The Software Engineering Laboratory:
Objectives

Victor R. Basili
Marvin V. Zelkowitz
Department of Computer Science
University of Maryland
College Park, Md. 20742

I. INTRODUCTION
e VR

A great deal of time and money has been and will continue
to be spent in developing software. Much effort has gone
into the generation of various software development meth-
odologies that are meant to improve both the process and
the product ([MYER, 751, [BAKE, 74], [woLv, 721). unfor-
tunately, it has not always been clear what the under-

lying pPrinciples involved in the software development

Process are and what effect the methodologies have; it is
not always clear what constitutes a better product. Thus

To gain a better knowledge of what is good in.the current
methodologies and what is still needed, and to help under-
stand the underlying principles of the software develop-
ment process, we must analyze current techniques, under-
stand what we are doing right, understand what we are
doing wrong, and understand what we can change.

There are several ways of doing this. oOne way is to ana-
lyze the development Process and the product at various
stages of development. Unfortunately, such analysis is

a tedious process. But it must be performed if we are to
gain any real insight into the problems of software

whether or not a particular methodology has any real
effect, and more importantly, what kind of effect
([THAY, 76], [waLs, 770).

This requires measures of all kinds, quantifiable and
nonguantifiable. Ylonquantifiable measures, although sub-
jective, reveal a great deal of information about the
product. We can "see" good design and code that meets
the problem requirements in a clear, understandable,

256

effective way and is easy to modify and maintain in
unforeseen circumstances. This kind of understanding is
clearly needed, and clearly fruitful; it is accomplished
by reading and understanding the design and code. Unfor-
. tunately, these judgements are not easy to gquantify.

They require a great deal of time to analyze and measure
each product, or class of products.

A secondary approach is to develop a set of measures

that attempt to quantify these qualitative character-
istics of good software design and development. Al-
though there is currently no mechanical way of eval-
uating design, the development of guantitative measures
that correlate well with subjective judgements of gquality
can aid in the understanding and evaluation of the
product and process. For example, the "goodness" of a
product is related to the time it takes to modify it and
the aspects of its organizational structure that permit
ease of modification and ease of finding and correcting
errors where ease is measured in terms of the time
required, number of places code needs to be changed, etc.
The "goodness"” of the development methodology is related
to the "goodness" of the product it produces, e.g., the
number and difficulty of finding errors in the product
it produces.

It is important to understand what characterizes classes
of problems and products, what kinds of problems are
encountered and errors made in the development of a
particular class of products, whether or not a partic-
ular methodology helps in exposing or minimizing the
number or effect of a class of errors, what the relation-
ship is between methodology and management control,
estimating, etc. A better understanding of the factors
that affect the development of software and their inter-
relationships is required in order to gain better in-
sights into the underlying principles. The Software
Engineering Laboratory has been established, in August
1976, at NASA Goddard Space Flight Center in cooperation
with the University of Maryland to promote such under-
standing. The goals of the laboratory are to analyze
the software development process and the software pro-
duced in order to understand the development process,

the software product itself, the effect of various
"improvements" on the process with respect to the method-
ology, and to develop quantitative measures that corre-
late well with intuitive notions of good software.

The next section gives an overview of the research
objectives and experiments being performed at the Labo-
ratory. Section III contains the current list of fac-~
tors that affect the software development process or
product and are to be studied or neutralized. The data
collection and data management activities are discussed

257

in Section IV. The lag+ section containg information on

the current status and future pPlans for the Laboratory. ,
Further details of this project can be found jin [Basz,

77

II. ACTIVITIES
—_——lolsks

It is clear that many kinds of data can be gathered and
analyzed to develop quantitative information about the
software Process and the product to which jt leads. The
laboratory has limited funding ang Personnel and for this
Teason hag limited jtg Scope to studying three very
Specific areasg related to reliability, management, and
complexity, r¢ is expected that the Scope will even-
tually expand as we learn more about the collection of
valid data ang what can be done with it, rp this section
we discuss the research activities and the two classes of
€xXperiments to be run.

the nature and causes of software SIrors. We would like
to classify €rrors, expose techniques that reduce the
total numper Or classes of errors, and detect the effec
or lifetime of these errors ({sHoO, 75], [THay, 76],
[ENDR, 757, [cann, 7s], [amoRr, 737y ! We expect to detect

ood as the technology involved. we believe .
that a major effort should be exXpended on thig area. The
Management aspect of the Software Engineering Laboratory
involves the analysis of the Mmanagement brocess, the
classification of projectsg from a Management point of
View and the development of reasonable Management meas-
ures for estimating time, cost, and productivity
({BauM, 631, [Taus, 76]). We will Study the effect of
various factors, such as time, money, size, computer
access, techniques, tools, Organization, standards,
milestones, etec. We woulg like to understand at what
point in the development Process, estimates become

Teasonably accurate, how one €an measure good visibility

Plexity of a software System can be measured by the
Structure of the resulting programs ([surL, 73], [HELL,

maintain, where data and function are localized with a
minimal amount of interaction between modules? The
relationship between various complexity measures of pro=-
gram structure will be examined throughout the develop-
ment process and such measures as error rate, development
time, the accuracy and speed of modification will be cor-
related with these complexity measures.

Two kinds of experiments are being conducted: sCreening
experiments and controlled experiments. 1In the screening
experiments, we are collecting data on a large assortment
of projects of varying sizes and types. The impact on
the development process is manifested by the requirement
that the developers fill out a set of data collection
forms (see Section IV). The purpose of the screening
experiments is to determine how software is developed now.
We are organizing a data bank of information to classify
projects for future reference and public availability,
analyze what methodologies are being used as opposed to
what methodologies are supposed to be used, demonstrate
how carefully the actual implementation of a method-
ology can be monitored, discover what parameters can be
validly isolated, expose the parameters that appear to be
causing major problems, and discover the appropriate
milestones and techniques that show success under certain
conditions. While the data collected in the screening
experiments may not be complete or totally accurate, it
will provide input for the more strictly monitored
controlled experiments.

The purpose of the controlled experiments is to discover
the effect of various factors on the software develop-
ment process and product in a reasonably controlled
environment. A set of duplicate developments will be
performed and detailed data collected for all of them.

A carefully chosen set of techniques will be taught to
and used by one of the development groups, denoted as the
"impacted" group. We will then analyze the effect of the
introduced factors by comparing the impacted development
process and product in a reasonably controlled environ-
ment.

The experiment must be designed in such a way as to in-
sure that we are testing the real hypothesis, i.e., to
guarantee that we are measuring what we think we are
measuring. It is important that all the contributing
factors be well understood and the factors that we are
not studying be reutralized [CAMP, 66]. Our approach is
first to develop a particular experimental design, ana-
lyze its ability to neutralize potential interfering
factors, (i.e., individual programmer capability) and
perform one experiment. Based on this experience, the
design will be modified and experiments repeated until
we have arrived at a reasonable standard. .

259

One current experimental design is to have two groups,
Group 0 and Group 1, each develop a pProduct, A. We will
then impact Group 1 with a set of factors by teaching
them the use of certain development techniques. Both
groups will then develop a second small project B to give
Group 1 some eéxperience with the techniques in an oper-
ating eénvironment. Then both groups will develop product
C, Group 1 using the new approach. fThis gives us several
points of comparison. We can discover any difference in
Personnel by comparing project A for both groups; the two
groups can then be more honestly compared in project ¢
by factoring out differences from project a. The meas-

In a second controlled experiment, several large scale
Projects (5 to 10 Man years each) are to be carefully
monitored with Some of the personnel given a training
course and set methodology to uge. Using the notation
above, these will be a set of C projects with no a and B.
While the Projects are not identical, they are highly
similar and should yield information about differences
in techniques. 1n Section V, both of these controlled
experiments will be described in greater detail.

ITI. FACTORS

can reliably measure. From this measurable set of fac-
tors, we would like to isolate those that appear to have
4 major impact on the development pProcess and producth
i.e., those whose use or non-use show large variation in
our measures. Finally, when we have a better understand-
ing of the factors affecting the software development
Process, we want to quantify them in some way by per-
turbing them to Study their effects or neutralizing them
to make sure they are not affecting factors that are
under study.

Our procedure is to start with as complete a list of
factors ang Categories of factors as possible. We expect
continually to build, iterate, and refine this list
through the activities of the laboratory. The develop-
ment of reporting forms and automated tools have helped

260

Ay

management difficulties, etc. The controlled experi~
ments will be used to demonstrate the effect of the
various factors that have been shown worth isolated
study.

A list of factors is given below, categorized by their
association to the problem, the people, the process,
the product, the resources, and the tools. Some
factors may fit in more than one category but are
listed only once.

A.

People Factors: These include all the individuals
involved in the software development process
including managers, analysts, designers, programmers,
librarians, etc. People related factors that can
affect the development process include: number of
people, level of expertise of the individual mem-
bers, organization of the group, previous experi-
ence with the problem, previous experience with
the methodology, previous experience with working
with other members of the group, ability to
communicate, morale of the individuals, and
capability of each individual.

Problem Factors: The problem is the application or
task for which a software system is being developed.
Problem related factors include: type of problem
(mathematical, database manipulation, etc.), relative
newness to state of the art reguirements, magnitude
of the problem, susceptibility to change, new start
or modification of an existing system, final product
required, e.g., object code, source, documentatiocn,
etc., state of the problem definition, e.g., rough
requirements vs. formal specification, importance

of the problem, and constraints placed on the
solution.

Process Factors: The process consists of the partic-
ular methodologies, techniques, and standards used
in each area of the software development. Process
factors include: programming languages, process de-
sign languages ([vanL, 767]), specificaticn languages,
use of librarian ([BAKE, 75]), walk-throughs ([BAKE,
751), test plan, code reading, top down design, top
down development (stubs), iterative enhancement
([BASI, 76]), chief programmer team ([BAKE, 75]),
Chapin charts, HIPO charts ([STAY, 76]), data flow
diagrams, reporting mechanisms, structured pro-
gramming ({MILL, 72], [DAHL, 72]), HOS techniques
([HAMI, 76]), and milestones.

Product Factors: The product of a software develop-
ment effort is the software system itself. Product
factors include: deliverables, size in lines of code,

261

* 'words of memory, etc., efficiency tests, real-time
requirements, correctness, portability, structure
of control, in-line documentation, structure of data,
number of modules, size of modules, connectivity of
modules, target machine architecture, and overlay
sizes.

E. Resource Factors: The resources are the nonhuman
elements allocated and expanded to accomplish the
software development. Resource factors include:
target machine system, development machine system,
development software, deadlines, budget, and response
and turnaround times.

F. Tool Factors: The tools, although also a resource
factor, are listed separately due to the important
impact they have on development. Tools are the
various supportive automated aids used during the
various phases of the development process. Tool
factors include ([REIF, 75], [BoEH, 75], [BROW, 73]):
requirements analyzers (e.g., PSL/PSA [TEIC, 77], .
system design analyzers, source code analyzers (e.g., ‘
FACES [RAMA, 74]), database systems (e.g., DOMONIC
[poMO, 75]), PDL processors, automatic flowcharters,
automated development libraries, implementation
languages, analysis facilities, testing tools
([rRAMA, 75], [MILL, 75]), and maintenance tools.

IV. Data Collection

Data collection occurs as four components - reporting
forms, interviews, automatic collection of data by
computer, and use of automated data analysis routines.

A. Forms: There are seven forms that were defined to
obtain information on the factors given in Section
ITI. These forms are filled out by various members
of the project development team and are used to
gather information at various states of the develop-
ment process. They reveal the resource estimates
at inception, the overall layout of the system, the
updating of the estimates and the achievement of
milestones, the time spent in various activities,
the expenditures of resources, and an audit of all
changes to the system. Several redundancy checks
have been included to validate the accuracy of the
information obtained.

Briefly, the seven forms are as follows (See
Appendix 2 of [BasI, 77]):

1. The General Project Summary - This form is used
to classify the project and will be used in con-
junction with the other reporting forms to

262

e

measure the estimated versus actual development
progress. It ig filled out by the project man-
ager at the beginning of the Project, at each

The Programmer/Analyst Survey - This form is to
classify the background of the personnel on each
Project. It ig filled out once at the start of
the Project by all personnel.

The Component Summary - This form is used to keep
track of the components of a System. A component

in time, or a shared section of data such as a
COMMON block). With the information on this form
combined with the information on the Component
Status Report, the structure and status of the
System and itg development can be monitored. This
form is filled out for each component at the time
that the component is defined, at the time it is
completed, and at any point in time when a major
modification ig made. It is filled out by the
person responsible for that component.

The Component Status Report - Thig form is used
to keep track of the development of each compo-
nent in the system. The form is turned in at

the end of each week and for each component lists
the number of hours spent on it. This form is
filled out by persons working on the project.

The Resource Summary - This form keeps track of
the project costs on a weekly basis. It is
filled out by the project manager every week of
the Project duration. It should correlate
closely with the component status report.

Change Report - The change report form is filled
out every time the System changes because of
change or error in design, code, specifications
Or requirements. The form identifies the error,
its cause and other facets of the project that

are affected.

Computer Program Run Analysis - This form is used
to monitor the computer activities used in the
project. Aan entry is made every time the com-
puter is used by the person initiating the run.

263

264

.Interviews: Interviews are used to validate the

accuracy of the forms and to supplement the infor-
mation contained on them in areas where it ig
impossible to eéxpect reasonably accurate infor-
mation in a form format. In the first case spot
check interviews are conducted with individuals
filling out the forms to check that they have
given correct information as interpreted by an
independent observer. This would include agree-
ment about such things as the cause of an error
Or at what point in the development process the
error was caused or detected.

In the second case, interviews will be held to
gather information in depth on several management
decisions, €.9., why a particular personnel
organization was chosen, why a particular set of
people was picked, etc. These are the kinds of
questions that often require discussion rather
than a simple answer on a form.

Automatic Data Collection: The easiest and most
accurate way to gather information is through an
automated system. Throughout the history of the
Project, more and more emphasis will be placed

on the automatic collection of data as we become

can or need to get, etc. More energy will be
expended in the development or procurement of
automatic collection tools as the laboratory
continues.

The most basic information gathering device is
the program development library. The librarian
will automatically record data and alleviate the
clerical burden from the manager and the pro-
grammers. Copies of the current state of affairs

A second technique for gathering data auto-
matically is to analyze the product itself,
gathering information about its structure using
a program analyzer system. A set of modifica-
tions to the FACES system is currently underway
and will Progress as the laboratory gains

more experience. These modifications are geared
at getting more of the kind of information about
the product required for our measures.

Database analysis: The above data collected on

PRET .

prtanli LU TN RN

the project will be stored in a computerized
database. Data analysis routines are being
written to collect derived data from the raw
data in the database. The data that is being
collected is being processed by a PDPll~based
system. For ease of implementation, it utilizes
the INGRES relational database system [HELD, 75]
which runs under the UNIX operating system.

V. Current Status

Beginning in November, 1976, most new software tasks

that were assigned by the Systems Development Section of
NASA/GSFC were given the added responsibility of filling
out the forms, and thus entered our set of sCreening
experiments. At the Present time, about a dozen pProjects
are currently involved. These pProjects are mostly ground
support routines to various Spacecraft projects. This
consists of attitude orbit determinations, telemetry
decommutation and other control functions. The software
that is produced generally takes from six months to two
years to produce, is written by three to six programmers
most of whom are working on several such projects simul-
taneously, and consists of six man-months to ten man-
years of effort. Projects are managed by NASA/GSFC
employees and the personnel are either NASA personnel or
outside contractors.

In June of 1977, the first of the controlled experi-
ments began. Two teams (0 and 1) are assigned tasks to
be designed and developed for delivery to the Systems
Development Section. .The format of these tasks satisfy
the experimental design outlined in Section II.

l.e., Ao XBO C°

Al YBl Cl
where Ai’ Bi’ and ci’ represent tasks to be developed

by team i and X and vy are training sessions. These
tasks will be developed on the PDP-11/70 at NASA/GSFC.
One team will consist of in-house NASA/GSFC personnel
while the other will consist of contractor personnel.
The tasks will consist of five separate subtasks with
two comprising project 'A', one project 'B', and two
comprising project 'C'. All subtasks require somewhere
on the order of three man-months of effort.

Team 1 will be given a training session (Y) after com-
pleting the A projects, congisting of several techniques:
PDL, Structured Programming, Walk-throughs, use of
Librarians, Code Reading, and will also be given a small
pProject B to take into account the necessary learning

265

curve before Project ¢ is undertaken. Team 0 will also
be given a training session ang a2 B project, but will
not be-taught the above techniques,

For this first controlled eéxperiment, there is complete
control of the development Process. The A pProjects
enable us to determine the background of the pPersonnel
and the C Projects enable us to determine the effects of
the training sessions. The small B task enables us to
filter out much of the learning curve involved in
learning new techniques. Due to Cost considerations,
the duplicate developments must nNecessarily be kept
small; however, the projects are large enough to require
team interaction among the programmers and therefore we
believe that they are generalizable to larger projects.
In addition, the techniques taught in the v training
Session are those most applicable to team Situations,

A second, longer range, controlled experiment was begun

in March, 1977, In this case, several similar large

scale projects are being carefully monitored. These proj-
€Ccts can be summarized by the following table:

Project Man Years Techniques Used
1 6 NONE
4% Structured code, Librarian,
code reading
3 4% Training session v of
experiment 1 :
4 6 Not yet defined

In this case we are performing C-like experiments of con-
trolled task 1. Due to budgetary restrictions, it is

hot possible to duplicate the development of each, how-
ever, the tasks are highly similar and should give us
results similar to the strictly monitored controlled

task 1. While we realize that we have less control over
this experiment, thig controlled experiment allows us to
study larger projects. By varying the methodology, we
expect to observe differences in Project progress.

The next Stop will be to define controlled experiment 3,
based upon the preliminary resultg of experiments 1 and
2. It is expected that controlled experiment 3 will
begin in early 1978. In this case, the techniques taught
in training seéssions X and Y and used in C, may be

266

Y e e aee

[S,

PRSI

ACKNOWLEDGMENTS

The development of this laboratory has involved the
efforts of many people, including Robert W. Reiter,
David L. Weiss, Howard J. Larsen, Charles L. Wolf,
Frank McGarry, Richard des Jardins, Walter Truszkowski,
Robert Nelson, and Keiji Tasaki.

REFERENCES

[AMOR, 73] amory, W., J. A. Clapp, A Software Error
Classification Methodology, MTR 2648, vol.
VII, The Mitre Corporation, June, 1973.

[BAKE, 75] Baker, F. T., Structured Programming in a
Production Programming Environment. Inter-
national Conference on Reliable Software,
Los Angeles, April, 1975, (Sigplan Notices
10, 6, June 1, 1975, pp. 172-185).

(BAasI, 75] Basili, v. R., A. J. Turner, Iterative en-
hancement: a practical technique for soft-
ware development, IEEE Transactions on Soft-

ware Engineering, I, No. 7, December, 1975,
PP. 390-396.

(BASI, 77] Basili, Victor R., Zelkowitz, Marvin J.,
et al., The Software Engineering Laboratory,
University of Maryland Computer Science
Technical Report, TR-535, May, 1977, 104
pages.

(BAUM, 63] Baumgartner, J. S., Project Management,
Richard D. Irwin, Inc., 1963.

(BOEH, 75] Boehm, B. W., R. K. McClean, D. B. Urfrig,

Some Experience Aids to the Design of Large
Scale Reliable Software, IEEE Transactions

on_Software Engineerin 1, No. I, MarcE,IQ?S,
pPp. 125-133.

[BrROW, 73] Brown, J. R., aA. J. De Salvia, D. E. Heine,
J. G. Purdy, Automated software assurance,

Program Test Methods, Prentice Hall, 1973,
PP. =203,

[camp, 66] Campbell, D. T., J. C. Stanley, Experimental

! ! 3 ~Xperimental
and quasi-experimental designs for research,
Chicago, Rans McNally ?ubesHing Co., 1966.

{pAHL, 72] bpanhil, o., E. Dijkstra, C. A. R. Hoare, -

Structured Programmin + New York, Academic
Press, 1972.

267

[poMo,

[ENDR,

[Ganx,

[HAMI,

[HELD,

[HELL,

[MILL,

[MILL,

[MYER,

[RAME,

[REIF,

268

7Sj

75]

75]

76]

75]

72]

72]

75]

75]

74]

75]

75]

Domonic User Guide, Advanced Technology Group,
Data Processing Center, Texas AsM University,
1975.

Endres, A. B., An Analysis of Errors and
Their Causes in System Programs, IEEE Trans-

-actions on Software Engineering 1, No. 2,

June, 1975, pp. 140-149.

Gannon, J. D., J. J. Horning, Language
Design for Programming Reliability, IEEE
Transactions on Software Engineering 1, No. 2,
June, 1975, pp. 179-191.

Hamilton, M., 8. Zeldin, Higher Order Soft-
ware - A Methodology for Defining Software,
IEEE Transactions on Software Engineering 2,
No. 1, March, 1976, pp. 9-32.

Held, G., M. Stonebraker, E. Wong, INGRES -
A relational data base system, National Com-
puter Conference, 1975, pp. 409-416.

Hellerman, L., A Measure of Computational
Work, IEEE Transactions on Computers 21, No.5
1972, pp. 439-44¢.

Mills, H. D., Mathematical Foundations for
Structured Programming, FSC 72-6012, IBM
Corporation, Gaithersburg, Maryland 20760,
February, 1972.

Miller, E. F., Jr., Methodology for Compre-
hensive Software Testing, Interim Report,

Rome Air Development Center, RADC—TR-75-161.“
June, 1975, AD# A0l3111l.

Myers, G., Software Reliability Through Com-
posite Design, New York, Mason Charter, 1975.

Ramamoorthy, C. V., S. F. Ho, FORTRAN auto-
matic code evaluation system (FACES), part I.
Memorandum No. ERL-M-466, Electronics Re-
search Laboratory, University of California,
Berkeley, August, 1974.

Ramamoorthy, C. V., S. B. F. Ho, Testing
Large Software with Automated Software Eva}-
uation Systems, IEEE Transactions on Software
1, No. 1, March, 1975, pp. 46-58.

Reifer, D. J., "Automated Aids for Reliable
Software," An Invited Tutorial at the 1975
International Conference on Reliable Software.
21-23 April 197s.

[sHoO,

[sTaY,

[SULL,

[Taus,

(TEIC,

{THAY,

[vang,

[vanz,

[waLs,

[woLv,

75]

76]

73]

76]

77]

76]

70]

"76]

77]

72]

Shooman, M. L., M. I. Bolsky, "Types, Distri-
bution, and Test and Correction Times for

Programming Errors," Proceedings 1975 con-
ference on Reliable Software, April 21-23,
Ig:gl PP. 317_332'

Stay, J. F., HIPO and integrated pProgram

design, IBM Systems Journal 15, No. 2, 197s,
PP. 143-1%7.

Sullivan, J. E., Measuring the cemplexity of
computer software, Mitre Corp. Report MTR-
2648, vol. V, June, 1973.

Tausworthe, R. C., Standard Development of
Computer Software, Part 1 Methods, Jet pPro-
Pulsion Lab, calif, Inst. of Technology,
Pasadena, Calif,, July, 197s.

tems, IEEE Transactions Software En ineerin
3, No. I, January, 1977, pp. 41-48.

Thayer, T. et al., software reliability study,
TRW Defense ang Space Systems Group, National
Technical Information Services AD~A030-798,
August, 197¢.

Van Emden; M. H., The hierarchial decomposi-
tion of complexity, Machine Intelligence 5,
1970, pp. 361-380.

Van Leer, P., Top-down development usihg a
pProgram design language, 1BM Systems Journal
15, No. 2, 1976, pp. 155-17%-

Walston, C. E., C. P. Felix, A method of pro-
gramming measurment and estimation, IBM
Systems Journal, No. 1, 1977, PP. 54-73.

Wolverton, R. w., The Cost of Developing
Large Scale Software, TRW Software Seriesg
TRW-§5-73-01, March, 1972.

Research supporteg in part by grant NSG-5123 from the
National Aeronautics and Space Administration to the
University of Maryland.

269

