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Abstract

Software architecture is an important form of abstrac-
tion, representing the overall system structure and the re-
lationship among components. When software is modified
from one version to another, its architecture may change.
Software modification involving architectural change is of-
ten difficult when the change goes beyond the original ar-
chitectural design, involving changes to the connectivity of
multiple components. Existing research has looked at ar-
chitectural change at the level of architecture metrics such
as size, complexity, coupling and cohesion, which abstract
a particular version of the software in isolation. In this pa-
per, we argue that this level of abstraction is often too high
to characterize some interesting aspects of the architectural
change process, and propose an approach that takes into
account the change in connectivity from version to version
of individual components. In this approach, two endpoints
of a major change are taken as reference points, and inter-
mediate connectivity changes are examined relative to the
endpoints. We define a distance measure between software
structures using a graph kernel function, which is quite
powerful as it is applicable to any software structure repre-
sentable as a graph. Using this distance measure, we define
a metric which models the architecture change as a transi-
tion between two endpoints. In addition to theoretical anal-
ysis of the approach, we present empirical results obtained
by applying the approach to open-source software projects
to evaluate its validity and usefulness.

1 Introduction

It is widely believed that software inevitably changes
throughout its lifecycle. Predicting all possible changes
that could occur is impossible. An unexpected change, es-
pecially the one that occurs at the late development stage
or after release, often causes bad effects on software qual-
ity. Thus it is an important software engineering challenge

to analyze and characterize change process, and ultimately,
predict the cost of change. One important perspective is
whether the architecture of the software has been changed
during the change process. There are numerous different
definitions of architectures1. In this paper, we use the term
“architecture” to denote the structure of the program and
the relationship among components. In general, software
change that accompanies an architectural transformation is
more likely to be difficult, because the scope of change is
not limited to the local component; multiple parts of the pro-
gram are affected. For this reason, measuring the amount of
architectural change provides useful information for char-
acterizing changes and predicting costs.

Figure 1 illustrates a simple model of the software
change process. First we have a version P0 (the current
release) of a particular program, and we apply a series of
changes to produce a version Pn (the next release). Be-
tween them, intermediate version P1, P2, . . ., Pn−1 are cre-
ated. The architecture of each version Pi, i = 0, 1, . . . , n,
is formally represented as Ai, a metric or model abstract-
ing some form of information about the architecture. That
is, the initial version P0 has an architecture A0, the final
version Pn has An, and all intermediate versions have the
corresponding architectures too. What we intend to do is to
compare those architectures Ai, i = 0, 1, . . . , n and calcu-
late the differences from architecture to architecture.

From this model, for any series of of software versions,
we can theoretically obtain the difference between any two
architectures Ax and Ay by (1) extracting Ax and Ay from
Px and Py , and (2) calculating the difference between Ax

and Ay , denoted by d(Ax, Ay). Unfortunately, however,
doing this in practice is not straightforward. The main two
reasons are summarized as below.

1. We may not know what is the appropriate Ai for ab-
stracting the relevant information to compare architec-
tures (level of abstraction)

1Various definitions can be found in http://www.sei.cmu.edu/
architecture/definitions.html.
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Figure 1. Model of software change and ar-
chitecture. Architecture Ai is assumed to
be calculated from program version Pi, i =
0, 1, . . . , n

2. We may not know how to measure how different two
architectures are in a consistent way (distance mea-
sure)

What is the right abstraction for representing an archi-
tecture? There are hundreds of existing metrics for soft-
ware architecture, which are based on the notions such as
size, complexity, coupling, cohesion, etc. For these met-
rics, the first problem is a main issue. For example, suppose
we use Chidamber and Kemerer’s metric for the maximum
coupling between objects[2] as Ai, and let A0 = 11 and
An = 12. From these numbers, we can presumably claim
by computing the difference d(Ax, Ay) = An − A0 = 1,
we can also say that the architecture of Pn is slightly more
highly coupled than P0 although the difference is not signif-
icant. However, this does not mean that the architecture of
P0 and Pn are similar. In fact, this gives almost no informa-
tion on how much the architecture has changed between P0

and Pn, since the coupling measure is not designed for dif-
ferentiating architectures but for evaluating the “goodness”
of the architecture. As a result, P0 and Pn may have com-
pletely different architecture even if these metrics A0 and
An are comparable.

Therefore, the level of abstraction of those metrics are
too high for the purpose of measuring the difference be-
tween architectures. Ai should be defined so that it con-
tains the information at a more specific level: capturing the
structure itself. That is, Ai should be a structural representa-
tion of the software architecture, rather than a simple scalar
value. There have been many papers work on extracting an
architectural representation [1, 4, 11, 12] for the purposes
of reverse engineering, software understanding by decom-
position, visualization, etc. There the output is essentially a
graph structure extracted from the source program. By us-
ing such a structure as an architecture metric Ai, and com-
paring the metrics from two versions of the software, we
get the distance between them. In this case, however, the
second problem becomes an issue. Since Ai is no longer
a simple scalar value, it is not clear how to compare them.
Existing attempts at comparing program structures, mainly

in the context of change impact analysis[7, 9, 8] or archi-
tecture evaluation[10] depend highly on the very specific
features of the programming model and language they deal
with, thus are only applicable to a limited class of problems.
Also, since they depend on the matching of components that
exist in two structures, and the matching is not always accu-
rate especially if class and/or methods have been renamed,
they cannot be used for comparing very different architec-
tures. Stability is yet another issue; when a structure is mod-
ified slightly, the comparison result can drastically changes.

In this paper, we define a difference metric based on
graph kernel[6], which is free from the problems stated
above. We define the graph kernel for computing the dis-
tance between software architectures, and discuss how to
apply them in practice. Then we describe a model of archi-
tecture transition based on our distance metric. We present
the results of applying our approach to the evaluation of sev-
eral open-source software systems. Although graph kernels
have been used in data mining applications, we have found
no prior work that applied graph kernel for measuring the
distance between software architectures.

2 Metric of structural distance using graph
kernel

In this section, we describe our model for computing the
distance between architectures using graph kernel. Kernel
is a notion that appears in several branches of mathematics.
Recently a theory and technique called a kernel method [5]
is popularly used in various fields such as statistics, machine
learning and pattern recognition because it can deal with the
problems involving the computation of similarity between
structures like string, trees and graphs in a very consistent
way.

Figure 2 illustrates an intuitive explanation of a kernel
for structures. Suppose we want to quantify how similar
these two objects, triangle and rectangle, shown in this fig-
ure are. The basic idea is that the characteristics of a struc-
tured object are represented by a collection of its inner sub-
structures. For example, the triangle consists of a circle, a
cross, and hexagon which connected with different types of
edges, and each of them describes a part of the entire fea-
ture. If we only care about vertex shapes, then its similarity
with the rectangle can be evaluated by looking at whether
the vertex shapes match in these two objects. As a result,
we discover that three of the four rectangle vertices are in-
cluded in the triangle. On the other hand, if we are also
interested in connectivity, we can look at each pair of ver-
tices connected with an edge. In this case, we discover
that only one common pair exist in these objects. Larger
substructures containing more vertices and edges can be
also extracted and compared in the same way. The over-
all similarity of these objects is then formulated as a sum

11th IEEE International Software Metrics Symposium (METRICS 2005) 
1530-1435/05 $20.00 © 2005 IEEE 



Figure 2. Intuition of the Kernel Method

of these substructure-matching results. Of course, counting
and comparing potentially infinite number of substructures
is usually infeasible, so we need to define such a sum in a
way that is mathematically reasonable and can be computed
efficiently.

In this paper, we make use of kernel defined for graph
structures [6] to compute the distance between architectures
by assuming that the metric of architecture Ai is a graph
representation of the software structure.

2.1 Graph kernel theory

Suppose we compare two software structures, Ax and
Ay , which are both graphs. As explained above, the idea
is that the similarity of Ax and Ay is the sum of the sim-
ilarity of sub-structures contained in Ax and Ay . Sup-
pose we can extract a set of real-valued features φ(Ax) =
{φ1(Ax), φ2(Ax), . . .} from Ax so that Ax is represented as
a “feature vector” φ(Ax), and similarly extract φ(Ay) from
Ay , Then the similarity between Ax and Ay , or kernel, can
be easily computed as a inner product of two vectors:

K(Ax, Ay) = 〈φ(Ax), φ(Ay)〉 =
∑

i

φi(Ax)φi(Ay) (1)

where the operator 〈 〉 denotes an inner product. Using this
definition, the distance between Ax and Ay can be written
as:

d(Ax, Ay) =
√

K(Ax, Ax) − 2K(Ax, Ay) + K(Ay, Ay)
(2)

Figure 3 illustrates the idea described above.

Figure 3. Concept of kernel: inner product of
(hidden) feature vectors

Although the idea is quite simple, computing the feature
vectors φ(Ax) and φ(Ay) is often infeasible in practice be-
cause the number of sub-structures contained in Ax and Ay

can be exponentially large. Fortunately, instead of explic-
itly computing feature vectors, it is possible to just compute
the kernel K(Ax, Ay), and this is the most essential part of
the kernel method. In fact, this is made possible by recur-
sively decomposing K(Ax, Ay) into the convolution of the
kernels between sub-structures:

K(Ax, Ay) =
∑

s∈S(Ax)

∑
s′∈S(Ay)

f(s|Ax)f(s′|Ay)Ks(s, s′)

(3)
where S(Ax) and S(Ay) are the sub-structures of Ax and
Ay , and f(s|Ax) and f(s′|Ay) is weights of s ∈ S(Ax)
and s′ ∈ S(Ay) in Ax and Ay , respectively. Intuitively,
this is a weighted sum of kernels between all possible sub-
structures that exist in Ax and Ay . The more parts they have
in common, the more similar they will be.

Figure 4 shows a concept of kernel computation in this
form. The graphs Ax and Ay consist of nodes and links,
each of which has a label. Sub-structures are defined as
“paths” on these graphs. For example, Ax contains A,
B, C, D, AaB, AcD, BbC, . . ., AaBbC, . . ., as sub-
structures, while Ay contains A, B, C, D, E, AaB, AcC,
. . ., AcCaB, . . .. Those paths are obtained by doing a ran-
dom walk on the graph, i.e., choosing a starting node on the
graph and keep moving to neighboring nodes until termina-
tion. Let γ be a parameter that denotes the probability of
terminating the random walk at each step. If γ = 0, the ran-
dom walk always stops at the first node, and the weights for
longer sub-structures are zero. As γ increases, longer paths
have larger weights, and if γ = 1, the random walk never
terminates and even infinitely long paths are counted.

The kernel K(Ax, Ay) in the equation (3) is the
weighted sum of the kernels computed on all combina-
tion of the sub-structures, which still requires a summa-
tion of exponentially many items. The kernel for the sub-
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Figure 4. Graph Kernel: defined as the con-
volution of all paths included in Ax and Ay

structures, Ks(s, s′), is defined as 1 if s and s′ have exactly
the same length and labels, and 0 if otherwise. Fortunately,
the equation can be rewritten so that the actual computation
can be done efficiently as follows:

K(Ax, Ay) =∑
h1 ∈ Ax, h′

1 ∈ Ay s.t. lh1 = lh′
1

1
|Ax||Ay|R∞(h1, h

′
1) (4)

where h1 and h′
1 are the start nodes of a random walk, l∗ is

the label of a node or a link, and is

R∞(h1, h
′
1) = γ2 +∑

i, j s.t. li = lj and lih1
= l

jh′
1

(
R∞(i, j) ×

1 − γ

(# of h1’s neighbors)
1 − γ

(# of h′
1’s neighbors)

)
(5)

Refer to [6] for how these equations are derived. In Ap-
pendix A, we summarized the kernel computation results
for several simple graph structures.

2.2 Notes on computational cost

For defining a distance between architectures, one
straightforward but impractical approach is to directly com-
pare the graph representations of architectures and iden-
tify the difference by identifying their largest common sub-
graph. However, this is essentially equivalent to solving a
subgraph isomorphism problem, which is known to be NP-
complete. One advantage of the kernel method is its compu-
tational efficiency as it avoids this class of problem and just
focuses on computing a distance measure. In fact, Equa-
tion (5) are linear simultaneous equations for R∞(h1, h

′
1),

h1 ∈ Ax and h′
1 ∈ Ay , which can be solved by various

polynomial-time algorithms for calculating an inverse ma-
trix of a (|Ax||Ay| × |Ax||Ay|) coefficient matrix. Further-
more, since the coefficient matrix is usually sparse in this
problem, we can employ various efficient numerical algo-
rithms. In our implementation, we solve (5) by simple iter-
ations, starting with R∞(h1, h

′
1) = γ2 and updating solu-

tions until convergence. The actual execution time for com-
putation is determined by the size of the graphs modeling
the architectures, which depends on the level of details in-
cluded in that model.

2.3 Applying graph kernel to compute architec-
tural distance

Using the formulas in the previous section, we can now
compute the kernel (and thus, distance) between any soft-
ware architectures as long as they are represented as la-
beled graphs. As mentioned in the introduction, the remain-
ing part— retrieving the software structure from the source
code and representing it as a graph— can be made possible
by various existing architecture extraction techniques. In
fact, representing software architecture as a graph structure
is natural thing to do, because a graph/tree structure is in-
herent in virtually any kind of programming languages. For
example, the language syntax is often defined by a context-
free grammar, which can be represented as a tree. The
parser output is an abstract syntax tree, and the execution
path is represented as a control flow graph. A model at
higher level, such as a UML class diagram, is also a graph.

Even so, the choice of appropriate graph representation
is critical for getting a meaningful result. Unfortunately, no
representation is known to be best in all situations. Instead,
here we briefly discuss several decision factors on choosing
a right model.

2.3.1 Level of details

Nodes should be assigned to the units between which the
dependency is of interest, such as files, classes/interfaces,
methods, etc. At the finest level, we can even assign a node
to each statement. In general, too much details of the infor-
mation can be harmful, not only because it affects the model
size (and thus, the computational cost), but also introduces
noise to computation if we are less interested in the change
of program structure at the statement level. With such a
noise, the graph kernel can still produce high similarity, but
it’s no longer an exact match.

2.3.2 Assignment of node labels

The strategy of assigning labels to nodes determines which
nodes are allowed to match. For example, let us assume
each node corresponds to the source file. One obvious ap-
proach is to make each node assigned a unique label, such as
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a file name. This works fine until the file name is modified
during the change process, in which case the nodes before
and after the renaming no longer match. Many refactor-
ing tools support renaming of objects, so the labeling based
on the name may not be suitable if we still want objects to
match after renaming.

On the other end, we could assign the same label to all
nodes. In this case, any node can match with each other, and
the link labels determine whether two sub-structures match.
Therefore, the similarity between any objects tends to be-
come higher (i.e., the distance becomes smaller.)

Many other approaches are possible between these two
extremes. For example, if the graph contains multiple types
of nodes (such as classes, methods, fields), we can possi-
bly assign each type a distinct label. In general, there is a
trade-off between precise matching and robustness against
the modification.

2.3.3 Assignment of link labels

The exactly same trade-off between precise matching and
robustness applies to the assignment of link labels. In ad-
dition, defining link labels may be more difficult because
there can be so many types of relationships between nodes.
For example, a UML class diagram has various kinds of
links for relationships between classes, along with cardinal-
ity, roles, etc. If we want to distinguish them, we need to as-
sign distinct labels. Finally, from a practical point of view,
it is important to note that not all interesting relationships
can be extracted from source code automatically.

3 Modeling architecture transition using dis-
tance measure

In this section, we describe a model of architecture tran-
sition using our architectural difference metric. In our
model, two endpoints of the change process, A0 and An,
are taken as reference points, and the intermediate connec-
tivity changes are examined relative to these endpoints. As
a result, the architecture change is modeled as a series of ar-
chitectural transition, A0, A1, . . . , An, represented as a tra-
jectory. The shape of the trajectory represents when and
how the architecture has changed during the process, which
enables quantitative and qualitative analysis.

3.1 Relative distance from endpoint references

Suppose we take the initial architecture A0 as a refer-
ence. Then for the architecture of any version Ai, i =
0, 1, . . . , n, we can compute the distance between Ai and
A0, i.e., d(Ai, A0). By repeating it for all i, we obtain a se-
ries of of relative distance as an output, which is illustrated
in the upper part of Figure 5. Similarly, if we take the final

architecture An as a reference and compute d(Ai, An) for
all i, i = 0, 1, . . . , n, we get another series shown in the
lower part of of Figure 5. By definition, d(A0, A0) = 0 and
d(An, An) = 0 always hold. At other points, the metric
takes a non-negative value. d(An, A0) = d(A0, An) also
holds, but d(Ai, A0) is not equal to d(Ai, An) in general.

A motivation of drawing diagrams like these is to vi-
sually characterize how intermediate versions changed in
terms of structural connectivity between components in rel-
ative to two endpoints. By looking at the amount of changes
and the shape of the curves, we can better understand what
happened in each intermediate change.

Figure 5. Two diagrams that shows the con-
cept of “relative distances”. The upper dia-
gram shows the d(Ai, A0), which is the dis-
tance of Ai from the reference A0, while the
bottom shows the distance from the other ref-
erence, An.

For example, if those diagrams show monotonic curves,
we may be able to hypothesize that the architectural change
has been made in a consistent way, whereas the transition
with a rapid increase/decrease in the distances from end-
points may have been more spontaneous. Of course, as none
of these hypotheses have been quantitatively validated yet,
they are left to future research.

Note that although we only consider the cases in which
endpoints A0 and An are taken as a reference here, it is also
possible to use arbitrary architecture in between, or even an
unrelated architecture extracted from other software.

3.2 Model of architecture transition

Now that d(Ai, A0) and d(Ai, An) are computed and
examined individually above, we further define a metric
which models the architecture change as a transition be-
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tween two endpoints. Since this metric is normalized at
both boundaries, it is useful for comparing and classifying
many instances of architecture transition, taken from multi-
ple projects or different time points of a single project.

Let L be the such metric we want to define. Since L is
computed for each version Pi, i = 0, 1, . . . , n, we denote
the value of metric L for Pi by L(Pi), and define it using
d(Ai, A0) and d(Ai, An).

Since we use both endpoints A0 and An, it is natural to
define L as a dividing point which has the distances propor-
tional to our distance metric:

|L(Pi)−L(P0)| : |L(Pi)−L(Pn)| = d(At, A0) : d(At, An)
(6)

By assuming L(P0) ≤ L(Pi) ≤ L(Pn), we obtain

L(Pi) =
d(At, A0)L(Pn) + d(At, An)L(P0)

d(At, A0) + d(At, An)
(7)

If we define the boundary condition as L(P0) = −1 and
L(Pn) = 1,

L(Pi) =
d(At, A0) − d(At, An)
d(At, A0) + d(At, An)

(8)

L(Pi) is a “relative distance” from both endpoints. It is
close to −1 if Pt is similar to P0, while it is close to 1 if Pi

is similar to Pn. Since L(Pi) is normalized to [−1, 1], it can
be easily compared to other data.

4 Demonstrations

In this section, we present the results of applying our
metrics to four open-source software projects. All projects
use Java as a primary language. The first three was taken
from the SourceForge CVS repository. They were selected
from the list of most popular Java projects in SourceForge,
and they have active development activities. From each
project history, we have retrieved monthly snapshots from
March 1, 2004 to March 1, 2005 from the CVS reposi-
tory. Therefore, we have obtained 13 data points from each
project.

The fourth one is from the MIT project called TSAFE
(Tactical Separation Assisted Flight Environment). TSAFE
is a prototype for a next-generation air-traffic control sys-
tem discussed in NASA[3]. The development in the MIT
project began in May 2002 and completed in January 2003,
and the CVS history is publicly available for the purpose of
software engineering research. We have retrieved monthly
snapshots and obtained eight data points.

Table 1 lists the parameters of four projects. LOC (lines
of code) was calculated by counting the number of lines
in Java source files, including comments and blank lines.
The number of commits during the data collection period

was retrieved from CVS logs. We counted a single commit
submitting multiple files counted as one.2

Table 1. Summary of project characteristics

Project Data period LOC range Commits

Azureus 3/1/04–3/1/05 120,136–267,760 3,406
hsqldb 3/1/04–3/1/05 248,440–274,096 571
ganttproject 3/1/04–3/1/05 23,694–38,991 662
TSAFE 6/1/02–2/1/03 2,088–19,250 63

For this study, we have implemented a set of analysis
tools that consist of the architecture extraction part and the
kernel computation part. Our architecture representation is
a class dependency graph. The assumptions and design de-
cisions we made are summarized as follows.

• Each class and interface in the source code is assigned
a node. All nodes are assigned the same label so that
any node matches with each other. This means that
renaming a class and a method has not effect on the
generated graph.

• Inheritance, association and use dependencies are au-
tomatically identified in the source code, and assigned
a link. Inheritance edges are assigned a different label
from other two. More precisely, an inheritance link
is added between super- and sub-classes/interfaces,
while an association link is added from each class to
all classes for the types of the fields, parameters vari-
ables in that class. Association, composition and ag-
gregation are not distinguished. Multiplicity of links,
if any, is ignored.

• External libraries, i.e., the class outside of the project,
as well as the JAR files that are in the project but
without source code, are excluded from the generated
graph.

• For the computation of the graph kernel, the probabil-
ity of random walk termination γ = 0.5 is used in all
cases.

4.1 Azureus

Azureus is a BitTorrent peer-to-peer client written in
Java. The two curves in Figure 6 shows the transitions of
the distance metrics d(Ai, A0) and d(Ai, An), where A0

is the architecture as of 3/1/04 and An is the one as of
3/1/05, respectively. The number horizontal axis shows the

2Since CVS does not explicitly record simultaneous submission of mul-
tiple files, we have used a script called cvs2cl.pl to identify distinct com-
mits.
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months starting from March 2004. As is shown, neither
of the curves are monotonic, and no consistent architecture
transition toward one direction was observed.

 0
 0.001
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 0.004
 0.005
 0.006
 0.007
 0.008

 0  2  4  6  8  10  12

Distance from Architecture in Mar 04
Distance from Architecture in Mar 05

Figure 6. Azureus2: Transition of distance
metrics d(Ai, A0) and d(Ai, An)

Figure 7 shows the architecture transition metric L de-
fined by Equation (8) presented with the transition of LOC.
(The left vertical axis shows L, while right vertical axis
shows LOC.) While LOC has constantly increased up to 2.2
times from the initial version, there is no indication that ar-
chitecture has drastically changed. This might imply that
the project is relatively well controlled to keep the existing
architecture, or our implementation failed to capture the ar-
chitectural change.
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 200000
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LOC transition

Figure 7. Azureus2: architecture transition
and LOC

4.2 HSQLDB

HSQLDB is a relational database engine written in Java.
Figure 8 shows the transition of d(Ai, A0) and d(Ai, An).
It indicates that the architecture has gone through a rapid
change during the second and third month (April and May
in 2004.) Interestingly, d(Ai, A0) has rapidly decreased af-
ter this period, which means the intermediate architecture
re-approached A0 as a result of architecture transition.

Figure 9 shows L(Pi) and LOC transition. Notice that
in this data, LOC increased very little during the period
of rapid architecture change. It seems as if the program
size was kept small during rapid architecture change, then
started increasing after the architecture became “stable”.
Although there is no strong evidence, this might suggest

 0
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Distance from Architecture in Mar 04
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Figure 8. hsqldb: Transition of distance met-
rics d(Ai, A0) and d(Ai, An)

that the architecture transition was conducted under control
in this project.
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Figure 9. hsqldb: architecture transition and
LOC

4.3 ganttproject

Ganttproject is a tool for using a Gantt chart. Figure 10
indicates that d(Ai, A0) and d(Ai, An) has rapidly changed
during the fifth month in the figures (July 2004). The
CVS commit log indicates that the user interface has been
changed during this month, which might have caused a rel-
atively large architectural change.

 0
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 0.004
 0.006
 0.008
 0.01

 0.012
 0.014
 0.016
 0.018

 0  2  4  6  8  10  12

Distance from Architecture in Mar 04
Distance from Architecture in Mar 05

Figure 10. ganttproject: Transition of dis-
tance metrics d(Ai, A0) and d(Ai, An)

Unlike the previous project, however, Figure 11 shows
that the LOC has also increased during the same period.
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This might suggest the architectural change and size in-
crease occurred simultaneously.
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Figure 11. ganttproject: architecture transi-
tion and LOC

4.4 TSAFE

The data from TSAFE project is different from the others
in that the examined change history covers the entire devel-
opment period. Therefore, the version P0 is indeed the ini-
tial version put in the CVS repository. The lines of source
code has multiplied by 9.2 times. The architectural differ-
ence throughout the process (d(A0, An)) is largest, which
is reasonable for the reason above.

Figure 12 indicates that most major architecture changes
have been completed during the second month. On the other
hand, LOC transition shown in Figure 12 indicates that size
increase began after that period. Again, if our metric has
captured the architecture transition correctly, it might sug-
gest that the change process was well controlled so that the
size did not increase until the architecture was fixed.
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Figure 12. TSAFE: Transition of distance met-
rics d(Ai, A0) and d(Ai, An) from June 2002 to
February 2003

4.5 Discussions

Based on the results above, we have made the following
observations.
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Figure 13. TSAFE: architecture transition and
LOC from June 2002 to February 2003

• Except the fourth project, the architectural distances
were within an order of 10−2. There are several pos-
sible explanations for why they were so small. First,
in our implementation all classes are assigned same
node label in the architecture graph, which, therefore,
allows any classes to match with each other. This may
have helped the similarity be evaluated high. The sec-
ond possibility is that our simple class dependency
graphs did not contain enough information for cap-
turing the difference between the architecture exam-
ined here. The third possibility is that the architectural
change was indeed small in these projects.

• The tool we have implemented has been proved to run
fast enough for the projects of the size we studied here
(200k LOC at maximum.) The computation has com-
pleted within one minute per a single comparison on
the PC running on a mobile Pentium III 1.5 GHz CPU.

• We have observed that the architectural transition and
the program size increase tend not to synchronize in
some projects. If we assume this is a good pattern, we
might be able to hypothesize the following:

– If a major architecture transition completes be-
fore size growth, then the cost will remain in con-
trol

– If architecture transition is far behind size
growth, then the change cost will be high

Although this was not a primary result we intended to
get from this study, it might be interesting to validate
these hypotheses in a future research.

5 Conclusions and future work

In this paper, we defined a distance metric between
software architectures using a graph kernel function. The
method is generally applicable to any programming model
and language as long as the architecture can be appropri-
ately represented as a graph structure. The computation is
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efficient enough for practical use, and it overcomes difficul-
ties such as the matching of renamed components and the
stability issue which existed in conventional methods for
comparing software structures.

Using this distance metric, we defined a measure which
models the architecture change as a transition between
two endpoints, so that two endpoints of the major change
are taken as reference points and intermediate connectivity
changes are represented as the transition trajectory relative
to endpoints. The derived measure is a basis for comparing
and classifying the patterns of transition.

Although the theoretical results discussed in this paper is
promising, there are also drawbacks in this approach. First,
since the kernel method only computes similarity, we can-
not identify the exact part of difference in the structure. Fur-
thermore, we do not know the meaning of the distance com-
puted by this method. In other words, although the mathe-
matical background behind it is concise and consistent, the
actual usage is still left to the people who interpret the re-
sult.

We have applied our metrics to several open-source soft-
ware projects and shown that the analysis is feasible and
efficient enough for practical use. We have succeeded in
deriving hypotheses on cost effect of the architecture transi-
tion and size growth pattern, which supports the usefulness
of our approach. In the future, more data should be col-
lected to further evaluate the validity and usefulness of this
method. We hope that by providing a means to recognize
where in a series of changes the architecture was changed
the most, we will be able to predict other properties of the
software. For example, since we expect to have more inter-
face defects when a drastic architectural change occurred, it
may be used to produce a warning when extensive testing
seems needed. The examples shown in this paper illustrate
the possibility of providing such a predictor that couldn’t
be realized with existing measures such as LOC, but more
studies are necessary to validate the usefulness by exam-
ining the relationship between the architectural transition
metric and defect-proneness, and the effectiveness of this
metric as a predictor compared to other existing metrics.

Finally, the distance metric of architecture itself can have
broader applications. For example, when we have multiple
software and consider joining them, the difficulty of the task
is expected to depend on the architectural distance between
the variants. In such a scenario, the distance metric becomes
an important decision-making factor: if their architectures
are too different, the task of merging them would be costly,
thus should be discouraged. Again, the usefulness of the
metric needs to be further verified through more theoretical
and empirical studies.
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A Basic Graph Kernel Calculations

We show examples of how to analytically conduct graph
kernel calculations for three simple graphs shown in Figure
14. All results here are direct application of Equations (4)
and (5). Similar calculation is possible for arbitrarily large
graphs.
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Figure 14. Graphs for Examples of Graph Ker-
nel Calculations

A.1 Two 1-node graphs

Kernel for two identical 1-node graphs is computed as
follows:

K(A1, A1) =
1
1
× 1

1
× R∞(A,A)

= γ2 (9)

The kernel is zero if the node labels of two graphs are dif-
ferent.

A.2 1-node graph and 2-node graph

Kernel for the graph A1 and A2 is:

K(A1, A2) = 2 ×
(

1
1
× 1

2
× R∞(A,A)

)

= γ2 (10)

Kernel for the graph A1 and A3 is:

K(A1, A3) =
1
1
× 1

2
× R∞(A,A)

=
1
2
γ2 (11)

A.3 Two 2-node graphs

A.3.1 Two symmetric graphs

K(A2, A2) = 4 ×
(

1
2
× 1

2
× R∞(A,A)

)

= R∞(A,A) (12)

where

R∞(A,A) = γ2 +
(

1 − γ

1

) (
1 − γ

1

)
R∞(A,A)

= γ2 + (1 − γ)2R∞(A,A) (13)

By solving this equation for R∞(A,A), we obtain

K(A2, A2) = R∞(A,A) =
γ2

1 − (1 − γ)2
=

γ

2 − γ
(14)

A.3.2 Symmetric v.s. asymmetric

K(A2, A3) = 2 ×
(

1
2
× 1

2
× R∞(A,A))

)

=
1
2
γ2 (15)

A.3.3 2 asymmetric nodes

K(A3, A3) =
1
2
× 1

2
× R∞(A,A)

+
1
2
× 1

2
× R∞(B,B)

=
1
4

(R∞(A,A) + R∞(B,B)) (16)

where

R∞(A,A) = γ2 +
(

1 − γ

1

) (
1 − γ

1

)
R∞(B,B)

(17)

R∞(B,B) = γ2 +
(

1 − γ

1

) (
1 − γ

1

)
R∞(A,A)

(18)

By solving these simultaneous equations,

R∞(A,A) = R∞(B,B) =
γ2

(1 − (1 − γ)2)
=

γ

2 − γ
(19)

Therefore,

K(A3, A3) =
γ2

2(1 − (1 − γ)2)
=

γ

2(2 − γ)
(20)

Table 2 summarizes the distances among those exam-
ple graphs calculated using equation (2). For example, if
the termination probability γ = 1/2, d(A1, A2) = 0.2887,
d(A1, A3) = 0.4082, and d(A1, A3) = 0.5.

Table 2. Distances among example graphs
A1 A2 A3

A1 0
√

γ(1−γ)2

2−γ

√
γ

2(2−γ)

A2

√
γ(1−γ)2

2−γ 0
√

γ(2γ2−4γ+3)
2(2−γ)

A3

√
γ

2(2−γ)

√
γ(2γ2−4γ+3)

2(2−γ) 0
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