
Copyright © 2003 University of Maryland

Modeling dependability for a diverse set of stakeholders

Duy Huynh, Dept. of Computer Science, University of Maryland
Marvin V. Zelkowitz, Dept. CS, University of Maryland and Fraunhofer Center Maryland

Victor R. Basili, Dept. CS, University of Maryland and Fraunhofer Center Maryland
Ioana Rus, Fraunhofer Center Maryland

{duy,mvz,basili}@cs.umd.edu, irus@fc-md.umd.edu

1. Introduction

Users today want software that is not only reliable and
efficient, but is dependable. NASA is also concerned
about space missions that need to operate for several years
without human intervention and funded the High
Dependability Computing Program (HDCP), of which this
research is part. But how does one build and evaluate such
software? This paper addresses a modeling technique for
computing dependability.
 IFIP Working Group WG 10.4 defines dependability as
“the trustworthiness of a computing system which allows
reliance to be justifiably placed on the service it delivers,
enables these various concerns to be subsumed within a
single conceptual framework.” Reliability certainly plays
a major role in dependability. However, other attributes
affect a user’s perception of being trustworthy:
performance, or time to execute a command, is a factor;
ease of use or of maintaining the software also affects a
user’s perception of the software; security issues also are a
concern.
 Different stakeholders, may have a different view of
dependability, even for the same system. An example of a
set of stakeholders might be users, developers, legislators,
and decision-makers. A user may be more concerned
about usability and availability, while the developer of the
software may be more interested in maintainability and
performance.
 Therefore, not only is dependability a multi-attribute
property, but it also differs among classes of stakeholders.
How can we measure this dependability and satisfy each
stakeholder community? We simplify the problem to the
following: Given the following assumptions:

1. Dependability is a vector of attributes.
2. There exists a set of stakeholders, each having
dependability requirements (a vector with a minimal
attribute value assigned to each dependability
attribute).
3. Given one or more systems (i.e., potential
solutions) with known dependability (i.e., a known
value for each of the attributes).

Do any of these systems meet the dependability needs for
all of the stakeholders?
 Since our model assumes multiple attributes, we need
to compare attributes that have different characteristics.
We normalize all data by converting attribute values into

0..1 ranges using utility functions. A 0 utility means "no
value" and a 1 utility satisfies all needs. Intermediate
values provide partial satisfaction of that attribute. By
converting each attribute value into its corresponding
utility, we can provide uniform analysis across the entire
vector space of dependability needs.
 We have chosen the 2-dimensional graphical model of
the radar (Kiviat) graph as our representation of
dependability. Each axis in the graph represents the utility
of a different dependability attribute. In Figure 1, R1 and
R2 each represent the utility (dependability) requirements
over 6 attributes for two stakeholders and D represents the
utility of a system for these attributes. Does D satisfy
either stakeholder?

Figure 1. Dependability Representation

 Let D(x) represent the value of D for attribute x and let
Ri(x) represent the corresponding dependability
requirement for attribute x and stakeholder i (represented
as utility functions). If ∀i, ∀x, D(x) > Ri(x), then D
satisfies all the requirements and is an appropriate
solution. What if some attribute value is not sufficient;
that is, ∃x, ∃i, D(x) ≤ Ri(x)?
 We need a mechanism to choose among several
“good,” but imperfect systems. Our solution is part
algorithm to identify dependability needs and part process
that identifies a negotiation strategy that each stakeholder
can employ to reach a consensus on a solution.

2. Computation of dependability

We define the center of mass (COM) as the dependability
of the system. As an analogy with physical properties, the
COM represents the joint influence of all of the attributes.
If Ai is the point (xi, yi) lying on axis i, the distance
between Ai and the origin is the value of attribute i. The
center of mass is calculated as follows:
 XCOM = (x0 + x1 + … + xn) / n
 YCOM = (y0 + y1 + … + yn) / n

Copyright © 2003 University of Maryland

(Not all attributes have equal weights. A more accurate
COM is given by a function g(x) over the attribute set x,
such that Σ g(x) = 1 with COM computed as:
 XCOM = (g(0)*x0 + g(1)*x1 + … + g(n)*xn)
 YCOM = (g(0)*y0 + g(1)*y1 + … + g(n)*yn)
In this note, for simplicity, we assume each attribute has
equal weight.)

Figure 2. Computation of Center of Mass Region
 Assume Ri(x) is dependability requirement for attribute
x on dependability vector Ri. Di are potential solutions:
1. Compute the minimal dependability solution Rmin as

follows: ∀i, Rmin(i) = ∀j max(Rj(i)). That is, Rmin(i) is
the largest acceptable value for each attribute.

2. If ∀i D(i) ≥ Rmin(i) then that solution is acceptable to
all stakeholders.

3. If no solution is acceptable, choose the best solution.
Compute the COM of all points x such that ∀i, x(i) ≥
Rmin(i). That is, allow x to range between Rmin(i) and
a utility of 1 for all attributes i. This forms a region
(COM in Figure 2).

4. Compute the average dependability for each Di. Avgi
= Σ Di(j)/n. We want this average dependability to be
at least as great as the average of the required
attribute values. That is, Avgi ≥ Σ Rmin(j)/n.

5. For each Di that obeys the inequality of step 4, if its
center of mass is in COM, then that solution is
acceptable. (It has sufficiently high average
dependability and all attributes are close to Rmin(i).

6. If no solution satisfies 5, do either step 6(a) or 6(b):
a. Choose solution i with max avgi dependability.
b. Choose the solution where the dependability
values are more consistent with the desired solution,
i.e., choose i that minimizes max |Di(x)-Rmin(x)|.

 In step 6(a) you are choosing the highest average
dependability. However, this permits a solution, which
allows a low value for an attribute. On the other hand,
6(b) requires all attribute values to be as close as possible
to the desired value. In both cases, by step 4 we ensure
that the average dependability is at least as great as the
minimal desired solution.

 Computing dependability attribute values requires
utility functions for each attribute (Figure 3). From the
results of previous studies, it is feasible to elicit utility
values from stakeholders as a first approximation of what
is needed. Therefore, we will survey stakeholders asking
questions similar to the following:
• What is the utility of a measured value of this

behavioral property (e.g., for MTBF)?
o What is the utility of a MTBF of 10 hours, 2

hours, ½ hour, …? (i.e., , How useful will this be
to you?)

o If a system exists, what is the utility of the
current MTBF? (i.e., What is the utility of that
current system with respect to this measure?
Even if the stakeholder doesn’t know the MTBF
value, which is likely, this allows us to normalize
the values for the other answers.)

• What are your needs with respect to this property
(e.g., What do you expect the MTBF to be)?

 After getting the stakeholder’s expected value on each
behavior property, we can interpolate the values to build a
utility function in the [0, 1] range.

3. Negotiation

 If multiple (or no) solutions remain, this process can be
used within a negotiation strategy. Stakeholders can
modify their required dependability needs, Ri(x) or decide
to use either 6(a) or 6(b) of the algorithm for choosing a
solution. This then provides a basis for making such
decisions.
 This work is still preliminary and we are now
collecting data to determine its effectiveness in measuring
dependability. We are looking at multiple
implementations of web software (e.g., web browsers,
instant messaging systems) to evaluate this model for
various stakeholders.

Acknowledgement

This work is partially supported by the High
Dependability Computing Program (NASA agreement
NCC-2-1298 to Carnegie Mellon University) subcontract
to the University of Maryland and Fraunhofer Center.

Figure 3: Utility of MTBF

COM solution
region

R1 MTBF (hours)

Utility

1

0

