information, such as the instruction re-
placed, in the Breakpoint table. The key instructions
chosen and their locations are determined from the
Schema data. This process is discussed in detail in
the next section.

The instrumented program is then run on the QM-1 Onboard. E &
with a variety of test data producing results and a computer xecu]%on
Test Run Table which keeps track of the parts of the emulator resutts
program exercised by the particular test data. The

data produced by each test run is accumulated in a
Tibrary system called the Scoreboard. It allows a sys-
tematic record to be kept of the completeness of testing
of a program with respect to the criteria that

(1) each statement is executed at IeaSt once
(2) each loog is executed 0,1,n times (if
possible).

CDC 6700

Later sections contain a discussion of how data is
collected for the Test Run Table and describe the re- Analysis
port generated by the Scoreboard. program

Once the Scoreboard has collected a sufficient
set of test cases that exercise the program com-
pletely to the testor's satisfaction on the QM-1, the
set is refined to a minimal but complete subset.

This allows the testor to minimize the time needed to
test the programs on the onboard computer. Since the
amount of time for final validation of the programs

on board the actual ship is severely limited, the

use of the QM-1 to develop and "debug" a good set of

Test data
analysis

test cases was of added benefit. Results from run- Figure 1. Trident Job Flow for V/V

ning the programs on the QM-1 are gathered from the .

Scoreboard and then compared against results obtained Instrumenting the Object Program

from running the programs on the onboard computer. .

This permits final testing in an environment almost The execution history of @he program 1S @ept as a
identical to actual operating conditions. basic block historgram. A basic block is defined to

be a sequential set of statements witﬁ a single.entry
For illustration, a specific example will be used and single exit point and which contains no basic

throughout the sections which follow. The example blocks. Thus each statement in a basic block is exegu{
chosen is the well known algorithm of Euclid for calcu- ted an equal number of times. 1In THLL potentia
lating the greatest common divisor of two numbers. basic blocks {as defined by their first statements)

The THLL program embodying this algorithm is given in are:

Figure 2. The assembly/object program generated by
the THLL compiler is given in the Appendix.

342

Line Program

20 INTEGER PROCEDURE EUCLID (A,B);

21 VALUE A,B;

22 INTEGER A,B;

23 /* THE VALUE IS THE GREATEST COMMON
24 DIVISOR OF A AND B */

25 BEGIN

26 INTEGER R,C;

27 A = ABS (A);

28 B = ABS (B);

29 TF A <B THEN BEGIN C = A; A = B; B = C END IFEND;

30 WHILE B NEQ 0 DO

31 BEGIN %
32 R = A MOD B; i
33 A =B; 5
34 B =R;

35 END;

36 RETURN A;
37 END; /* END OF PROCEDURE EUCLID */

Figure 2. THLL Euclid Program

procedure entry

any labelled statement

the then and else parts of an if statement

the body of a while or for loop

the subcases of a case statement

the first statement after any multibranch com-
pound statement, i.e., an if, for, while, or
case statement.

The use of a basic block histogram rather than a
statement histogram saves both time and space with
no loss of information.

The basic blocks (and their associated source
line numbers) for the example program (Figure 2) are
given in Figure 3. The program contains only 5 basic
blocks, reflecting its simple structure. Note that
the type of basic block is solely determined by the
first statement of the block.

The instrumentation program is responsible for
calculating the basic blocks of the program. The
process consists of identifying relevant branch
points generated by the THLL compiler. This data is
readily available in the Schema as a set of label
points, classified as actual, pseudo, or phony labels.
An actual label is one that exists in the source code
and is mapped directly into assembly code; procedure
names and statement labels are examples of actual
labels. A pseudo label is one that is generated by
the compiler for internal branching; examples include
the else part of an if, the endif join, etc. It
should be noted that not all pseudo labels generated
correspond to basic blocks; for example, the pseudo
Tabel for the while test is not used since its execu-
tion count can be inferred from that of the body of
the loop itself. A phony label is one that is re-
quired to identify certain types of basic blocks but
no label is generated by the compiler because no
branch is needed; examples include the then part of
an if, the first subcase of a case, and the body
of a while loop. This information is summarized in

Figure 4,
Basic Type of
block Lines basic block Remark
1 20-29 proc entry proc EUCLID
2 29 then part if on line 29
3 29-30 join/endif end of if on 1ine 29
4 30-35 loop body while Toop on line 30
5 35-37 join/endloop end of while Toop on line 30

Figure 3. Basic Blocks of Example

Location associated with

Type of basic block is the first Type of
basic block instruction:; label
proc entry of entry macro actual
Tabelled stmt of labelled stmt actual
then part ofcthen part phony
else part of else part pseudo
Join/endif after if stmt pseudo
Toopbody/for of Toop body pseudo
Toopbody/while of loop body phony
Jjoin/endloop after loop pseudo
subcase/first of first subcase phony
subcase/other of all but first subcase pseudo
join/endcase after case stmt pseudo
Figure 4., Basic Block Information

Figure 5 gives the relevant Schema entries both
for the actual basic blocks (given in Figure 3) and
for the potential basic blocks. An example of the
later is the potential block corresponding to the
else part of the if statement on Tine 29 of Figure 2;
however, as can be seen in Figure 2, the if statement
has no else part. However, the THLL compiler generates
a pseudo label for the else part (L14$$) anyway. In
order to save space and avoid confusion, all such
$mp§y)basic blocks are eliminated (via a simple ana-

ysis).

THLL Assembly Assembly Assembly

Index line Type line location label

1 20 proc entry 21 41E0 EUCLID -

2 29 then part 39 41F4 -

3 29 else part 43 41F8 L14%$%

4 29 join/endif 44 41F8 L12$$

5 30 loopbody 50 41FB -

6 35 join/endloop 63 4203 L18$$

Figure 5. Relevant Schema Labels

The instrumentation program records the relevant
information about each basic block in the Breakpoint
table. The index into the table is the block number.
Each entry contains the starting address, called the
breakpoint location, of each basic block; this loca-
tion is used to modify the object program. The 100;-
end entry gives the block number of the loop body i
the entry is a join/endloop; otherwise it is zero
(the need for this entry will be explained in the next
section).

The object program is instrumented by storing a
trap instruction at each breakpoint location. The
instruction replaced is saved in the appropriate entry
of the Breakpoint table. The trap instruction inser-
ted contains the basic block number for easy reference
into the Breakpoint table at run-time. The Breakpoint
table for the example program is presented in Figure

Basic THLL Breakpoint Type of

Saved
block line location basic block Loopend instruction
1 20 41E0 proc entry 0 32370000
2 29 41F4 then part 0 E2F70013
3 29 41F8 join/endif 0 36FF0000
4 30 41FB Toopbody 0 18E70010
5 35 4203 join/endloop 4 18F70010

Figure 6. Breakpoint Table

343

Testing the Program

Once the object program has been instrumented and
the Breakpoint table has been built, the program is
capable of being executed under test conditionms. As

- each breakpoint is trapped by the hardware, @he trap
handling library routine is executed. This is de-
fined as follows:

/* Find the basic block number (BBN) of the break-
point which caused the trap. It is stored in
the trap instruction. */

assign (BBN)
/* Increment the COUNT for the basic block entered */
COUNT (BBN) := COUNT (BBN) + 1
/* Perform only for entries which are loop ends for
loops */
if LOOPEND (BBN) # 'no’
then /* let LOOP designate the BBN of the loop
jtself */
LOOP := LOOPEND (BBN)
/* save the maximum of the number of times
the loop was executed up to that
point */ .
MAXCOUNT (BBN) := maximum (MAXCOUNT (BBN),
COUNT (LOOP))
/* record if loop executed 0 times last
‘ time */
if COUNT (LOOP) = O then EXECO (BBN) :=
1 fi
/* record 7t loop executed 1 time last

time */
jf COUNT (LooP) = 1 then EXECI (BBN) :=
1 fi
/* reinitialize count for next run */
COUNT (LOOP) := 0
fi
/* execute the instruction replaced by the trap */
execute (SAVEDINSTRUCTION (BBN))
/* return control to the instruction after the
breakpoint */
return

The Test Run table is a file which is created to
record the history of the test run. It contains all
the histogram information generated by the execution
of the program along with identification information.
The latter includes specification of the specific
program, date, a unique number assocaited with the
test run and a copy of the test data. The histogram
information includes the block number, the loopend
field and, the count of the number of times the block
was executed. If the block is a loopend it will also
include information on whether the loop was executed
0 (Exec0) or 1 (Execl) times and the maximum number
of times the loop was executed (Maxcount) for any exit
from the loop. As an example consider the testing
of the procedure FUCLID. A sample test run table for
a pair of values for the formal parameters A and B
js given in Figure 7.

Program: EUCLID
Version: 1
Date: 02/10/76

Test Run: 1
Test Data: 129, 1 (A,B)
Results: 1

Basic Source Type of Exec Exec Max-
block line basic block Count Loopend O 1 count

20 proc entry 1
29 then part O
29 join/endif 1
1
1

oW N =
POOOO

30 Toop body
35 join/endloop

Figure 7. Test Run Table

Interrupting the program at each breakpoint can be
very time consuming, especially if the breakpoints are
contained deep within a nested set of loops. There-
fore it would be worthwhile to be able to turn off
breakpoints dynamically when a sufficient amount of
information about the testing of certain parts of a
program has been accumulated. This can be done in
several ways. One way is to alter the above routine
to turn off breakpoints once the count has exceeded
a certain number. For example after the count has
been incremented, a check can be made of the form:

if COUNT (BBN) > NUMBER
then /* store the SAVED INSTRUCTION in the
breakpoint location. Assume LOC is the
Jocation of the instruction which caused
the trap. */
i MEMORY {LOC) := SAVED INSTRUCTION (BBN)
i

This would eliminated the trap and the program would
no longer interrupt at that Tocation.

It is also possible to set traps only at a particu-
lar level, say the procedure level. Thus time and
space permitting some trapping could be done for
testing programs on the onboard computer and the inter-
mediate results obtained could be compared with the:
intermediate results from the QM-1 runs. This would
provide a good consistency check at levels lower
than the entire program. :

Analyzing the Test Results

After the program has been executed on some test
data on the QM-1, the Test Run table produced is
transported back to the CDC 6700 for analysis and
report generation. The process is a simple one:

(1) Update the cumulative data for this program
in the Scoreboard.

(2) Add the results of the test run to the Score-
board.

(3) Output the Test Analysis report.

From a legical viewpoint the Scoreboard can best
be viewed as a single hierarchical file organized by
program id (which must be unique). There are two
basic levels to this file: program level and test set
level. Information at the program level includes the
program id, version number, number of test cases, and
the cumulative basic block histogram. The test set
level is organized by test run number and includes
the test data, the results, and the basic block
histogram for the test run.

Figure 8 shows a sample of the basic report after
two test runs. The data for the first test run was
(129,1) and for the second (129,5). The Test Run
Table for first test set was given in Figure 7, while
the table is implicit for the second test set in the
report in Figure 8. The cumulative figures combine
these two test cases. Note that in the final report
the loop fnformation is printed with the loop body
although it was originally stored with the loopend.
The column labelled COUNT shows the count of the number
of times that the block was executed for this run and
the total number of times executed cunulatively.

Note that the report shows that the test sets so
far have never executed the then part of the if on
1ine 29 and the loop has always been executed at least
once. Thus, additional test cases are necessary.

Program: EUCLID Test Case: 2
Test Data: 129,5 Date: 02/10/76
Results: 1
(THIS RUN/CUMULATIVE)
LooP
Fedede ek dedkdkddkdkdededkk
Block

basic Line Type Count Maximum Once 0 Times
20 proc entry 1/2
29 then part 0/0
29 join/endif 1/2
30 Toop/body 3/4 3/3 N/Y N/N
35 join/endloop 1/2

(S WIN

Figure 8. Test Data Analysis

Conclusions

The system proposed in the paper meets the goals of
providing the tester with an aid for determining the
effectiveness of particular test cases relative to a
particular set of test criteria. It provides the
tester with the information he needs in order to de-
cide whether additional test cases are needed.

Because of the nature of a fire-control environment,
it allows the tester at each stage of validation to
choose a minimal effective subset of test cases to
run.

The system is an example of tailoring standard
techniques to fit a specific environment. Although
a simpler approach to collecting an execution histo-
gram is to have the compiler insert the necessary
code, this was not a viable option due to the fire-
control constraints. We had to find some other
method of achieving the same effect. The approach
chosen of introducing breakpoints into the object
code was independent of the test criteria chosen.

We have tried to give some of the algorithms re-
quired to build this system. Algorithms which were
not given include:

(1) The algorithm for deciding when to automatically
turn off certain breakpoints.

(2) Methods of identifying the results of a pro-
cedure or set of procedures. Clearly, results
include any value output or any value returned
from a procedure.

(3) Methods of comparing results from different
machines. In a fire-control environment,
algorithms are normally developed on one
machine, and recoded in a different language
for a different machine.

Acknowledgments

This work was supported by the Naval Surface
Weapons Center/Dahlgren Laboratory.

References

1. Hetzel, W. C. Program Test Methods. Prentice-
Hall (1973).

2. Huang, J. C. An approach to program testing.

Computing Surveys, 7 (September 1975), pp. 113-

3. -‘Goodenough, J. B. and Gerhart, S. L. Toward
a theory of test data selection. IEEE Trans-

actions on Software Engineering, SE-T (June
9pp- - .

4. Ormstron, A. Trident High Level Language User's

Guide, NSWC/DL TN-DK-37/75 (December 1975).

Appendix: Assembly Listing of Program

EUCLID

Line Location Label Opcode Operands
21 41EC EUCLID RES Q
22 41£0 ENTER EUCLID,2
23 41E8 L.9 $0,1
24 41E9 5,9 16,7
25 41EA L,9 $1,1
26 41EB S,9 17,7
27 41EC S$,2 3,7
28 41ED SHLS,6,7 ~-1,0
29 * LINE 25
30 * LINE 27
3 41EE LM,15 16,7
32 A1EF s,15 16,7
33 * LINE 28
34 4170 LM,14 17,7
35 41F1 S,14 17,7
36 * LINE 29
37 41F2 SBR,13,15 14
38 41F3 BCGE L14$$
39 41F4 S,15 19,7
40 41F5 s,14 16,7
a1 4176 s,15 17,7
42 A1F7 B L12$$
43 41F8 L14$$ RES 0
44 41F8 L12$$ RES 0
45 * LINE 30
46 4178 L20$$ RES 0
47 41F8 LIRA,LIS O
48 41F9 CA,15 17,7
49 41FA BCE L18%$
50 * LINE 3
51 * LINE 32
52 4178 L,14 16,7
53 41FC SHADN, 13,14 32
54 41FD pv,13 17,7
55 A1FE S,14 18,7
56 * LINE 33
57 31FF L,13 17,7
58 4200 5,13 16,7
59 * LINE 34
60 4201 s,14 17,7
61 * LINE 35
62 4202 B L20$$
63 4203 L18%$ RES 0
64 * LINE 36
65 4203 L,15 16,7
66 4204 RETURN 2
67 * LINE 37
68 4205 LIRA,IS O
69 4206 RETURN 2
70 4207 EXIT EUGLID,2,20

J——

